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Abstract—Wireless Networks have become ubiquitous and
dense to support the growing demand from mobile users. To
improve the performance of these networks, new approaches are
required, such as context and service aware control algorithms,
which are not possible on today’s closed proprietary WLAN
controllers. In this work, we propose Ethanol, a software-
defined networking architecture for 802.11 dense WLANs. This
paper describes the benefits of programmable APs, and proposes
Ethanol, an architecture for network-wide control of QoS, user
mobility, AP virtualization, and security on 802.11 APs. The
proposal is evaluated on a prototype using off-the-shelf APs over
three use cases.

I. INTRODUCTION

Wireless Networks have become ubiquitous and dense. In
a recent study [1], more than 90 percent of U.S. colleges
intend to increase their wireless infra-structure to support the
demand of mobile applications. The same trend is expected
in home networks. With the Internet of Things, more devices
will connect to the network. Cisco predicts that 50 billion
things will connect to the Internet by 2020 [2]. At the same
time, emerging high-speed network standards (e.g. 802.11ad)
are migrating to higher frequencies, which are absorbed by
walls, thus requiring the deployment of multiple access points.
Thus, future networks must be optimized to increase their
scalability and effectiveness in dense environments through
a more refined control of all the devices in the network.

Current management architectures for WLANs employ pro-
prietary controllers, which perform network-wide optimiza-
tions such as the selection of best operational channels, the
adjustment of transmission power at each AP, faster client
mobility and enhanced traceability, as well as security and QoS
policy enforcement. However, those controllers only manage
compatible devices, usually of a single manufacturer, since
they rely on proprietary interfaces and proprietary MIBs. Fur-
ther, current wireless network controllers for WLAN remain
closed and (mostly) proprietary [3], and the industry has little
incentive to change.

Software Defined Networking (SDN) is a recent network
paradigm that restructures computer networks by separating
the control plane from the data plane, bringing dynamic
programmability to the networks [4]. SDN permits network
elements to run simple programs, and is said to reduce the
complexity of network configuration and network management
while providing leverage to innovation in a simpler way. SDN

advocates the possibility of: (i) more evolvable networks, as
we should be able to implement new features without changing
the platform; and (ii) greater network efficiency, since more
advanced (context and application aware) algorithms can be
easily deployed (usually in run-time).

However, in existing SDNs (e.g. OpenFlow), the data plane
is programmable only on switching elements. We advocate that
SDN-enabled access points will be able to improve the man-
agement of WLANs even further than proprietary controllers.
Having an open API will allow the deployment of context
and application aware control algorithms, an impossible task
on current wireless controllers. Further, an open API for access
points will allow rapid innovation, accelerate the deployment
of new network services and foster the competition among
vendors. In the same way that SDN has generated many
innovative applications on the wired domain, we believe that
SDN-enabled access points will accelerate the innovation on
WLAN management and operation.

This paper proposes an SDN architecture for dense IEEE
802.11 Wireless LANs called Ethanol. Ethanol refactors the
control plane functionalities between the APs and the con-
troller. The centralized controller actuates on APs, controlling
features such as quality of service, client mobility and asso-
ciation/disassociation, link-level parameters and current state,
and virtual APs. The proposed architecture was prototyped on
commodity home routers, and the performance of Ethanol was
evaluated on three case studies involving quality of service, the
control of client association, and ARP packet suppression.

The remaining of the text is organized as follows. Sections II
and III provide a background on SDN and the challenges of
SDN on wireless networks, respectively. The Ethanol architec-
ture and its components are described in Section IV, followed
by its implementation in Section V. The implementation and
the results obtained on a testbed are presented in Section VI.
The related work is discussed in Section VII. Finally, Sec-
tion VIII presents our conclusions and future work.

II. BACKGROUND ON SDN

In this section, we provide an overview of the existing
control methods for SDNs and for wireless networks.

SDNs are characterized by the existence of a control system
(software) that controls the switching fabric of routers and



switches (the data plane hardware) through a well defined pro-
gramming interface. One programming interface that adheres
to the SDN philosophy is OpenFlow [4], which is tailored to
control routers and switches. OpenFlow is currently the de
facto standard in SDN programmability.

The forwarding operation of OpenFlow-enabled devices
follows a simple principle: each packet received on one of
the switch’s interfaces is inspected and generates a query
to the forwarding table. If the query does not succeed, the
packet can be dropped or forwarded to the controller, which
decides how to handle it. Once the destination of the packet
is identified, it is switched to the destination port, where it is
queued for transmission. Thus, in OpenFlow-based SDN, the
programmable operations are forward, drop, modify header
and send to controller, the latter required to deal with un-
known flows. Besides actions, the architecture provides per-
flow counters maintained for each flow table, flow entry, port,
queue, group, group bucket, meter and meter band.

The OpenFlow controller communicates with OpenFlow
switches over a secure channel. The protocol instructs
OpenFlow-compatible switches to update their forwarding
table to take different actions on various network flows. Thus,
the controller contains all the logic on how the forwarding
table is updated, and the network element merely executes the
forwarding rules generated by the controller.

SDN advocates the use of simple but software-
programmable network devices, so the operator can develop
its own software, and get it deployed at much shorter cycles
than today’s experience with proprietary state-of-the-art
hardware-centric network devices.

The SDN paradigm and Openflow were proposed and engi-
neered aiming infrastructure networks, more specifically wired
networks. The adaptation of these concepts to the wireless
context is not straightforward, as described in the next section.

III. CURRENT CHALLENGES FOR SOFTWARE DEFINED
WIRELESS NETWORKS

Wireless networks have their particularities with regards
to wired networks, mostly related to the highly variable
characteristics of the links and the mobility of the users.
Thus, the abstractions and primitives proposed by wired SDN
approaches (e.g. OpenFlow) are not sufficient to perform the
proper control of a wireless network. This section presents
the challenges of wireless networks and how they influence
the design of a programmable control plane.

A. Variable link characteristics

Unlike most wired networks, where links have fixed band-
width and error rates, in wireless networks those charac-
teristics may vary for every packet transmission. Thus an
SDN controller should be aware of link characteristics (e.g.
bitrate, delay, loss rate, etc) for tasks such as routing in mesh
networks, channel allocation, or scheduling of transmissions
of the terminals.

Further, transmission quality is greatly affected by con-
gestion and interferences, so identifying the local topology

surrounding a client node is important. JIGSAW [5] high-
lighted the difficulties on achieving a global view on a
wireless network, such as the correct positioning of monitors,
large scale synchronization, frame unification and multi-layer
reconstruction. The IEEE 802.11k (Radio Resource Measure-
ment of Wireless LANs) standard provides mechanisms for
access points and stations to dynamically measure (and report)
available radio resources. In an 802.11k enabled network, both
clients and access points can send neighbor reports, beacon
reports, and link measurement reports to each other, allowing
them to have a better understanding of the wireless medium.

B. Node mobility

Software defined wireless networks (SDWN) should be
able to manage node mobility, controlling which users should
associate to a certain access point, and identifying when a
handoff to another AP is about to take place. This is desirable
in order to implement load balancing and topology control, as
well as to reduce the handoff time by speeding up management
tasks such as authentication and address assignment.

Node mobility is a significant issue in wireless networks,
as shown by the many standards addressing it. IEEE Inter-
Access Point Protocol standard (802.11f) provides wireless
access point communications among multivendor systems de-
signed for the enforcement of unique association throughout
an Extended Service Set and for secure exchange of station’s
security context between the current and the new access point
(AP) during the handoff period. Similarly, IEEE 802.21 deals
with handovers between heterogeneous networks (e.g. WiMax,
802.11, Bluetooth). Also, IEEE 802.11r supports fast and
secure handoffs from one access point to another, performing
Fast BSS Transitions with security key negotiation.

C. Quality of service

The current Openflow specification has very basic QoS
support. OpenFlow mainly provides means to set a flow
to a queue. OpenFlow allows the use of per-flow meters
to implement various simple QoS operations, such as rate-
limiting, but this is an “optional” feature. The OpenFlow
protocol is able to manage VLAN tags and the IP priority
bits, however nothing is done at the link level.

Those configurations alone do not ensure a minimum quality
of experience (QoE) to the user. In a WLAN, QoS is deter-
mined by roughly three factors: (1) the service architecture
(how end-to-end service is provided to the user), (2) the core
network performance, and (3) the service provided at the
“wireless part”, which is the combination of the wireless link
and the capabilities of the terminals (wireless clients).

In WLANs, IEEE 802.11e enhances the 802.11 Media Ac-
cess Control (MAC) layer with service differentiation ([6, 7]),
and adds error-correcting mechanisms for delay sensitive ap-
plications (e.g. voice and video). But 802.11e alone only han-
dles QoS parameters in a BSS. Using an SDWN, a controller
should be able to configure the QoS parameters of the wired
and wireless links. Again, ensuring a proper QoS in wireless
networks is more complex than in wired networks, since the



packet delivery time and the throughput can vary due to the
dynamic nature of the links, as well as the contention of the
wireless link, since it is a broadcast medium.

D. Virtualization

Network virtualization allows multiple isolated logical net-
works to share the same physical infrastructure even if they use
different addressing and forwarding mechanisms. FlowVisor
uses SDN to achieve this segmentation, slicing five dimensions
[8] of a switching element: bandwidth, topology, traffic, device
CPU and forwarding tables. The same dimensions, with the
exception of the forwarding tables, are present in APs, and
could be subject to control by a centralized entity.

The use of virtualization allows the coexistence of a re-
search wireless networks and production networks at the same
physical location, providing not only isolated applications but
also management. Also we can benefit of faster provisioning,
enabling elastic capacity to provide system provisioning and
deployment at a moment’s notice by the activation of cloned
virtual access point. But there are drawbacks too, as a wireless
device still has a limited number of physical radios.

E. Security

Ethane [9], the ancestor of OpenFlow, was created to
improve user access control. OpenFlow, however, does not
emphasize security. In a wireless environment, security is an
important topic because anyone in range can eavesdrop or
disrupt the wireless network.

An SDN environment provides monitoring capacity to the
network administrator, which allows a clear vision of the net-
work status, supplying means to detect intruders and abnormal
activities. Online traffic can be compared to previous traffic or
to stored good/malicious traffic patterns and statistics, and the
controller can decide if this traffic matches expected behavior.
OpenSketch [10] provides a simple three-stage pipeline (hash-
ing, filtering, and counting) that could be used to provide more
refined flow statistics.

One important security task on an enterprise network is
the detection of rogue (unauthorized) APs, since those may
degrade the performance of official APs and expose the net-
work to unwanted access. The detection of rogue APs requires
cooperation among the company’s access points, which is
facilitated by the centralized control provided by SDWN.
Further, the reaction to rogue APs shows the interdependence
of wired and wireless SDN, since the only way to avert those
APs is to deny packet forwarding coming from them.

F. User Location

The location of the user is an important element for location-
aware services. [11] show that indoor localization is possible
with no pre-deployment effort using the EZ localization algo-
rithm. This algorithm requires as input that stations perform
RSS (Received Signal Strength) measurements of known APs
or a location fix (e.g. a GPS lock near doors or windows).
RSS readings can be requested to the stations using 802.11k.

Localization is also important for handoff decisions and
network security. A client can provide the controller an in-
dication of its movement direction, allowing handoffs to be
more precise. While rogue access point and attacker detection
algorithms identify unwanted access and perform virtual coun-
termeasures, localization information could be used to simplify
the identification of the intruders, which is essential to perform
physical countermeasures.

IV. ETHANOL ARCHITECTURE

Ethanol is a SDN-based architecture for dense IEEE 802.11
WLANs, for example a network with many APs and clients (a
campus, an enterprise network, a network of things in a home).
Ethanol allows the development of custom control software,
allowing operators to run services that fit their needs. Besides
forwarding, the controller can also control node mobility,
authentication, virtual networking, QoS, and even user local-
ization (as explained in the previous section). Ethanol adopts
the following design goals: (i) supports IEEE 802.11 as well as
Ethernet NICs; (ii) does not require changes on the terminals
(data collected from terminals relies on 802.11 standards); (iii)
provides APIs for node mobility, AP virtualization, WLAN
security, and QoS (on WiFi and Ethernet).

The Ethanol architecture is composed of two types of de-
vices: the controller and Ethanol-enabled APs. The controller
runs on a computer in the wired network or virtualized in
the cloud. The controller can also control OpenFlow-enabled
switches if necessary. The Ethanol APs are commodity wire-
less routers that are modified to run Ethanol code. Ethanol is
very slim, so it can be deployed on cheap home APs.

Ethanol controller 

Secure connection 
XML-RPC/HTTPS 

Wired ports Wireless ports 

Switch Radio 

OpenFlow interface Ethanol agent 

OpenFlow protocol Ethanol protocol 

Ethanol wireless router 

Secure 
connection 

Clients 

Fig. 1. Ethanol Access Point Implementation

Figure 1 depicts the Ethanol AP architecture. An Ethanol
AP has two parts: wired and wireless components. A wired
component is a configurable switching element that supports
the OpenFlow protocol. Since OpenFlow does not provide a
control interface for QoS and for wireless components, the
Ethanol Agent adds this functionality to the AP, using an



additional API for controlling wireless links and for defining
the QoS of wired flows. This agent receives commands from
the Ethanol Controller via a secure channel.

A. Ethanol control API model

The Ethanol API is designed upon an object-oriented ap-
proach that works with entities having properties and methods,
and handling events. Ethanol entities are physical or virtual
objects that can be configured or observed. For example,
an Ethanol AP and a flow are examples of a physical and
a virtual entity, respectively. Those entities have observable
and/or configurable properties, such as the ESSID, or the
number of clients associated in an AP. The properties are
accessed by the controller using get/set methods. Finally,
entities can have events, which generate calls to the controller
so that it can respond appropriately. One such event could be
a wireless client requesting an association. Figure 2 shows
the entities, properties and events of Ethanol. To improve
readability we have omitted all getter and setter methods.
Read only properties are marked with a minus (‘-’) sign. A
filled diamond shape indicates containment, a stronger form
of aggregation where the contained objects do not have an
existence independent of their container (the class touched by
the diamond). Cardinality is represented using Crow’s foot
notation.

Some of the proposed properties, methods, and entities may
not be feasible on some production APs, however we chose
to specify the architecture without taking into account the
limitations of existing equipment. Future hardware could be
developed with this specification in mind, in a trend similar to
what happened with SDN: its first specifications were limited
to functions implementable in existing hardware, and now
vendors are proposing chips tailored for SDN operations [12].
Next we provide a brief description of these entities.

1) AccessPoint entity: This entity represents physical de-
vices. An AccessPoint can have one or more physical ra-
dios, represented by the Link entity, and one or more vir-
tual access points running on the AP (VirtualAccessPoint
class). The AccessPoint entity has three main attributes:
beaconInterval (affects the frequency of the beacons),
fastBSSTransition compatible (if the access point is com-
patible with 802.11r) and 802.11b preamble (if the preamble
is long or short).

To support QoS, we can query the state of the queues, as
well as change the queues’ priority and queuing disciplines
(schedulers). The methods available in this entity allow the
creation and destruction of virtual access points, as well as
to determine the state of the environment: return the modes
supported by the NIC (e.g. ad hoc, infrastructure), and request
an interference map, for example to pinpoint rogue APs.

2) Link entity: This entity configures the physical interface
of the AP. It has attributes such as channel, available bit
rates, transmitter power output, and power saving mode. It
also gathers link statistics and other information of the NIC.

3) VirtualAcesssPoint entity: A physical device can have
zero or more virtual access points. If it is zero, the device

is not providing any service. We can also configure a virtual
AP but keep it disabled for future use or fast startup. Stations
connect to a virtual AP, and a group of virtual access points
forms a Network. If broadcastSSID is disabled, then such
virtual AP does not broadcast its SSID. Also this entity con-
trols MAC transmission parameters such as guard and DTIM
intervals, RTS threshold, and link capabilities (e.g. if frame
burst is enabled). It also exposes the contention parameters
of 802.11e (e.g. maximum and minimum contention window
values, arbitration inter-frame spacing – AIFS) and admission
control parameters. Each virtual AP also has its own security
parameters.

User association and authentication generate events to the
controller, which may allow or deny the request. The entity
also has events to respond to fast transition and fast reassoci-
ation (as defined in IEEE 802.11r) or for probe requests.

4) Network entity: This entity represents a network and its
SSID. The network may contain several VirtualAccessPoints.
It provides methods for the association and dissociation of APs
with the network, as well as a method to request a user handoff
with 802.11r.

5) Station entity: This entity represents a user connection
(station). All data is collected using messages from existing
802.11 standards. The entity contains information such as the
MAC and IP addresses, and if the station is 802.11e capable.
The AP also collects information about the link between the
station and the AP, such as number of bytes/packets received
and sent, signal strength, SNR, bitrate, number of retries,
packet loss, delay and jitter.

The entity also provides measurements generated by
clients supporting 802.11k. Examples are channel reports
(getLoadInfo, getNoiseInfo, getInterferenceMap), a
list of APs in range (getAPsInRange – useful for pre-
handoff optimizations), counter group values (e.g. transmit-
ted fragment counts, multicast transmitted frame counts,
failed/retry counts, etc) using getStatistics method, among
others.

6) Flow entity: This entity originated from the OpenFlow
specification. It has the OpenFlow methods, counters and
events. It was expanded with enhanced flow monitoring for
wireless traffic to report the delay, loss, and jitter of the flow.
Those modifications are highlighted in red in Figure 2.

V. ETHANOL IMPLEMENTATION

An Ethanol prototype was implemented in order to evaluate
the basic functions of the architecture. Due to time restrictions
and limitations of the hardware and operating system of the
APs used in the prototype, we implemented a subset of
events and methods described previously. As future work we
will implement more functions of Ethanol and employ more
capable APs, in order to test a larger part of the architecture.

The Ethanol controller is a Linux computer using POX,
which was modified to also handle the Ethanol messages
encoded with XML-RPC over HTTPS. The controller runs
services presented in the use cases shown in the next sec-
tion. The Ethanol-enabled APs were implemented on cheap
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Fig. 2. Ethanol control API model. Green entity indicates current OpenFlow model. Elements in red indicate extensions to OpenFlow.

commodity wireless access points, connected to the controller
using ethernet. The chosen model was a Broadcom WRT54GL
router running OpenWRT, a linux distribution for embedded
devices. Its hardware provides one 802.11b/g Wi-Fi interface
and a 4+1 100Mbps Ethernet switch. We installed Pantou, a
userspace OpenFlow router that supports version 1.0 of the
specification.

Ethanol exploits the QoS elements of Pantou and Linux.
Pantou uses Hierarchical Token Bucket (HTB) implementation
as its main QoS mechanism. HTB is a packet scheduler that
supports priority queuing as well as maximum and minimum
rate allocations. Ethanol can control outbound traffic on a link
using HTB by associating each flow to a queue. We also
modified the Linux wireless subsystem in order to control
client association. In Ethanol, the AP first sends a message
to the controller asking whether a client should be allowed to
associate.

VI. EXPERIMENTS

This section describes the experiments performed on the
prototype.

A. Load-Aware Client Association
One way to improve the throughput of dense wireless

networks is to control which client is associated to each AP.

Suppose that a dense network has two access points, both
covering the same location, in order to accommodate a larger
number of clients. Those APs are allocated to non-interfering
channels, and the objective is to assign the same amount of
clients to both APs for load-balancing. Nowadays, clients asso-
ciate based on signal strength. So, if an AP has a slightly better
signal, most clients will attempt to connect to the AP with
the strongest signal, generating a load imbalance. Commercial
wireless controllers use proprietary algorithms that rely on
generic network behavior to control the association process.
The network administrator can only set a few parameters, but
cannot define the behavior he/she really wants.

In Ethanol, the controller is notified whenever new asso-
ciation attempts occur, as shown in Algorithm 1. So, the
controller is able to deny the association or redirect it to other
APs in order to perform load balancing (using 802.11r), or
using application-specific rules. In this experiment we imple-
ment a load-balancing scheme where the controller divides
the number of clients equally among APs using only the
disassociation feature. Each association request is sent to the
controller, which decides if the client should be allowed to
associate to the AP based on the actual number of stations
already associated (the fewer the better). Observe that Ethanol
does not need to modify the client’s software to control



the distribution of clients in each AP. On this experiment,
our implementation does not attempt to provide a smooth
transition as in 802.11r. Besides the number of clients, a
controller could steer clients to/from specific APs based on
other metrics, such as their link quality, their communication
speed (e.g. 6Mbps or 54Mbps), or the type and amount of
traffic of each client.

Algorithm 1 Load aware association control
1: function EVUSERCONNECTING(userMAC, ap)
2: apsInRange←
3: Station.getStationByMAC(userMAC).getAPsInRange()
4: minClients← argmin

ap ∈ apsInRange
{ap.numClients()}

5: if ap.numClients() = minClients then
6: return true . Allow connection
7: else
8: return false . Chosen AP has more clients than minimum
9: end if

10: end function

In this experiment, when a wireless client C wants to
connect to an AP, first it has to go through the authentication
process: C sends an Authentication Request to the AP, which
responds with an Authentication Reply. Afterwards, C sends
an Association Request. The AP processes the Association
Request and sends an Association Reply granting association.
We can control the client’s distribution in the APs by aborting
the association process, forcing the C to look for other APs.
Refusing association or re-association requests and forcing
client disconnection can make the overall handover slower,
but there is no other way to control the association without
changes in the clients. Fast BSS transition, as proposed by
IEEE 802.11r, relies on a client decision to change access
points.

The experimental setup is composed of two Ethanol APs
covering the same area, providing the same ESSID. Figure 3
shows the number of associated clients on two Ethanol APs,
where a new wireless client attempts to associate every three
seconds. The graph shows a monotonically increasing step
curve for both APs, where the number of connected clients
differs by at most two clients. The discrepancies occur because
our implementation allows non-blocking reads at the controller
in order to reduce the response time for the client. As a
consequence, two requests arriving at the same time might
select the same access point.

B. Quality of Service

Quality of Service (QoS) is an important requirement for
dense networks. Suppose there are two clients communicating
with the AP. The first client wants to watch a video, while
the second wants to participate in a teleconference. These
two types of traffic require certain bandwidth and latency
requirements to be met in order to provide an acceptable
user experience. Thus, the access points should have means
to prioritize those flows.

The OpenFlow specification provides limited support for
QoS. Queue configuration is still optional in OpenFlow 1.4,
thus being vendor dependent. Nowadays, OpenFlow allows
to map flows into queues that must be configured using an

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  20  40  60  80  100  120

N
um

be
r o

f c
on

ne
ct

ed
 c

lie
nt

s

Time (sec)

AP #1
AP #2

Fig. 3. Controlling client association in a 802.11 network

external tool. On existing access points using OpenWRT, it
is possible to map a flow to a queue, however this queue
must be manually configured. [13] proposed a modification on
Pantou allowing a modified OpenFlow to control linux queues.
The Ethanol agent provides an interface to configure these
parameters also, thus allowing the controller to provide per-
flow programmability of QoS parameters.

We evaluate the QoS capabilities of Ethanol in this scenario.
This is an important feature for enterprise networks, which
require flow prioritization when there are network intensive
tasks running concurrently with more delay-driven services.
For example, a VM migration among servers should have
lower priority than the wireless clients accessing the Intranet.

Algorithm 2 Associating flows to a queue
1: function EVPACKETIN(event)
2: cos← getCoS(event.flow.IPsource) . Identify Class of Service
3: queue← matchCoS(cos)
4: event.flow.setQueue(queue) . Map this flow to the correct queue
5: end function

For this experiment, an Ethanol AP is connected to two
wired clients and a server, and one client is associated on
the wireless link. This configuration emulates an enterprise
network, where wireless and wired clients want to access an
Intranet resource. We ensure flow prioritization using HTB
scheduling, so that the throughput of the flows should be
proportional to their assigned allocations.

We set up three queues at the Ethanol switch, with rates
Q1 = 6Mbps, Q2 = 3Mbps and Q3 = 1Mbps. When a new
flow is detected (PacketIn events), we assign it to the proper
queue based on its source address, as shown in Algorithm 2.
All clients connect to the server using TCP.

At first, one Ethernet client E1 and one wireless client W1

are active, and associated to queues Q1 and Q2 respectively.
As expected, E1 received 3

9 of the capacity and W1 received
6
9 of the capacity. At 120 seconds, E2, which is associated
to Q3, starts transmitting. The bandwidth allocations are now
6
10 , 3

10 and 1
10 of the link capacity, as expected. Thus, Ethanol

provides per-flow QoS programmability. Figure 4 shows the
throughput over time.
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C. ARP Overhead

Cheng [5] et. at. analyzed traces of a WiFi campus network.
They concluded that ARP (Address Resolution Protocol) pack-
ets consume almost 10% of the air time of wireless links.
ARP traffic is sent in broadcast, and all ARP broadcasts from
the wired network are also sent in broadcast on the wireless
channel. Moreover, this traffic scales with the user population,
while the wireless capacity remains constant.

Since the controller has knowledge of the IP and MAC
mapping, the controller can solve the ARP requests. Thus,
by filtering ARP traffic on the APs, it is possible to free up
to 10% of the air time.

In this experiment we avoid unnecessary ARP broadcasts
by controlling the transmission of ARP messages using Open-
Flow. The benefit of Ethanol here is the fact that wired and
wireless ports of the AP are controlled using OpenFlow.

Commercial wireless controllers provide solutions based on
proxy ARP that partially address the problem shown in [5].
Cisco’s controller, for instance, can act as a proxy ARP to the
network requests, generating ARP replies, however the replies
are broadcast to the entire network, and this approach does not
work with static IP addresses. Aruba’s controller has a setup
called “virtual AP” that does not forward broadcast traffic to
the controller, in such case ARP packets are not handled.

On this experiment the Ethanol controller captures all ARP
packets and performs simple matches on its internal ARP table.
This behaviour is captured by Algorithm 3. If the controller
does not recognize the IP address, it floods the request to all
ports (line 13). If the controller already knows the IP address
(line 16) or when it receives the ARP Reply packet (line 18),
the controller generates a unicast message to the requesting
node. This method reduces the number of packets that are
transmitted in broadcast and also filters ARP reply messages.
All other traffic is transmitted as they are (line 10).

To show this behavior we set up a simple experiment: we
connected a wireless client running a packet analyzer (tcp-
dump) to the Ethanol AP. This client captures all incoming and
outgoing packets on its wireless interface. We have ethernet
clients generating traffic to other wired clients and also to our

Algorithm 3 Diminishing ARP Overhead
1: function EVPACKETIN(event) . event is an OpenFlow parameter
2: packet← event.parsed
3: macdst ← packet.macdst
4: IPdst ← packet.IPdst

5: macsrc ← packet.macsrc
6: IPsrc ← packet.IPsrc

7: macToPort[macsrc]← event.port . maintains macToPort mapping
8: arpTable[macsrc]← packet.IPsrc . updates ARP table
9: if packet.type! = ARP then . all non ARP packets must be transmitted

10: (new Flow(event)).apply()
11: else . treat every ARP packet
12: if !findIP (arpTable, IPdst) then
13: flood(packet) . don’t know destination, then flood
14: else . if destination is known, then:
15: if packet.arp = REQUEST then . (a) respond to the sender
16: SendArpReply(macdst,macsrc,macToPort[macsrc])
17: else . (b) transmit response directly to the destination
18: SendArpReply(macsrc,macdst,macToPort[macdst])
19: end if
20: end if
21: end if
22: end function

wireless client. We configured the controller to switch the ARP
filter algorithm on and off.

Figure 5 shows the total amount of traffic (inbound and
outbound) as well as ARP traffic on the wireless link. When
the controller is not filtering ARP packets, the wireless client
receives those packets on its wireless interface. Most of those
packets are wasting bandwidth, except for the few requests
directed to the wireless client. On the first 120 seconds, we see
ARP traffic on the wireless side. When the controller starts to
manage the ARP Requests (gray area on the figure), the ARP
traffic goes almost to zero, because the controller knows the
wireless client’s MAC address. The actual traffic to and from
the wireless client keeps the table up to date. The only ARP
traffic seen on the wireless medium when the ARP limiting
algorithm is active is requests from the wireless client, and the
first request to this client.
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Fig. 5. Controlling ARP overhead on the wireless link

VII. RELATED WORK

The Ethane [9] project presented an enterprise network
architecture which enforces a single fine-grained network
policy using a centralized domain controller. This domain
controller would compute the flow tables to be installed in each



of the enterprise switches. Ethane is considered the precursor
of OpenFlow. Our work is similar to Ethane since it controls
the access of clients, however while Ethane was designed for
wired networks, while Ethanol focuses on wireless networks.

In OpenRF [14], the APs cooperate to reduce the inter-
flow interference using the precoding vectors in MIMO. The
controller sets the precoding vectors that reduce interference
among APs, while the APs schedule the transmissions of their
clients in order to minimize inter-AP interference. OpenRF
displays some of the innovative control that can be performed
with SDN on the wireless links. It is complementary to
Ethanol, since OpenRF does not provide control functionalities
above the physical layer.

OpenRoads [3] is a mobile wireless network platform that
enables the experimental research and realistic deployment of
networks and services using virtualization. OpenRoads pro-
posed OpenFlowWireless, which is built on top of OpenFlow.
The main extensions are the ability to slice the datapath using
FlowVisor [15] and SNMP. While their focus is on virtualiza-
tion, Ethanol also addresses QoS, security and mobility.

ODIN [16] employs SDN concepts to tackle client mobility
in WLANs. ODIN creates one virtual access point by client,
thus it is possible to transparently migrate clients among APs
and perform load balancing based on client migration. How-
ever, operations such as traffic shaping and QoS enforcement
are not possible in ODIN.

IETF proposed CAPWAP, a protocol for the control of
APs using a centralized controller [17]. CAPWAP, however,
shifts the policy enforcement actions into the controller, as
every received frame is tunneled and sent for processing at
the controller. Technology-specific management messages are
supported, though not defined in the standard. In Ethanol, on
the other hand, the controller is a decision point only, and the
APs enforce the policies defined by the controller.

APs in a CloudMAC [18] architecture just forward MAC
frames between virtual APs and IEEE 802.11 stations and
their network functions are placed on the cloud. Our work
is orthogonal to CloudMAC. Meanwhile, Ethanol keeps some
intelligence in the device, thus not all MAC frames need to
traverse the network. As CloudMAC, our approach allows
control over configuration commands and a smooth transition
from a traditional WLAN, as our design supports all standard
WLAN management tools.

CloudIQ [19], SoftCell [20], Mobiflow [21] and Sof-
tRAN [22] are SDN architectures for cellular networks.
CloudIQ centralizes all data and control plane processing on
a single controller. SoftCell provides high-level fine-grained
service polices throughout cellular core networks, even ag-
gregating traffic along multiple dimensions. SoftRAN, on
the other hand, puts some functionalities on the individual
base stations. For example, frequently varying parameters are
performed at the radio element since it has a more up-to-
date view of the local state. SoftRAN architecture ensures
that the delay and backhaul bandwidth between the controller
and the radio element does not negatively impact performance.
MobiFlow proposes a control API called MobileFlow stratum,

similar in purpose to OpenFlow, which interoperates with
legacy cellular deployments.

OpenVirteX [23] extends FlowVisor and provides an Infras-
tructure as a Service (IaaS) for SDNs, enabling operators to
create and manage virtual SDNs. Such idea can be transposed
to manage virtual access points in a SDWN, so they can
be treated as services that can be instantiated, migrated, and
deleted. Vitro [24] proposes an integrated architecture for
enabling virtualization in wireless sensor networks, decoupling
the applications running on physical nodes from the physical
sensor deployment. This virtual sensor networking allows dy-
namic cooperation among nodes. This idea can be transposed
to a 802.11 wireless networks using Ethanol.

VIII. CONCLUSIONS

This paper described the architecture and a prototype of
Ethanol, an SDN approach for the management and control of
dense wireless networks. Ethanol extends the SDN concept to
allow the programmability of wireless APs, by providing an
API for QoS, security, mobility and virtualization of wireless
networks. Besides improved QoS, performance and security,
we argue that SDN-enabled APs will also be used for the
creation of context and location aware services. We present
the architecture of a SDN-enabled dense WLAN, as well as
the methods, properties and events of the control API.

Ethanol was evaluated on a prototype developed with cheap,
off-the-shelf APs. The experiments indicated that the network
performance can be enhanced by programmable APs, allowing
an even distribution of clients among APs, the filtering of
unwanted traffic, as well as the implementation of QoS policies
specific to the wireless medium.

The main focus of this paper was on the southbound
interfaces of Ethanol. Its northbound interfaces will be defined
in future work. We also plan to implement a larger subset
of the Ethanol API, and to evaluate those features on larger
networks with more APs and clients.
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