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Abstract—Peer-to-Peer (P2P) systems have been deployed on
millions of nodes worldwide in environments that range from
static to very dynamic and therefore exhibit different churn levels.
Typically, P2P systems introduce redundancy to cope with loss of
nodes. In distributed hash tables, redundancy often fixed during
development or at initial deployment of the system. This can
limit the applicability of the system to stable environments or
make them inefficient in such environments. Automatic network
configuration can make a system more adaptable to changing
environments and reduce manual configuration tasks. Therefore,
this paper proposes an automatic replication configuration based
on churn prediction that automatically adapts its replication
configuration to its environment. The mechanism termed dynamic
replication mechanism (dynamic RM) developed and evaluated
in this paper is based on exponential moving averages to predict
churn that is used itself to determine a replication factor meeting
a certain reliability threshold. Simulations with synthetic data
and experiments with data from torrent trackers show that the
behavior can be predicted accurately in any environment, from
low churn rates to diurnal and high churn rates.

I. INTRODUCTION

Distributed systems are important to handle large amounts
of data and many users. A distributed system consists out
interconnected nodes, contributing its resources to process
parallelized tasks. Many different types of distributed system
exists, ranging from large-scale Internet systems such as P2P
applications like BitTorrent or Bitcoin to local cluster systems
such as distributed key-value storage or distributed file sys-
tems. A key aspect is the management and configuration of
such distributed systems.

A common requirement for all types of distributed systems
is fault tolerance, which is achieved by applying redundancy. In
case of churn, a process which is described by the arrival and
departure of nodes, redundancy of resources can compensate
for lost resources. However, the redundancy configuration
depends on to deployment environment of such a system.
In general, redundancy requirements are fundamentally dif-
ferent when deployed in static environments that have high
availability in contrast to user controlled home PCs which
are turned off when not in use. While in an local cluster
environment (e.g. Apache Cassandra) nodes will rarely leave
and, therefore, redundancy can be lower compared to a user-
controlled environment (e.g. P2P file sharing), where the churn
follows a diurnal pattern and the churn rate is much higher.

Redundancy is often configured by a static replication fac-

tor (RF) that defines the number of replicas created. However,
churn is not constant [19]. Thus, RF has to be high enough to
cope with the worst case. This leads to a waste of resources
when the churn rate is lower than the worst case. Therefore,
this paper proposes dynamic replication mechanism (dynamic
RM) that automatically determines and dynamically adapts
RF of a P2P system based on dynamic churn rates. This
mechanism predicts the future churn rate based on local churn
observations and adapts RF accordingly.

The advantages of a dynamic RM include the reduction of
overhead through unnecessary replications and the adaptability
of the system. With the ability of adapting to changing condi-
tions a system can increase its range of possible deployments
to local and global networks without decreasing efficiency.
Furthermore, the input values for the dynamic RM is reliability
and observation length (e.g. 99.9%, 60 seconds), which makes
it easier to configure the distributed system for a specific
quality of service.

The remainder of this paper is structured as follows. Sec-
tion II gives an overview over the related work and compares it
the dynamic RM approach. Section III presents the design and
explains the churn prediction and replication approach. While
Section IV describes the evaluation of the churn prediction and
replication approach, Section V summarizes and concludes this

paper.

II. BACKGROUND AND RELATED WORK

This section presents the underlying framework used for
the prototype implementation. Furthermore, an overview over
existing replication mechanisms is given to show where ex-
isting solutions differ from our approach. It is important to
keep in mind, that the target environment for the prediction
and replication mechanism are both Internet and local systems.
Thus, churn prediction based on diurnal pattern (such as [18])
is not suitable as this only targets Internet environment.

A. TomP2P

TomP2P is a P2P framework, providing a distributed hash
table and a tracker [20]. Neighbor peers are stored in a map
and listeners can be added to get notified once a new peer
joined, or an existing peer left the network. TomP2P is the
underlying framework and the prediction is built as a module



on top of it. The source code of TomP2P with the predic-
tion module is available online!. TomP2P implements also a
replication mechanism which creates copies of data in order
to provide high availability. There are two types of replication
mechanisms available: direct and indirect replications. In direct
replication, an originator peer is responsible for refreshing
replicas periodically. This peer periodically checks if there
are enough replicas or not. When the originator peer goes
offline, the replication process stops and all replicas disappear
when TTL (time to live) expires. In indirect replication, the
closest peer to the content will be responsible for periodically
checking if enough replicas exist. Therefore, the originator
peer can go offline at any time. In case a new peer joins the
system and it is the closest peer to content, it will become
responsible. Whenever a responsible peer leaves the system,
the responsibility will be delegated to the peer which is the
next closest. In both replication types, the replication factor is
automatically set by the dynamic RM.

B. Replication

One of the inherent characteristics of P2P systems is the
presence of churn [19]. Various authors suggest to minimize
the churn which can be reached with sophisticated neighbor
selection mechanisms as described in [5], [7]. Other authors
suggest [11] to place replicas on more reliable nodes that can
be found with availability prediction. However, churn remains
and it is important to replicate data not to lose it. Selected
replication mechanisms are described in this Section.

Within the Symmetric Replication scheme, each identifier
is associated with a set of f distinct identifiers in the system.
As a result, there will be & equivalence classes [4]. Nodes
who are responsible for items of one identifier of equivalence
class store items of other identifiers of that equivalence class.
It implies that in order to find an item with identifier i, any
identifiers associated with ¢ can be requested. For example,
the identifier O is associated with identifiers 4, 8 and 12, in
identifier space of 16. So any node who is responsible for any
of these identifiers should store all of them. As a result, any
of those nodes responsible can be asked to find an item with
identifier 0.

In Successor-List Replication keys are replicated to the
k immediate successors [17]. This approach is simple and
requires only nodes knowing their & immediate successors,
respectively. The RelaxDHT [8] approach can be used in key-
based routing DHTs (Distributed Hash Table), such as Pastry
or Chord. The condition of replicating a key to the k immediate
neighbors is relaxed to replicating a key to k nodes in the
responsible nodes’ leaf set (neighbor set). Therefore, migration
of data can be avoided as long as a sufficient number replicas
exist in a leaf set. The replication factor k is still a static
constant and cannot be determined automatically.

ID-Replication [17] eliminates the drawbacks of a succes-
sor list replication. Instead of assigning an identifier to a node
identifiers are assigned to groups and node identifiers are only
unique inside a group. Therefore, a group is responsible for a
key range and not a single node. All nodes of a group replicate
every key in the group’s responsibility. If the group size falls
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below a threshold or above a limit management protocols split
or merge groups.

Chordet [12] is a replication mechanism for Chord. Chordet
distributes replicas evenly in the logical ring. This is achieved
by using ID-generating, which can considerably reduce the
lookup failure rate and the lookup path length. A key advantage
is that not all nodes have to be employed to benefit from its
effects. Even if a node is not aware of a replication, it will
benefit from it if the lookup path contains a node which runs
Chordet.

Multiple Identity Replication eliminated one drawback
of ID-Replication, which is the split and merge operations
required with groups. A self-stabilizing algorithm based on
multiple identities can be achieved that does not require
any cooperation between nodes [15]. When a node joins the
network it creates 7 identities, where ¢ > 1. This node can
shut down identities based on locally observed activities. If
a specific key is requested rarely, the identity close to this
key will be shutdown and a new random identity will be
created. Thus, more nodes will be around popular content,
while less popular content will have a smaller node density.
Such an algorithm can run without coordination, however, it
will virtually increase the churn rate.

Table I compares these replication mechanisms with respect
to the following dimensions: adaptive replication rate adaption,
replica placement, and local decision taking.

TABLE I: Overview of related replication mechanisms.

Adaptive Replication Replica Placement Local Decisions
Multiple X v v
Identity
ID-Replication
Successor-List
Symmetric
Dynamic RM

x| x| %
X[ x|« %
NS XX

Churn prediction is often used to place replicas on nodes
that stay longer online. While this replica placement problem
and diurnal churn prediction based on churn models with user-
controlled nodes have been investigated extensively [2], [22],
only little work exists in the area of generic churn prediction
and adaptive replication rate. Although diurnal pattern pre-
diction allows for better churn prediction as reported in ([16],
[18], [1]) and works well in global P2P systems, in local cluster
systems, such a behavior pattern cannot be exploited.

Furthermore, our approach, dynamic RM, adapts dynami-
cally the replication parameter based on information from local
churn observations only. Thus, if a node can make decisions
based on local observations it is not dependent on other nodes
and does not need any information from other nodes, making
the system more robust.

Although mechanisms exist to automatically set parameters
based on observed network conditions as shown by [9], where
the routing table size is set automatically based on the available
bandwidth, or based on diurnal pattern, where user behavior is
predicted, none of those replication mechanisms automatically
configures the replication factor for generic churn that runs in
both Internet and local systems.



III. BASICS AND DESIGN OF DYNAMIC REPLICATION

To dynamically determine the replication factor (RF), churn
has to be known or at least estimated. For the estimation,
moving averages are used, which will smoothen the data and
also show a trend that can be used for short term prediction.
Moving averages are used e.g. for stock market prediction or
forecasting sales [21]. Furthermore, if churn is changing a good
prediction of future churn will improve the accuracy of RF.
Pure P2P systems do not show an entity having a complete
overview of the entire system, such as for [10]. However, any
node makes local observations such as neighbors joining or not
being reachable anymore. Based on these observations every
node can make churn predictions. This prediction will be used
to calculate the RF.

This section presents the basics used to predict churn and it
explains the design of the algorithm to calculate the RF based
on a desired reliability value. Finally, some insights about the
implementation are given.

A. Predicting Churn

Every node has to make observations of node arrivals and
departures. Here, an observation z is made during a time
interval At, e.g. 20 minutes. The number of observations used
to calculate the prediction m is called Observation Length
(OL) and denoted k. OL influences the prediction: the lower
the OL the more responsive the prediction is to fluctuations in
churn; a higher OL results in a smoother, but less responsive
prediction. For the churn prediction, moving averages are used,
which are often applied in financial problems, e.g. predicting
or outlining stock prices. Different alternatives of moving
averages [3] are described in the following.

The Simple Moving Average (SMA) is calculated as the
regular average except that only the k last observations x of
churn at time ¢ are considered instead of all observations made.
Therefore, SMA changes with every new observation. The
SMA is defined by the formula:

Tt—k+1 + Te—k42 + ... + T4
k

The larger the value k the smoother SMA will become; if
k =t SMA becomes the Simple Average (SA). The lower k
gets the more responsive SMA becomes to changes in these
observations. If ¢ < k, SMA cannot be calculated, because k
observations could not be made yet. However, the SA can be
used as a substitute until ¢ reaches at least k.

The Simple Weighted Moving Average (SWMA) applies
weights on the on the k last churn observations x. SWMA at
time ¢ can be defined as follows:

sma; =

k
SWMay = WiTt—k + W2lt—ft1 + ... + WETe_1, sz =1
i=1
This is only a general description and does not give an answer
on how to distribute the weights among the observations.

The Exponential Moving Average (EMA) considers re-
cent events as more important than older events [3]. Therefore,
it could react on recent changing behaviors while a certain
smoothing effect on the churn prediction will be maintained.
Another advantage of EMA is that it does not require all

observations to be stored, since it can be calculated from the
last EMA and the new observation x; at time ¢, as shown in
the formula:

ema; = emas—1 + a(xy —emaz—q), t>1

The smoothing factor o can be calculated by the formula:

a2
T k41

Since k is the observation length, the higher k gets the less
influence an observation gets and the smoother the curve
becomes. The closer o approaches 1 the more responsive the
result becomes. If & = 1 ema; = x; and it does not determine
an average anymore.

The Dynamic Exponential Moving Average (DEMA)
uses linear regression analysis to determine the OL k, which
gives the best linear fit, where 3 < k& < k. For each possible
value of k the regression line with the least squares and the
coefficient of determination, denoted R? [13], is calculated.
The closer R? is to 1, the better the regression line ﬁts. The
OL which gives the highest value for R? is used for k.

B. Replication Factor

The RF depends on three parameters: the desired reliability
r of the system, the number of nodes that will leave the system
m, and the number of neighbor nodes n. r expresses the
probability that a record is kept safe in a value between 0
and 1. The reliability has to be defined by the P2P application
developer. m is the output of the moving average based
prediction. n is known by any node participating in a DHT
and is used to determine the (local) rate of nodes leaving the
system.

Let p be the probability of RF' nodes being within the
predicted number of departing m nodes, then RF' can be
defined as the smallest number which fulfills the requirement
1 —p >= r, where p is the probability of RF' nodes being
among the m nodes predicted to depart. Therefore, 1 — p
determines the probability of RF' nodes not being among the
nodes predicted to depart. Automatic replication is supposed
to provide a minimal reliability of r and, therefore, 1 —p must
be greater or equal than 7.

To calculate p, a group of nodes leaving the system is
considered. The probability p of node P1 being among the
nodes leaving the system is 7. Therefore, the probability p of
P1 (p1) and P2 (p2) being among the leaving nodes is

m—1

m

P=Dp1¥p2= —*
n n-—1

Accordingly, the probability of RF' nodes leaving the system

can be expressed as:

RF—-1
mm—1

B B m—RF+1 H m—1
p_ppo'”pRF_nn—lmn—RF—l-l_ )

To find a replication factor that fulfills this condition, RF
can be increased while repeatedly calculating the reliability
until it is greater or equal to the desired reliability.



C. Implementation

The dynamic replication has two hooks in TomP2P. The
first hook is to get notified when a peer joins or leaves the
network (PeerMapChangeListener). This information is stored
in a circular buffer since the complete history is not required
and resources can be spared. The buffer serves as an input
for the prediction model. The second hook is the replication
executor that is periodically called. The implementation default
to call the replication executor is 60 seconds, which allows to
react in a reasonable time to changing churn rates and does
not induce too much load. That means every 60 seconds the
new replication factor RF is calculated to satisfy the reliability
r defined by the application developer. Hence, the prediction
model needs to predict the churn rate for the next 60 seconds.
The details of the implementation can be found on Github 2.

IV. EVALUATION

To investigate the performance of dynamic RM, a thorough
evaluation has been conducted. First, the churn prediction
models from Sec III are investigated by feeding them with real
life churn data, calculating their predictions, and comparing
them to each other. Second, the most suitable model is tested
in an experiment running a DHT and introducing churn based
on synthetic and real data while the data loss is measured.

A. Data

The evaluation is based on two data sets defining the churn
rate over time. The first is a synthetic data set that can be used
for simulating churn in a local system. The second data set is
based on data collected from BitTorrent trackers [6]. Since a
measurement study [19] found that the overall dynamics of
node participation in content-sharing systems is similar to the
dynamics in DHTs, it is valid to use the BitTorrent churn data
to evaluate dynamic replication in DHTs.

The BitTorrent data [6] was gathered by monitoring four
different torrents and nodes connected to their swarms. Track-
ers were queried every 20 minutes over 7 days. The data
collected contains IP addresses and port numbers of nodes,
which can be uniquely identified by this information. There-
fore, churn rates can be calculated with a resolution of 20
minutes. The four torrents monitored and their initial swarm
sizes are shown in Table II.

TABLE II: Key parameters of the BitTorrent data set.

ID Torrent Description Initial Swarm Size
T Under the Dome SO1E04 480p HDTV 639
To Falling.Skies.SO3E07.HDTV 1338
Ts Defiance SO1E11 720p HDTV 1175
Ty Orange.Is.The.New.Black.SO1E10.720p 900

B. Comparison of Prediction Models

The first model for churn prediction evaluated is SMA,
since it is a very simple approach and it is expected to be the
least performing. EMA serves as a second model, which is a
more complex version of SMA. The last model used is DEMA

Zhttps://github.com/tomp2p/TomP2P/tree/master/replication

which is the most complex one. The evaluation will show if
DEMA is worth the computational overhead.

The ideal value for the Observation Length (OL) needs to
be determined, which tells how many observations are consid-
ered to predict the churn rate. OL influences the smoothness of
the prediction curve. A smaller OL means that the prediction
fluctuates more with changes of the churn rate, which can
lead to a lot of overhead due to too many changes of the
replication factor. A higher OL means that the prediction curve
will become smoother and therefore RF might not be adjusted
although it would be necessary.

Figure 1 shows real churn observations and predictions
made by the DEMA model for OL 10, 30, and 60. The x-
axis represents the time in minutes and the y-axis indicates
the number of nodes leaving the system. The solid blue line,
labeled data set, depicts the actual observation from data set
T,. The dashed lines show the predicted values with different
OLs. Only a part of the entire data set is shown, because in this
case the difference between the lines becomes better visible.
An OL of 10 means that no more than 10 observations are
used to calculate the prediction of how many nodes will leave
in the next time interval. The Figure shows that a lower OL
results in a more responsive curve.

To determine the effects of OL on the prediction, each
prediction model is tested with observation lengths of 5, 10,
15, 20, 30, 40, 50 and 60. To identify the model with the
most accurate prediction and the optimal observation length,
the convergence of the predicted churn value to the ideal
prediction is analyzed. The more the prediction converges with
the measured values, the better the prediction of the model.
The convergence is calculated at every time step ¢ and a point
for the best model is recorded. After all ¢s are calculated the
relative score (points an OL scored divided by total points
awarded) is used to compare the models. As input for the
calculations the measured observations from 77 is used, which
serves 503 data points or ts.

Figure 2 shows the results of this convergence analysis.
The x-axis represents the percentage of wins, the y-axis steps
through the different OLs, and the z-axis is used for comparing
different models. As expected the DEMA clearly dominates for
OLs below 50. EMA yields, for the two lowest OLs, better
results than SMA. However, at OL 50 and 60 SMA performs
best but the difference is marginal and can be attributed to the
characteristics of the data set since the results are inconsistent,
e.g. DEMA at OL of 60 is higher than at Ol 50. In general it
can be concluded that lower values for the OL lead to better
convergence and DEMA converges most of all.

Since the prediction is the basis for the calculation of RF
its accuracy is also investigated. The ideal replication factor
RF; is again calculated from those 503 data points of 73. The
model-specific RF), is calculated on the basis of the same
three models with the same OLs and the RF is calculated and
compared to RF;. A RF is considered accurate if RF; <=
RF,, <= RF; + 3, that means there is a tolerance to have
a higher than necessary RF but not a lower one. Because a
lower RF cannot guarantee the desired reliability there is no
tolerance in that direction. The systems reliability values r of
0.90 0.99 and 0.9999 are evaluated. Investigating values below
0.90 is not relevant, since reliability below 90% can be easily



The number of departing peers

0
R R N S S
S U R A IR VR U St

Churn interval

Data Set
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Fig. 2: Convergence of three prediction models

achieved by a small RF, especially in those conditions tested.
The other values are chosen to determine the mechanism’s
behavior when the reliability approaches 1.

Figure 3 shows the results for a reliabilities 0.9 and
Figure 4 for 0.9999, which were chosen to show the lower and
uper end boundaries. The first difference to the convergence
result is that the three models (SMA, EMA, DEMA) are much
closer to each other. For EMA and SMA it can be stated that
for a high reliability the smaller the OL the more accurate the
RF will be. An unexpected observation is seen with DEMA
0.9999 where there appears to be a peak at OL = 10. This
behavior can be explained by the increasing sensitivity to small
changes with lower OL. Since the time window of events
taken into account with OL = 5 is very short, a temporary
incline in a generally declining trend can be considered as a
trend change and less peer departures will be predicted, what
is wrong and leads to a worse performance. With a lower
reliability value this effect might not become visible since the
threshold for changing the RF is higher. For reliability of 0.9
there is a jump from OL = 5 to OL = 10 for OLs > 10 the
improvement is minor. Therefore, the DEMA model with OL
= 10 can be considered the generally most accurate model in
the conditions tested, which is used in data loss experiments.

Further evaluations of the dynamic RM can be found in [14].

C. Data Loss Experiment

To evaluate how much data is lost in a synthetic and
the BitTorrent case, an experiment based on the TomP2P
DHT is run. For the implementation, the RF was bounded
between 2 and 6. The first reason is that the underlying DHT
implementation allows only values between 2 and 6 to be
configured. The second reason is that a value bellow 2 would
result in no replication at all and that temporary bursts in churn
changes cannot push the RF beyond reason.

The experiment runs in turns in which a uniformly dis-
tributed percentage of nodes is removed and added to the
system. This constitutes the worst case in which all nodes
leave at the same time during a turn. This is the most critical
case which a DHT needs to handle and it allows to speed up
the experiment since 20 minutes of churn resolution from the
data sets can be simulated in a few seconds without loss of
accuracy. Furthermore it allows for checking the number of
replicas for each key stored in the DHT every round and thus
to discover data losses. 5000 keys are placed into the DHT
and the number of participating nodes varies from 639 t 1338
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Fig. 4: Replication factor accuracy compared between models and different OLs and for reliabilities 0.9999.

depending on which data set is used 7} or 75. The synthetic
data sets are labeled as follows:

e  RJ churn fluctuations range of 5% to 10%
e  R2 churn fluctuations range of 5% to 15%
e  R3 churn fluctuations range of 5% to 20%

e R4 churn fluctuations range of 5% to 30%

The experiment is conducted on a single machine with two
12 Core AMD Opteron(tm) 6180 SE processors accompanied
by 64GB of RAM. Since these experiments ran on a single
machine no side effects from the network (i.e. bandwidth
limitations of switches) or other experiments are introduced.

Figure 5a shows the percentage of data loss for reliability
values of 0.99 and 0.999999 with the error bars showing
the standard deviation of three experiment runs to show the
variance. The average data loss for all torrents was 0.38% and
0.05% for the reliabilities of 0.99 and 0.999999, respectively.
The maximum data loss for the two reliability values was
0.57% and 0.09%, respectively. For 0.99 reliability data loss

stays below 1% but there seems to be a lower bound at 0.09%.
With increasing reliability data loss is decreased.

Figure 5b shows the percentage of data loss for reliability
values of 0.80, 0.90, 0.99 and 0.999999 for the different ranges
of churn fluctuation RI to R4. The figure shows that data
loss behaves as expected, the more churn the more loss and
the higher the reliability value the less loss occurs. However,
the data loss is higher than in Figure 5a, which is explained
with the worst case settings that were used, where nodes are
churning in bursts.

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This paper presented the dynamic replication mechanism
(dynamic RM) which automatically determines and dynam-
ically adapts the replication factor in a distributed system
according to the churn rate. Dynamic RM depends on the
prediction of churn which is determined based on locally ob-
served churn rates. Different models with several observation
lengths were tested with real life data to get achieve accurate
predictions. The dynamic exponential moving average with an
observation length of 10 yielded the best churn predictions.
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Fig. 5: Data loss for various reliability values.

The experiment conducted to investigate data loss showed that
the system behaves as intended: the replication factor is set
dynamically based on the churn rate and the input values:
observation length and reliability. If the reliability is increased,
the data loss decreases due to a higher dynamically adjusted
RF. For both data sets, the same implementation was used and
the configuration was done automatically. Thus, dynamic RM
can be used in global Internet P2P application as well as local
distributed systems without manually configuring the RF.

The evaluation of moving average prediction showed that
churn is best predicted by the dynamic moving average model.
In a real world Internet scenario, dynamic replication will
perform well for reliabilities up to at least 0.9999. It can be
concluded that the dynamic replication performed well with
the synthetic data set considering that the worst-case scenario
was tested.

With the dynamic RM presented here, distributed sys-
tems become more flexible and gain adaptability to different
environments. The same application can be used in a high
availability cluster or in the Internet where availability of peers
is much lower without the overhead of using a high redundancy
in all cases.

Future work includes further experiments with more nodes
and more churn scenarios, comparing dynamic RM to a base-
line with perfect churn prediction. Furthermore, availabilities
from real data centers will be included in future experiments.
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