
Sparsifying Network Topologies for
Application Guidance

Michael Scharf, Gordon Wilfong, Lisa Zhang∗
Alcatel-Lucent Bell Labs

Email: michael.scharf@alcatel-lucent.com, gtw@research.bell-labs.com, ylz@research.bell-labs.com

Abstract—Topology managers expose network information to
applications to improve application-level resource management.
An example for various ongoing standardization activities is
Application-Layer Traffic Optimization (ALTO). Due to privacy
and security constraints, exposed network information has to be
filtered according to policies. As part of such policies, distance
information can be abstracted by presenting coarser distances
over pairs of clustered nodes rather than the precise distances
between all node pairs. We refer to this process as distance
sparsification.

The contribution of this paper is two-fold, the first being a
new policy system to enforce abstraction. The second and the
main contribution addresses the algorithmic challenge. For the
latter, we consider two types of distance sparsification algorithms.
The first variant takes as input a matrix of pairwise distances.
The sparsification algorithm produces a smaller distance matrix
by clustering the nodes into clusters. The second variant instead
collapses an edge-weighted graph. We measure the performance
of the algorithms by the accuracy of the resulting sparsified
distances, and we show that matrix sparsification outperforms
graph sparsification. We further observe the trade-off between
the accuracy and the size of the sparsified representation. In
addition, we also extend our algorithms to handle labeled data,
i. e., abstraction policies explicitly mark a number of destinations
as reference points. Such additional information can improve the
distance sparsification.

I. INTRODUCTION

Insight into the network topology is important for many
applications and uses of networks. Network-aware guidance
can improve application-level resource management such as
resource selection, placement of entities such as Content
Delivery Network (CDN) caches, or calendaring of bandwidth
in data center networks. In general, a topology manager is
a key component of a Software-Defined Networking (SDN)
architecture. As a result, there are various ongoing standard-
ization activities for interfaces describing a network topology.

For instance, according to ref. [1], a topology manager
could provide a “coherent picture of the network state”.
Application-based network operations [2] may bring together
many existing technologies for gathering information about the
resources available in a network. An standardized topology
exposure interface is Application-Layer Traffic Optimization
(ALTO) [3], which offers a “better-than-random” guidance for
application resource selection decisions [4]. There are also
various other ongoing standardization activities, e. g., for SDN.

A topology exposure system can either offer a transparent
or an abstract view on the network. An example for the former

∗ Author names are listed in alphabetical order.

category is a Traffic Engineering Database (TED) of a Path
Computation Element (PCE), i. e., a data store of topology
information enhanced with capability data such as bandwidth
and active status information.

The second class of systems exposes a more abstract view,
since network administrators are often reluctant to share opera-
tional network data because of privacy and security concerns.
Also, applications using a topology manager typically only
require insight into a subset of the network topology, e. g.,
the topology between instances of that application. In other
words, the topology manager might filter the available data
and it may hide or summarize parts that are irrelevant. This
second category is in particular appropriate if the application
querying the system is not a network management application,
but, e.g., a CDN [4] or another network-external user. In this
case an abstract representation of the network topology can
be sufficient [5], [6]. This paper considers the latter class of
topology exposure systems.

The topology abstraction involves two related problems.
First, a network operator offering a topology exposure ser-
vice will need a policy enforcement system to hide network
topology details that should not be revealed for security or
privacy reasons. And second, in particular in large and complex
networks it makes sense to sparsify the network topology, e. g.,
by aggregating close subnetworks [7]. Such aggregation is one
means to hide internal network structures. In addition, it also
reduces the amount of data describing a topology and thus
helps to ensure scalability for large topologies.

The contribution of this paper is two-fold. The first contri-
bution in Section II is a new policy system to enforce topology
abstraction. This addresses the first problem above. The second
and main part of the paper studies the algorithmic challenge
of distance sparsification. Section III defines two variants
of abstraction algorithms, namely graph sparsification and
matrix sparsification, which can be used inside the topology
exposure system. In Section IV, we present and analyze
heuristics for both variants. Both algorithms are closely related
to clustering, for which we show NP-completeness among
other properties of the proposed heuristics. As algorithmic
contribution we propose a modular three-step framework for
the matrix sparsification method. In Section V we compare
numerically the sparsification quality of the proposed heuristics
when applied to three network instances. We observe behaviors
that are consistent with our earlier analysis. We further study
the trade-off between the accuracy and the size of the sparsified
representation. Finally, Section VI briefly surveys related work
and Section VII concludes this paper.

Fig. 1. Topology exposure system architecture

II. PROPOSED TOPOLOGY EXPOSURE SYSTEM

A. System Architecture

Topology exposure systems typically have a client-server
architecture. The server component is a topology manager that
exposes network topology data to clients, i. e., applications
requiring network awareness. An overview of this architecture
is depicted in Fig. 1.

There are two classes of interfaces in this architecture:
First, an interface between clients and the topology manager
is needed. ALTO [3] is one example for a Representational
State Transfer (REST) interface that offers both an abstract
map view and a ranking service. Instead of ALTO, other
interfaces could be used as well, e.g., using models defined
in YANG [8]. Second, the topology manager has to learn the
network topology. Given the complexity and heterogeneity of
networks, a topology manager may have to correlate different
input sources to get a holistic view [4]. Example data sources
include Operations Support System (OSS) interfaces to Net-
work Management Systems (NMS) [7], control plane protocols
such as BGP-LS [9], or other SDN interfaces.

A topology exposure system can also be part of an SDN
architecture that allows reconfiguration of the network. In this
case, the topology manager may be part of the SDN controller
or a dedicated component that provides PCE functionality [2].
This paper focuses on a system that provides read-only access
to the topology information and therefore we do not further
discuss SDN or PCE use cases.

B. Policy Enforcement

A key component of a topology manager is a policy system
that governs what aspects of a network topology are actually

Fig. 2. Topology exposure example for a CDN

Fig. 3. Example for the topology manager import policies

made available to a given user. These abstraction policies are
likely to be specific to each user, i. e., each application using
a topology manager may get an own view of the network. For
instance, a CDN serving residential users as shown in Fig. 2
would likely be interested in knowing which cache out of A,
B, and C is the topological best cache for any subscriber. That
CDN may have no need to know about parts of the network
not traversed by CDN traffic. The topology manager could use
filter policies to remove parts of a network from the maps that
are made available to various applications.

Reference [7] presents a general framework for a policy
manager to derive application-specific maps. In the following,
we propose a new policy solution to control the abstraction
within such a framework. Filter policies have some similarity
to import and export filters for the Routing Information Base
(RIB) in a router, e. g., for the Border Gateway Protocol
(BGP) [10]. Typical route policies contain policy statements
with ordered entries that specify match conditions and ac-
cept/reject actions. The match criteria can be based on various
parameters including the source/destination, routing protocol,
prefix lists, or other properties such as Autonomous system
(AS) path matches or BGP communities.

Our policy system reuses this principle. Filtering is
achieved by a sequence of entries describing accept/reject ac-
tions. Routes in the topology obtained from data input sources
are compared to those entries, including default ones. The
topology manager does not expose map data for destinations
matching a reject condition (reject action). Figure 3 lists an
example for a policy definition corresponding to the example
in Fig. 2, using the policy syntax defined in [11]. This policy
definition ensures that the CDN will only learn topology data
between caches and residential users, which are here given
by prefix lists with explicit accept rules. Other matching
constraints could be used as well [11].

The above policy solution for a topology manager also
includes two new functions that differ from typical RIB
import policies. First, we add support for explicit labeling
of destinations in the network, for instance, by IP address
ranges. In Fig. 3, this labeling is defined by the reference
entries. By this policy the administrator can explicitly flag
destinations in a network as potentially relevant for the client.
In the CDN example, this new feature would particularly be
useful for the locations of the caches, as further detailed later.

TABLE I. EXAMPLE ABSTRACT MAP (SIMPLIFIED)

CacheA CacheB CacheC
Residential1 3 hops 4 hops 4 hops
Residential2 4 hops 3 hops 4 hops

The second feature that differs from typical route policies is
support for automatic aggregation of destinations with similar
but not necessarily identical costs. One can observe in Fig. 2
that a CDN load balancer, which maps residential subscribers
to the closest cache, does not have to distinguish between all
individual subnets; instead they could also be aggregated into
two clusters. All subnets inside one cluster have the same
closest cache. Determining these clusters and the distances
between those clusters requires abstraction algorithms. Corre-
sponding sparsification algorithms are introduced and studied
in the following sections.

An expected example outcome for a map resulting from
this policy configuration as well as follow-up distance spar-
sification can be found in Table I. In this example, we use
the hop count as distance metric, but other available distance
metrics could be used as well in the following sections (e. g.,
geographical distance, delay).

III. TWO VARIANTS OF DISTANCE SPARSIFICATION

A. Matrix vs. Graph Sparsification

In order to generate this representation we study two vari-
ants of distance sparsification, distance matrix sparsification
(MATRIXSPAR) and graph sparsification (GRAPHSPAR). The
former takes as input a set V of n nodes and an n×n matrix
M where the (u, v)-entry is the distance d(u, v) between
nodes u and v ∈ V . From such input and a target size
k < n, a sparsification algorithm partitions V into k clusters
C1, C2, . . . , Ck and defines a k× k sparsified distance matrix
Ms whose (i, j)-entry is the approximated distance ds(u, v)
between u ∈ Ci and v ∈ Cj .

GRAPHSPAR takes as input a graph G = (V,E) for which
each edge has an associated length. We use d(u, v) to represent
the shortest-path distance in G between nodes u, v ∈ V . A
sparsification algorithm partitions the nodes in V into k < n
cluster nodes V s = {C1, C2, . . . , Ck}, and outputs a smaller
graph Gs = (V s, Es) where |V s| < |V | and |Es| < |E|.
The shortest-path distance in Gs between the cluster nodes
Ci, Cj ∈ V s is the approximated distance ds(u, v) between
u ∈ Ci and v ∈ Cj . Note that while throughout the paper we
assume that distances are symmetric, i.e., d(u, v) = d(v, u) for
all u, v ∈ V , our work is applicable to asymmetric distances.

B. Measures for Accuracy

We measure the performance of the sparsification algo-
rithms by the accuracy of the resulting sparsified distances, i.e.
we would like ds(u, v) to be as close to d(u, v) as possible.
For the most of the paper we examine the mean square error
(MSE)

MSE =
1

|V |2
∑

u,v∈V

δ(u, v), (1)

where
δ(u, v) = (d(u, v)− ds(u, v))2, (2)

is the distance error squared for node pair u and v. Addi-
tional metrics motivated by use cases will be considered in
Section V-C.

Let us take a look at how GRAPHSPAR and MATRIXSPAR
are related with respect to the MSE measure. Consider a
GRAPHSPAR instance on input graph G and let OptMSE(G)
be the best possible MSE for sparsifying graph G. We also
define a comparable MATRIXSPAR instance on distance matrix
M where the matrix entries represent the shortest-path distance
on G. Let OptMSE(M) be the best possible MSE for
sparsifying matrix M . We have

Theorem III.1. An optimal solution for MATRIXSPAR neces-
sarily performs at least as well as GRAPHSPAR, namely

OptMSE(G) ≥ OptMSE(M).

The above inequality holds for any metric, not just MSE.

Proof: Let OptGs be the optimal sparsified graph under
the optimal algorithm for GRAPHSPAR, and this graph results
in MSE equal to OptMSE(G). Let X be the k × k distance
matrix where each entry of X defines the shortest-path distance
on graph OptGs. Note that X is one candidate sparsified
matrix to the MATRIXSPAR instance M , and X produces
MSE equal to OptMSE(G). Let Ms be the optimal sparsified
matrix under the optimal algorithm for MATRIXSPAR. By
definition, Ms is necessarily no worse than X and therefore
OptMSE(M) is no worse than OptMSE(G).

On the other hand, note the Ms may not be realizable
by any graph with edge lengths. First, Ms does not have
to satisfy the triangle inequality and therefore does not have
to define a metric space, whereas a distance matrix defined
by the shortest-path distances on any graph has to. Second,
GRAPHSPAR restricts the number of edges in the sparsified
graph which may make some distance matrix not realizable.
For example, if the distance matrix defines the distances on
nodes u, v and w to be d(u, v) = d(v, w) = d(w, u) = 1,
but if the graph is restricted to have 2 edges uv and vw only,
then there is no way to realize d(u,w) = 1 in the graph.
Therefore, MATRIXSPAR has more freedom in sparsification
and necessarily preserves distances at least as well.

The above argument does not rely on specifics of MSE, and
the inequality therefore holds for any sparsification metric.

While the above theorem addresses the optimal behavior
for MATRIXSPAR and GRAPHSPAR, we will see in Section V
that the heuristics for MATRIXSPAR proposed in Section IV-A
and for GRAPHSPAR introduced in earlier publication [7]
exhibit similar relative behavior.

IV. SPARSIFICATION ALGORITHMS

A. Distance Matrix Sparsification

Our heuristic for MATRIXSPAR partitions V into k clusters
for a prespecified integer k < n and computes a k× k matrix
Ms for cluster-to-cluster distances. As a baseline, we offer a
simple algorithm that consists of three modules. Each step can
be realized in multiple ways, and we present and discuss some
options.

1) Select k cluster centers.

2) Partition V into k clusters. This can be imple-
mented as the standard Voronoi diagram. For u ∈
V , it is assigned to the closest center, namely
argmin`∈Ld(u, `). Let {C1, C2, . . . , Ck} be the re-
sulting clusters.

3) Compute cluster-to-clusters distances. We define
these aggregate distances to be the average of node-
to-node distances. In particular,

d(Ci, Cj) =
1

|Ci||Cj |
∑

u∈Ci,v∈Cj

d(u, v) (3)

The above defines the intra-cluster distance within
cluster Ci when i = j and the inter-distance between
clusters Ci and Cj when i 6= j.

The first step of cluster center selection and the second
step of partitioning can utilize many known algorithms (see
Section VI). As a starting point we focus on the simple and
intuitive methods of k-center and Voronoi diagram. The third
step of our modular algorithmic framework is in fact optimal
for the mean square error as our objective function:

Theorem IV.1. For any given k clusters, the cluster-to-cluster
distance defined in Eq. (3) result in the following properties.

1) The total distance before and after sparsification is
preserved, i.e.

∑
u,v∈V d(u, v) =

∑
u,v∈V d

s(u, v).
2) For any given partition of k clusters, the cluster-to-

cluster distance defined in Eq. (3) minimizes MSE.

Proof: Consider any pair of clusters Ci and Cj where Ci

can be the same as Cj . For item 1), We have∑
u∈Ci,v∈Cj

ds(u, v) = |Ci||Cj |d(Ci, Cj) =
∑

u∈Ci,v∈Cj

d(u, v)

by Eq. (3). Summing over all cluster pairs proves item 1).

For item 2), let x be the cluster-to-cluster distance between
Ci and Cj . The total square error incurred from pairs (u, v)
where u ∈ Ci and v ∈ Cj is∑

u∈Ci,v∈Cj

(d(u, v)− x)2

= |Ci||Cj |x2 − 2x
∑

u∈Ci,v∈Cj

d(u, v) +
∑

u∈Ci,v∈Cj

d2(u, v)

= |Ci||Cj |

x− 1

|Ci||Cj |
∑

u∈Ci,v∈Cj

d(u, v)

2

− 1

|Ci||Cj |

 ∑
u∈Ci,v∈Cj

d(u, v)

2

+
∑

u∈Ci,v∈Cj

d2(u, v)

The above expression is minimized when x =
1

|Ci||Cj |
∑

u∈Ci,v∈Cj
d(u, v).

The first module of cluster center selection is an interesting
problem by itself. Since the definition of cluster-to-cluster
distances in the third module leads to good properties for spar-
sified distances, one natural clustering objective is to ensure the
distances within each cluster and between any pair of clusters
do not have a large spread. Specifically, for each Ci let maxi

and mini be the maximum and minimum distances between
two nodes in Ci. That is, maxi = maxu,v∈Ci d(u, v) and
mini = minu,v∈Ci d(u, v). Similarly, define maxij and minij
be the maximum and minimum distances between nodes where
one is in Ci and the other is in Cj , i 6= j. That is, maxij =
maxu∈Ci,v∈Cj

d(u, v) and minij = minu∈Ci,v∈Cj
d(u, v).

Theorem IV.2. For ρ > 1, it is NP-complete to decide whether
there exists a partition of V into k clusters so that the following
conditions hold.

Ai: For all i, 1 ≤ i ≤ k, maxi /mini ≤ ρ.
Ai,j : For all i 6= j, 1 ≤ i, j ≤ k, maxij /minij ≤ ρ.

Note that Conditions Ai constrains the intra-cluster dis-
tance variation, whereas Aij constrains the inter-cluster vari-
ation. The proof of NP-completeness is via a reduction from
k-coloring and details can be found in the Appendix. Since
achieving a good clustering with bounded ratio of max and
min distances is NP-complete and even approximating such
a good clustering is not obvious, we proceed to use another
related problem called the k-center problem.

The k-center problem takes as an input a set V of n points
with specified pairwise distances, and produces a subset L ⊆ V
of k centers that minimize the maximum distance from a node
in V to a center in L. More precisely, the aim is to minimize
the maximum radius

max
v∈V

min
`∈L

d(v, `).

It is well known that k-center is NP-hard even when the
distances form a metric space [12]. However, a simple greedy
algorithm can guarantee an approximation ratio of 2 [13], i.e.
the resulting radius is at most two times the optimal radius.
and no approximation algorithm can guarantee a factor 2 − ε
for any ε > 0 [14]. We use this simple 2-approximation as a
subroutine for our MATRIXSPAR heuristic.

We use the simple iterative 2-approximation algorithm for
the k-center problem [13] to identify a subset L ⊆ V of
k cluster centers. The algorithm works as follows. The first
iteration chooses an arbitrary node in V as a center and adds
to L. Each subsequent iteration chooses a node v for which
the distance to the existing center set L, min`∈L d(v, `), is
maximized and adds v to L. Roughly speaking, this process
chooses the centers as spread out as possible.

Suppose L = {`1, `2, . . . , `k} is the set of resulting centers,
then maxv∈V min`∈L d(v, `) is within a factor 2 of the best
possible [13].

Note that even an optimal solution to k-center solves
a different problem from MATRIXSPAR. K-center aims to
minimize the maximum radius of the clusters whereas MA-
TRIXSPAR aims to cluster nodes with similar distances among
themselves. Nevertheless, k-center is a reasonable implemen-
tation though with a somewhat different objective.

B. Distance Matrix Sparsification with Labels

The MATRIXSPAR algorithm is a general-purpose solution
that can abstract a potentially large topology without any
context information. However, if there are additional policies
indicating that there are relevant destinations in the network

(such as reference in Section II-B), the algorithm can be
adapted to the use of labeled data (labeled sparsification). In
the following, this variant is named LABELEDMATRIXSPAR.
In this labeled variant, the input node set V has a subset
VR ⊆ V of labeled nodes (called “references”).

LABELEDMATRIXSPAR can be easily solved with the
MATRIXSPAR algorithm outlined above if we view the set
of reference points VR in the input as the set of k centers L
in Step 1. LABELEDMATRIXSPAR then basically determines
a Voronoi diagram of the labeled nodes and assigns each non-
labeled node to the cluster of the closest labeled node. Labels
thus significantly simplify the problem.

C. Graph Sparsification

A fundamentally different approach is GRAPHSPAR. In
this case, the sparsification step operates on a graph and
only calculates the final export format after sparsification has
completed. For the GRAPHSPAR problem, we thus have an
edge-weighted graph G = (V,E) as the input where d(u, v)
for (u, v) ∈ E indicates the distance between u and v. The
output is an edge-weighted sparsified graph Gs = (V s, Es)
for which |V s| = k and |Es| ≤ |E.

Again, there are several different solutions for graph sparsi-
fication. In an earlier work [7] different heuristic were studied
that used a sequence of edge contraction operations from G.
In each iteration, the algorithm applies a transform rule to
recalculate edge lengths of affected edges as long as there
are edges below a threshold l. The quality of sparsification is
measured in terms of how close the approximate distances are
to the actual distances. The algorithm in [7] therefore adjusts
the lengths so that a local MSE is minimized. The complete
description of the local optimization algorithm can be found
in [7].

D. Graph Sparsification with Labels

One of the challenges of GRAPHSPAR is that is more
difficult to deal with labeled data and corresponding policies.
In the paper [7] it was shown that an iterative graph sparsifica-
tion algorithm can be enhanced by contraction policies, which
e. g. ensure that selected nodes are not merged. Such simple
policies can also ensure disjointness of references in labeled
data. However, it is more difficult to enforce a more complex
set of policies as introduced in Section II-B. Therefore this
option is not further considered in the following.

V. EVALUATION

A. Evaluation Scenarios

In order to quantify the error resulting from sparsification,
we evaluate a number of different metrics. Our comparison
of different sparsification algorithms uses several topologies
from different data sources. As listed in Table II, we use
the artificial “Cost266” topology [15] as an example for a
small network. “Cogent” from the data source [16] represents
a real IP topology of a larger network, and the RocketFuel
topology “7018” [17] is a well-known example for a real,
large IP network. The edge length in all three topologies is
calculated based on the (geographical) distance, due to the

lack of other data. The original data in “Cogent” and “7018”
has been cleansed in order to remove e. g. isolated notes.

We focus on sparsification without labels in Section V-B
and with labels in Section V-C. For the latter, a set of selected
nodes VR ⊂ V are labeled as references. In “Cost266”,
|VR| = 5 nodes “Frankfurt”, “London”, “Madrid”, “Paris”, and
“Stockholm” are labeled. In topology “7018”, |VR| = 7 nodes
with the largest number of neighbors “Atlanta”, “Chicago”,
“Dallas”, “Los Angeles”, “New York”, “San Francisco”, and
“Seattle” are labeled. For “Cogent”, we use the union of the
above |VR| = 12 reference nodes.

B. General Sparsification Error

We use the MSE defined in (1) as the primary quality
measure of sparsification. In the following numerical evalua-
tion, we verify that MATRIXSPAR outperforms GRAPHSPAR in
terms of MSE. For MATRIXSPAR, we use the 3-step heuristic
from Section IV-A and for GRAPHSPAR we use the local
optimization method as documented in [7].

Figure 4 depicts the MSE as a function of number of
clusters in the sparsified map under the three topologies
introduced in Tab. II. As expected, the smaller the map and
thus the number of clusters |V s| ≤ |V |, the larger the deviation
between the original and the sparsified topology and thus the
MSE. MSE for MATRIXSPAR is noticeably smaller than that
for GRAPHSPAR for all three instances and all desired cluster
numbers.

For the largest topology “7018”, the MSE remains at a
very small value even for a significant reduction. This topology
has multiple instances for which several nodes are at the same
geographical location and the induced edges have small default
minimum distance. In most cases, the error resulting from
mapping all of them into a single cluster is small. Topology
“7018” includes 110 separate locations. Figure 4 confirms that
the MSE significantly increases if the number of clusters is
smaller than that.

Other than MSE, which is the average of δ(u, v) the
distance error squared over all node pairs, we also con-
sider the distribution of δ(u, v). Recall δ(u, v) defined to
be (d(u, v) − ds(u, v))2 in Eq. (2) is the squared difference
between the actual and sparsified distances between node pair
u and v. Fig. 5 shows the cumulative distribution function
(CDF) of δ(u, v). More specifically, each point (x, y) on the
CDF curve indicates a fraction y of the node pairs have square
errors up to x. For the cumulative distribution, the higher
the curve, the smaller the error. Fig. 5 is for 20 resulting
clusters of the “Cogent” instance, and shows the advantage
of MATRIXSPAR over GRAPHSPAR. For a range of values of
|V s| for the Cogent, Cost266 and 7018 topologies we observe
CDF curves that are qualitatively similar to those in Fig. 5.
We therefore do not repeat them here.

TABLE II. LIST OF TOPOLOGIES IN USED IN THE EVALUATION

Topology Type Vertices |V | Edges |E| Cost Source
Cost266 Artificial 37 144 Distance [15]
Cogent IP 180 420 Geogr. dist. [16]
7018 IP 627 4102 Geogr. dist. [17]

5 10 15 20 25 30 35 40

Number of clusters |V
s
|

10
0

10
1

10
2

10
3

10
4

M
S

E

MatrixSpar

GraphSpar

0 50 100 150 200

Number of clusters |V
s
|

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

M
S

E

MatrixSpar

GraphSpar

10 100

Number of clusters |V
s
|

10
1

10
2

10
3

10
4

10
5

10
6

10
7

M
S

E

MatrixSpar

GraphSpar

Fig. 4. Comparison of the MSE, MATRIXSPAR vs GRAPHSPAR. (Left) Cost266, (Middle) Cogent, (Right) 7018.

10
3

10
4

10
5

10
6

10
7

Pairwise square errors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

MatrixSpar

GraphSpar

Fig. 5. CDF of the pairwise square errors for “Cogent” with |V s| = 20

In Figure 6, we further discuss the implementation of the
first step in the 3-step heuristic for MATRIXSPAR. Recall the
first step is identifying k cluster centers, for which we use
a k-center problem solution. We have discussed that in fact
the k-center problem has a related but different objective from
MATRIXSPAR. Here we use experimental results to illustrate
that whether we use the simple 2-approximation to find k
centers (as described in Section IV-A) or use the optimal k-
center solution, the resulting MSE values are very similar.
For small instances such as “Cost266”, the k-center problem
can be solved optimally using an integer linear program (ILP)
formulation via a commercial ILP solver such as CPLEX [18].
On the other hand, as expected, it is not the case that MSE is
completely insensitive to the choice of cluster centers. The top
curve in Figure 6 is the resulting MSE of one arbitrary choice
of centers, which are significantly worse than the choices by
k-center, approximation or exact.

C. Sparsification Error for Labeled Data

The MSE as defined in Eq. (1) characterizes the deviation
of the sparsified network topology compared to the original as
a whole. In addition, we also consider error metrics adapted to
the use of a topology manager for application guidance. In this
case, an application (e. g., a CDN) is typically only interested
in the distances to a subset of nodes VR ⊂ V that are labeled
as reference node. There destinations can be provided by the
policies introduced in Section II-B (i. e., reference).

0 5 10 15 20 25 30

Number of clusters |V
s
|

0

1000

2000

3000

4000

5000

M
S

E

2-approx k-center

opt k-center

arbitrary k-center

Fig. 6. Comparison of MSE under different clustering methods for MA-
TRIXSPAR, Cost266.

Let VN = V \VR be the remaining nodes. For any u ∈ VN ,
let r(u) = argminv∈VR

d(u, v) be the reference node closest
to u. In case of a CDN as an example user of a topology
manager, r(u) has an intuitive meaning: If VR represents the
locations of the references, r(u) provides for all other network
locations the optimal cache regarding the distance metric used
in the topology. The minimum distance to a reference node is
then given by d(u, r(u)). Let rs(u) = argminv∈VR

ds(u, v)
be the reference node closest to u after sparsification where
ties are broken arbitrarily. Note that r(u) may not be the
same as rs(u). If the reference nodes are known and if the
LABELEDMATRIXSPAR method is used, each cluster contains
exactly one reference node. The sparsified distance is therefore
ds(u, rs(u)). Distance sparsification affects the distance to the
closest reference node. This error can be measured by the
Mean Square Error to Reference (MSER) metric.

MSER =
1

|VN |
∑
u∈VN

(d(u, r(u))− ds(u, rs(u)))2. (4)

In Fig. 7, we present numerical results for the MSER
given by Eq. (4), using Cost266 as example. For varying
number of clusters |V s|, we run MATRIXSPAR which is label
unaware, but compute MSER for every possible choice of five
reference nodes and the curve in Fig. 7 plots the average.
As to be expected, MSER has a similar behavior like MSE,
i. e., the more clusters, the smaller the error. The results for
GRAPHSPAR are similar and therefore omitted in this diagram.

0 10 20 30 40

Number of clusters |V
s
|

0

500

1000

1500

2000

2500

3000

M
S

E
R

MatrixSpar

LabeledMatrixSpar (|V
R
 = 5|)

Fig. 7. Mean Square Error to Reference (MSER) for the Cost266 topology
with |VR| = 5 reference nodes.

Of interest is the case in which |V s| = 5. Recall we have
a set of |VR| = 5 reference nodes for Cost266 specified at the
beginning of this section, and we refer to them as V Cost266

R .
We compare the MSER produced by LABELEDMATRIXSPAR
taking the V Cost266

R as input, against the average MSER
produced by MATRIXSPAR for |V s| = 5. Not surprisingly, the
former outperforms the latter since the former is label aware.
This can be seen in Figure 7 for |V s| = 5.

Fig. 7 also shows that MATRIXSPAR although unaware of
the reference nodes can provide a smaller average MSER if the
number of clusters is allowed to be larger than the number of
reference nodes. This is further confirmed in Table III, which
provides results for all three test topologies with the reference
nodes introduced in Section V-A. Our results show that, in
general, using MATRIXSPAR with a number of clusters twice
the number of reference nodes (|V s| = 2|VR|) results in a
much smaller error than label-aware Voronoi clustering. There
results obviously depend on the position of reference nodes.

While knowing reference nodes helps to reduce the error in
distance sparsification, in practice such knowledge may come
at a cost. Obtaining the reference node set and subsequent
policy setup may require an additional information exchange
between the user of the topology manager and its operator,
thus increasing the overall system complexity. Our results thus
show that a topology exposure system unaware of the actual
destinations can still provide reasonably accurate guidance
with low error as long as a moderate number of clusters is
used, in particular if it is sufficiently larger than the number
of important destinations in the network.

D. Further Improvements and Open Issues

There are various alternatives to the solutions presented in
this initial study. For instance, instead of k-center clustering
in MATRIXSPAR, one could also apply other known graph

TABLE III. EXAMPLE MSER RESULTS FOR THE THREE TEST CASES

Topology LABELEDMATRIXSPAR MATRIXSPAR
|V s| = |VR| |V s| = 2|VR|

Cost266 3552 1601
Cogent 859009 186960
7018 126645 64315

clustering heuristics. Yet, there may be only limited benefit
from designing advanced algorithms for the label-unaware
case, since the system cannot determine optimality in this
case. The label-aware case is easier to solve, but further
improvement is possible in this case, too. For instance, in this
work we only consider static labels. Changes of labels (e.g.,
resulting of the deployment of additional CDN caches) will
require a dynamic, online algorithm.

Future experimentaion is needed to proof that our sparsi-
fication algorithms indeed operate well with real applications.
This paper focuses on additive distance or delay metrics
as a starting point to understand the algorithmic issues. As
alternative, the congestion status on links would also be an
interesting but very volatile metric. In addition, the evaluation
in this paper does not consider complex routing setups, e.g.,
the combination of BGP and Interior Gateway Protocols (IGP).

Concerning the architecture, we focus on the exposure of
abstract topology information to applications that only query
data. Sparsification methods could also be used in an SDN
controller or a PCE, but we do not consider the implications of
control action based on sparsified topology, such as congestion-
aware routing. There are also options for more complex
policies, but this is beyond the scope of this work.

VI. OTHER RELATED WORK

Shortest paths calculation, approximate distance preserva-
tion, embedding, clustering, and routing are closely related
topics studied by diverse communities. A thorough literature
review of such areas would be overwhelming, but we give a
few examples to illustrate related work.

Graph sparsification is well studied in the literature. From
the theoretical front, different notions of sparsification have
been considered [19] including distance sparsifier for preserv-
ing pair-wise distance, e.g. [20], cut sparsifier for preserving
cut values, e. g. [21], and spectral sparsifier for preserving
graph Laplacian, e. g. [22]. Distance preservation is closest to
our interest. However, most previous work focuses on edge
sparsification, which means the node set is untouched, but the
graph becomes sparser with fewer edges. A classic example is
the t-spanner problem, which is to find a smallest subset of the
edges such that the distance is stretched by a factor of t at most.
Formally, stretch is the worst ratio between the approximate
distance to the actual distance maxu,v

ds(u,v)
d(u,v) . A tradeoff

between t and the number of edges in the sparsified graph, and
the time complexity are studied in a sequence of papers, e. g.
[20], [23]. We note that worst multiplicative ratio may not fit
well in use cases where the absolute value of network distance
matters to the data consumer (e. g., geographic distance, delay,
or routing weights). In addition, the worst distortion of one
distance may not be representative of the distortion of all
distances.

Therefore we have considered additive measures such as
the sum square difference in our study. Relatively few papers
focus on vertex sparsification of a graph. Please see [24] for
a summary. Most of the related work on sparsification takes a
graph as input and outputs a sparsified graph. This is different
to our solution that calculates a sparsified distance matrix. Fur-
thermore, to the best of our knowledge distance preservation
is not studied in the context of vertex sparsification.

Somewhat related goals are seen in compact routing where
the idea is to reduce the size of routing tables while minimizing
the increase in the length of paths between nodes. A good
overview of the compact routing literature can be found in [25].
While compact routing affects the actual routing of packets, the
problem we consider does not change the routing but affects
such things as the determination of nearest neighbors or other
computations that rely on path lengths.

If the abstraction policies provide labels with additional
context information regarding relevent destinations, the prin-
ciple of Voronoi diagrams can be applied [26]. The authors
are not aware of related published work on details of a policy
design for a topology abstraction system, apart from [7].

VII. CONCLUSION

This paper proposes algorithms and a policy system for
abstracting network information. Both are important compo-
nents of a topology exposure system that improves application-
level resource selection. Our proposed solution for privacy
enforcement extends and generalizes the concept of route
import filters. A further size reduction of the exposed data can
be achieved by distance sparsification algorithms. We propose
heuristics for matrix and graph sparsification. We believe that
matrix sparsification is new and significantly different from
other sparsification literature. As sparsification method we pro-
pose a modular three-step algorithmic framework. For the first
two steps we use intuitive algorithms, whereas our proposed
algorithm for the third step is optimal given the output of the
previous steps. In order to analyze the impact of abstraction we
quantify the sparsification error. We observe the advantage of
matrix sparsification over the graph counterpart, and the trade-
off between accuracy and the size of sparsified representation.
We also show that even without label information in many
cases one can significantly reduce the size of a topology
without dramatically impacting distance accuracy.

APPENDIX

NP-completeness proof of Theorem IV.2.

Proof: Clearly the problem is in NP since checking that a
given partition satisfies the Ai and Ai,j constraints can easily
be done in polynomial time.

To show that it is NP-hard we describe a reduction from k-
COLORING. Let G = (V,E) be an instance of k-COLORING.
From G we define an instance I = (V, d, k, ρ) of BOUNDED
RATIO CLUSTERING.

For each v ∈ V define nodes v and v′ in V where
d(v, v′) = ε and 0 < ε < 1. Let α = min{2, ρ} > 1. For
each e = uv ∈ E we define d(u, v) = d(u, v′) = d(u′, v) =
d(u′, v′) = M where M = εαρ. Therefore if uv ∈ E then in
any valid clustering u and u′ must be in different clusters than
v and v′ since otherwise if say u and v were in cluster Ci

then maxi /mini = M/ε = αρ > ρ since α > 1 and hence
violates an Ai conditions. Let M ′ = ερ and for uv 6∈ E define
d(u, v) = d(u, v′) = d(u′, v) = d(u′, v′) =M ′.

Note that for any edge e = uv whose length is ε or M ′,
it is straightforward to check that any path between u and v
has total length at least that of e. Suppose e = uv has distance
M . Then any path between u and v (other than e) contains

at least two edges that both have length M ′ and so the total
length of any such path is at least 2M ′ = 2ερ ≥ αερ = M .
Thus the distance measure d satisfies the triangle inequality.

Suppose there is a k-coloring C of G. Then put u, u′ in Ci

if u is given color i in C. We wish to show that this defines
a valid clustering.

For any two nodes in Ci the distance between them is ε or
M ′. But

M ′/ε = ερ/ε = ρ

so the nodes within each cluster do not violate the Ai condi-
tions.

If two nodes u and v are in different clusters, then
d(u, v) = M ′ if uv 6∈ E or d(u, v) = M if there is an edge
uv ∈ E. Then the ratio of maximum to minimum distance
between such points is

M/M ′ = ερα/ερ = α ≤ ρ.

Therefore the intercluster distances do not violate the Ai,j con-
ditions. That is, we have k clusters forming a valid clustering.

Suppose on the other hand that we have a valid clustering
S of V of size k. We color node u with color i if u ∈ Ci

in S. We wish to show that for any edge uv ∈ E, u and v
have different colors (or equivalently, if u ∈ Ci and v ∈ Cj

according to S, then i 6= j). But d(u, v) =M and d(u, u′) = ε
and so maxij /minij ≥ M/ε = ρα > ρ contradicting the
assumption that S was a valid clustering.

ACKNOWLEDGMENT

The authors wish to thank Iraj Saniee and Thomas Voith
for many helpful discussions, and Volker Hilt and Markus
Hofmann for their support.

REFERENCES

[1] A. Atlas, J. Halpern, S. Hares, D. Ward, and T. Nadeau, “An Architec-
ture for the Interface to the Routing System,” Internet Draft, work in
progress, 2014.

[2] D. King and A. Farrel, “A PCE-based Architecture for Application-
based Network Operations,” Internet Draft, work in progress, 2014.

[3] R. Alimi, R. Penno, Y. Yang, S. Kiesel, S. Previdi, W. Roome,
S. Shalunov, and R. Wound, “Application-Layer Traffic Optimization
(ALTO) Protocol,” RFC 7285, 2014.

[4] M. Stiemerling, S. Kiesel, S. Previdi, and M. Scharf, “ALTO Deploy-
ment Considerations,” Internet Draft, work in progress, 2014.

[5] R. Ravindran, C. Huang, and K. Thulasiraman, “Topology Abstraction
Service for IP-VPNs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 1, pp. 184–197, 2013.

[6] M. Scharf, V. Gurbani, T. Voith, M. Stein, W. Roome, G. Soprovich,
and V. Hilt, “Dynamic VPN optimization by ALTO guidance,” Proc.
EWSDN workshop, 2013.

[7] M. Scharf, T. Voith, M. Stein, and V. Hilt, “ATLAS: Accurate Topology
Level-of-Detail Abstraction System,” in IEEE Network Operations and
Management Symposium (NOMS), 2014, pp. 1–5.

[8] M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” RFC 6020, 2010.

[9] H. Gredler, J. Medved, S. Previdi, A. Farrel, and S. Ray, “North-Bound
Distribution of Link-State and TE Information using BGP,” Internet
Draft, work in progress, 2014.

[10] M. Caesar and J. Rexford, “BGP Routing Policies in ISP Networks,”
IEEE Network, vol. 19, no. 6, pp. 5–11, 2005.

[11] 7750 SR OS Routing Protocols Guide, Alcatel-Lucent, 2014.

[12] V. Vazirani, Approximation Algorithms. Berlin: Springer, 2003.
[13] T. F. Gonzalez, “Clustering to minimize the maximum intercluster

distance,” Theoretical Computer Science, Elsevier Science B.V., vol. 38,
pp. 293–306, 1985.

[14] D. S. Hochbaum and D. B. Shmoys, “A unified approach to approxima-
tion algorithms for bottleneck problems,” Journal of the ACM (JACM),
vol. 33, no. 3, pp. 533–550, 1986.

[15] “Networks and Problem instances of SNDlib,” http://sndlib.zib.de, 2006.
[16] “The Internet Topology Zoo,” http://www.topology-zoo.org, 2013.
[17] “Rocketfuel: An ISP Topology Mapping Engine,” http://research.cs.

washington.edu/networking/rocketfuel/, 2002.
[18] “ILOG CPLEX C++ API 11.0 reference manual,” http://www-

eio.upc.edu/lceio/manuals/cplex-11/pdf/refcppcplex.pdf, 2007.
[19] W. S. Fung, R. Hariharan, N. J. A. Harvey, and D. Panigrahi, “Graph

sparsification by edge-connectivity and random spanning trees,” in Pro-
ceedings of the 43rd Annual ACM Symposium on Theory of Computing
(STOC), 2011.

[20] E. Cohen, “Fast Algorithms for Constructing t-Spanners and Paths with
Stretch t,” SIAM Journal on Computing, vol. 28, no. 1, pp. 210–236,
1999.

[21] A. A. Benczur and D. R. Karger, “Approximate s-t min-cuts in Õ(n2)
time,” in Proceedings of the 28th Annual ACM Symposium on Theory
of Computing (STOC).

[22] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems,”
in Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC), 2004.

[23] I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares, “On sparse
spanners of weighted graphs,” Discrete and Computational Geometry,
vol. 9, no. 1, pp. 81–100, 1993.

[24] A. Moitra, “Vertex sparsification and universal rounding algorithms,”
Ph.D. dissertation, MIT, 2011.

[25] M. Enachescu, M. Wang, and A. Goel, “Reducing maximum stretch in
compact routing,” in INFOCOM, 2008, pp. 336–340.

[26] F. Aurenhammer, “Voronoi diagrams - a survey of a fundamental
geometric data structure,” ACM Comput. Surv., vol. 23, no. 3, pp. 345–
405, 1991.

