
Dynamic Management of Applications with
Constraints in Virtualized Data Centres

Gastón Keller and Hanan Lutfiyya
Department of Computer Science

The University of Western Ontario
London, Canada

{gkeller2|hanan}@csd.uwo.ca

Abstract—Managing single-VM applications in data centres is
a well-studied problem, managing multi-VM applications is not.
Multi-VM applications usually have, in addition to their basic
resource requirements, a special set of requirements that the
data centre provider has to satisfy as well. We refer to these
requirements as placement constraints. We propose two man-
agement strategies designed to manage multi-VM applications
with placement constraints in data centres. These management
strategies aim to increase data centre’s resource utilization
(and thus reduce power consumption) while at the same time
minimizing SLA violations. One of the management strategies
enforces placement constraints at all times, while the other
allows for a temporary violation of placement constraints. The
two management strategies are evaluated through simulation
in multiple scenarios. Results suggest that both strategies are
able to achieve high levels of infrastructure utilization and SLA
achievement, while satisfying applications’ placement constraints,
and that temporarily violating constraints does not provide any
advantage and it does add cost.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) clouds are powered by
large-scale data centres that rent their infrastructure (to appli-
cation owners) on a pay-per-use basis. The business of these
providers lies on maximizing their infrastructure’s utilization
while minimizing data centre expenses, such as power con-
sumption [1]. Still, their business goals have to be balanced
with their clients’ service-level expectations, usually specified
in the form of Service Level Agreements (SLA). Achieving
this balance can be difficult and so it has become the focus of
much research [2], [3], [4], [5], [6], [7].

Systems virtualization enables IaaS providers to increase
their infrastructure’s utilization by co-locating multiple com-
puting systems per physical server (or host), each system
encapsulated in its own virtual machine (VM). Moreover,
resources can be oversubscribed (i.e., more resources can
be promised in total to the group of co-located VMs in
a host than the host actually possesses). However, appli-
cations tend to present a rather dynamic resource demand
[8], making application co-location a risky affair: if the total
resource demand of co-located applications were to exceed
the available resources in a host, some applications would
have their resource needs unmet, causing SLA violations.
By leveraging VM live migration, an application could be
relocated to a different host, reducing resource utilization (and
demand) locally, but avoiding SLA violations. This approach

of mapping and re-mapping VMs to hosts as needed is known
as dynamic VM management.

Deploying and managing single-VM applications in a data
centre is a well studied problem [9], [8], [2], [10], [3], [4], [5],
[11], [6], [12]. However, managing multi-VM applications is
not. A multi-VM application is an application that consists of
multiple components working together to provide a service,
where each component runs in its own dedicated server. A
common example of a multi-VM application is a 3-tier web
application, consisting of web, application and database tiers,
where each tier is hosted on a separate server [13].

Multi-VM applications may require an IaaS provider to
meet certain placement constraints, which could be specified
in an SLA. For example, an application may require some
of its components to be co-located in the same host (or the
same rack) for performance reasons, while another application
may require its components to be placed far apart for high
availability purposes. In this way, the data centre management
system is faced with the challenge of meeting these placement
constraints, in addition to the challenge of meeting each
application’s resource demand at every point in time.

In this paper, we investigate how to manage multi-VM
applications in data centres, so as to increase infrastructure
utilization while keeping SLA violations low, and satisfying
application placement constraints. In addition, we explore tem-
porarily violating placement constraints through management
actions to evaluate its effect on overall data centre power
consumption and SLA satisfaction.

The remainder of this paper is organized as follows: Section
II discusses related work in the area, Section III describes
the application placement constraints we considered, Section
IV presents the two approaches we developed to manage
multi-VM applications in data centres, Section V presents our
evaluation and discusses the results, and finally Section VI
states our conclusions and suggests directions of future work.

II. RELATED WORK

There is considerable work that deals with the deployment
and management of single-VM applications in data centres,
using a variety of techniques ranging from greedy heuristics
(First Fit, Best Bit, hill-climbing, etc.) and genetic algorithms
to integer linear programming and fuzzy-logic [9], [8], [2],
[10], [3], [4], [5], [11], [6], [12].



There is also considerable work that focuses on the place-
ment of virtual networks or virtual infrastructures (also re-
ferred to as Virtual Data Centres) in data centres (e.g., [14],
[15], [16]). These virtual infrastructures consist not only of
VMs, but also switches, routers and links connecting those
VMs and having requirements of their own, such as bandwidth
or delay. Our work, however, focuses on mapping application
components running inside VMs to hosts in the data centre.
Multiple application components can be mapped to the same
host (and sometimes are required to in this work), which is
usually not possible when mapping virtual networks.

There is work, however, that does focus on managing multi-
VM applications in data centres. Gulati et al. [17] presented
a high-level overview of VMware’s Distributed Resource
Scheduler (DRS), which is used to map VMs into hosts and
to periodically perform load balancing. DRS allows users to
specify VM-to-VM and VM-to-Host affinity and anti-affinity
rules (or constraints) in their deployments. VM-to-VM anti-
affinity rules are respected at all times, while VM-to-VM
affinity rules are respected during load-balancing, but may
be violated during initial placement. The system described
in this work relies on a centralized architecture and does not
scale beyond a single cluster. Our approach, on the other hand,
relies on a hierarchical architecture with the express purpose
of scaling across multiple clusters. We adopt their definitions
of (VM-to-VM) affinity and anti-affinity constraints for our
own work.

Shrivastava et al. [18] addressed the issue of managing
multi-tier applications in virtualized data centres. More specif-
ically, they focused on the problem of finding new target hosts
for VMs that had to be migrated away from their current
host due to resource stress. They proposed an approach that
considered both the data centre network topology and the
communication dependencies between application components
when making VM migration decisions, with the goal of
minimizing the resulting data centre network traffic (due to
inter-VM communication) after the VM migrations had been
completed. They proposed a Best Fit heuristic that aimed to
minimize the cost of each migration, calculated as the total
delay introduced in the communication between the migrated
VM and any other VM with which it communicated. Their
proposed algorithm relocated overloaded VMs (though it is
unclear what constituted an overloaded VM). In contrast, our
work does not treat VMs as overloaded, but rather treats hosts
as stressed; as a consequence, we are not forced to migrate
specific VMs, but rather we select which VM to migrate so
as to optimize a given goal. In addition, given that we seek
to place all VMs of an application within a single rack, our
solution minimizes communication traffic in the data centre
network by default.

Shi et al. [19] also worked on placing sets of VMs with
placement constraints in a data centre, with the goal of
maximizing the data centre provider’s revenue. They defined
three constraint types: full, all VMs in the set must be placed
in the data centre or none; anti-affinity, all VMs in the set must
be placed in different hosts; and security, all VMs in the set

must be placed in hosts that do not host VMs from other sets.
VM sets can have one of these constraint types, no constraints
at all, or the combination full + anti-affinity or full + security.
They proposed an Integer Linear Programming formulation
that achieved optimal solutions, but was time consuming and
unscalable. They also proposed a Firt Fit Decreasing heuristic
for multi-dimensional bin packing that achieved suboptimal
solutions, but was fast to compute. In our work, we consider
the full constraint implicitly; in other words, all applications
have to be placed completely or not at all. On the other hand,
we do not consider the security constraint, which requires
VMs to be placed separately from the rest of the workloads
in the data centre, thus greatly simplifying their placement. In
addition, Shi et al. apply constraints to all the VMs in a set,
while we consider constraints to be applied to individual VMs
in a set. Finally, our work does not only address placement,
but also relocation and consolidation.

III. APPLICATION PLACEMENT CONSTRAINTS

A placement constraint is a restriction specified by the
application owner to indicate the way in which the components
of an application should be placed with respect to each other
in the data centre.1 The purpose of a constraint is usually to
improve an application’s performance or reliability.

In this work, we consider three types of constraints:
1) Single-rack: all components of an application should be

placed within a single rack.
2) Affinity: application components related by affinity

should be placed in the same host.
3) Anti-affinity: application components related by anti-

affinity should be placed in different hosts.
The motivation behind the single-rack constraint is that

by spreading an application’s components across multiple
racks, the communication between components suffers from
increased network latency, thus degrading the application’s
performance. In order to prevent this problem, all components
of an application should be placed within a single rack. By
default, we treat every application submitted to the data centre
as affected by this constraint.

The affinity and anti-affinity constraints are adopted from the
work of Gulati et al. [17]. We say that an application com-
ponent affected neither by affinity nor anti-affinity is neutral.
A neutral application component may, however, communicate
with other components in the application.

Finally, though the constraints are defined in terms of
application components, given the one-to-one mapping of
application component to hosting VM, we say that the con-
straints apply to the VMs or the application components
interchangeably.

A. Application Templates

For this work, we created a series of templates from which
to create all applications to be deployed in the data centre (see

1Placement constraints can also specify an application component’s need
for specific hardware or software, but that type of constraint is beyond the
scope of this work.



Fig. 1. Application Templates. Nodes represent application components and
edges represent communication links. Boxes indicate that multiple instances
of the same component may exist.

Figure 1). These templates model interactive applications in
the form of multi-tiered web applications. The templates spec-
ify the communication paths between application components
and whether there can be multiple instances of any component.
From this information, placement constraints can be inferred
as follows:
• if a component can have multiple instances, then all

instances of the component are subject to the anti-affinity
constraint;

• if a component can have only one instance, then the com-
ponent is neutral; however, if two neutral components
communicate with each other, then those components are
actually constrained by affinity.

One limitation of these templates is that they only allow for
an application component to be affected by affinity or anti-
affinity, but not both.

B. Application Representation

Given an application template, the application components
can be grouped according to their constraint type. Thus, an
application can be represented as a collection of affinity sets,
anti-affinity sets, and a single neutral set, where each affinity
and anti-affinity set consists of a single group of components
related by the associated constraint. This representation of an
application is used by the management strategies.

For example, consider a sample application modelled after
the third template in Figure 1. Such an application would be
represented as follows:
• Affinity sets: { { 3 , 4 } }
• Anti-affinity sets: { { 21 , ... , 2n } }
• Neutral set: { 1 }

IV. MANAGEMENT STRATEGIES

In the context of dynamic VM management, there are three
main operations: (i) the Placement operation selects hosts in
which to instantiate new VMs; (ii) the Relocation operation
migrates VMs away from stressed hosts (i.e., hosts that are
close to running out of spare resources to allocate to its
VMs) and into non-stressed hosts; and (iii) the Consolidation
operation relocates VMs in the data centre, so as to concentrate
the VMs into as few hosts as possible.

A management strategy defines the behaviour of the data
centre management system and is designed to pursue specific
management goals. It consists of a set of policies that specify
how each of the main management operations are carried out
across the data centre. In this section, we describe two man-
agement strategies: one that respects applications’ placement
constraints at all times and another that may violate constraints
under certain conditions.

A. Data Centre Organization and System Architecture

The target infrastructure consists of a collection of clusters,
each cluster being a collection of racks, and each rack a
collection of physical servers. Two networks provide con-
nectivity throughout the data centre: the data network and
the management network. The former is used by the client
applications, while the latter is reserved for the management
system. Both networks have the same architecture. The hosts
in a rack are connected to the networks through two switches –
one per network – placed inside the rack. The racks in a cluster
are connected to each other through a cluster-level switch, and
the cluster-level switches are connected to a central switch at
data centre-level.

Each computational entity in the data centre (i.e., hosts,
racks, clusters, and the data centre itself) has an associated
autonomic manager. Managers have a set of policies and a
knowledge base. Managers can receive events, which may
trigger the execution of zero or more policies, which in
turn may trigger management actions or additional events.
The knowledge base is updated with monitoring data sent
to the manager (as an event) or through policies’ execution.
Managers communicate with each other periodically (e.g.,
monitoring) and aperiodically (in response to events).

The management system is organized as a hierarchy of
autonomic managers. There are four levels of management:
host-level (Level 0), rack-level (Level 1), cluster-level (Level
2), and data centre-level (Level 3). The management strategies
consist of policies running at one or more levels. Managers at
the same level use the same set of policies.

B. Management Strategy: Enforced Constraints (MS-EC)

This management strategy was designed to operate at the
granularity-level of applications, that is, the strategy maps
applications to clusters or racks instead of mapping individual
application components or VMs. However, at rack-level, the
policies do operate at a lower granularity-level, mapping (and
re-mapping) VMs to hosts as needed, always respecting the
VMs’ placement constraints as defined by the application they
belong to.

1) Placement: The Placement management operation is
carried on by three policies, running at rack-, cluster-, and data
centre-level, respectively. When managers receive a Placement
request (i.e., a request to place a new application), they
execute their associated Placement policy. Policies search for
candidate entities to which to forward the request (or send
VM instantiation events at the lowest level); if none can be



found, the request is rejected, and the upper level manager has
to start a new search.

When the Data Centre Manager receives a Placement
request (or a Placement reject message – see below), its
Placement policy parses the list of clusters, removing those
that do not meet the hardware requirements of the application,
sorts the clusters in decreasing order by power efficiency (i.e.,
processing per watt of power), and divides them in active
(or powered on) and inactive clusters. If there is no active
cluster, one is powered on and selected. If there is only one
active cluster, the policy checks if the cluster has enough
spare resources to host the application. If there are multiple
active clusters, the policy checks each subset of equally power
efficient clusters, searching for the cluster with the least loaded
rack (i.e., least active hosts) and that can host the application,
or the cluster with the most active racks, but that still has
racks to activate. If no active cluster was identified, the next
inactive cluster in line is powered on and selected; if there
are no inactive clusters, the Placement request is rejected. If
a suitable target cluster was found, the Placement request is
forwarded to the cluster’s manager.

When a Cluster Manager receives a Placement request, its
Placement policy starts by separating active from inactive
racks. If there is no active rack, one is powered on and
selected. If there is one active rack, the policy checks if the
rack has enough spare resources to host the application. If
there are multiple active racks, the policy searches the entire
list of active racks to identify the rack that can host the
application and would activate the least number of additional
hosts in so doing; if several such racks exist, the most loaded
one (i.e., most active hosts) is selected. If no active rack was
found, the next inactive rack in line is powered on and selected;
if there are no inactive racks, a Placement reject message is
sent to the Level 3 manager. If a suitable target rack was found,
the Placement request is forwarded to said rack’s manager.

Finally, when a Rack Manager receives a Placement request,
its policy first classifies and sorts the available hosts in the
rack. It then tries to place all the VMs of the application.
First, for each affinity set, the policy tries to map all the VMs
in the set into a single host. Second, for each anti-affinity set,
the policy tries to map each VM in the set into a different
host. Third, the policy takes the set of neutral VMs and maps
the VM to whichever host can take them. In every step, the
intention is to maximize the CPU utilization of the hosts in
the rack without exceeding a given threshold – hosts’ target
utilization threshold.

2) Relocation: Just like the Placement operation, Reloca-
tion is achieved through the combined work of three policies,
used by managers at rack-, cluster-, and data centre-level. In
contrast, the Relocation operation starts at Level 1 and often
does not require the involvement of upper management levels.
In this operation, managers try to solve stress situations within
their scope by performing migrations between computational
entities under their control. It is only when a manager cannot
deal with a stress situation on its own that the manager requests
assistance from its upper level manager.

1: s, p, u, e = classifyHosts(hosts)
2: p′, u′ = sortByCpuUtil(p, u)
3: e′ = sortByPowerState(e)
4: targets = concatenate(p′, u′, e′)
5: n, x, a = classifyVms(stressed)
6: if processNeutralVms(n, targets) then
7: migrateVm()
8: return true
9: end if

10: if processAntiAffinityVms(x, targets) then
11: migrateVm()
12: return true
13: end if
14: if processAffinityVms(a, targets) then
15: migrateVm()
16: return true
17: end if
18: return false

Algorithm 1: MS-EC Relocation policy at rack-level –
Internal process.

At rack-level, Relocation is a two-step process. When a
Rack Manager detects that one of its hosts is stressed, the
Relocation policy starts its internal relocation process (see
Algorithm 1), by which it tries to migrate a VM from the
stressed host to a non-stressed host in the rack. The policy
first classifies the available hosts in the rack as stressed (s),
partially-utilized (p), underutilized (u) or empty (e), and sorts
them as follows (lines 1-4): p is sorted in increasing order
by CPU utilization, u is sorted in decreasing order by CPU
utilization, and e is sorted in decreasing order by power state
(i.e., on, suspended, off). It then classifies the VMs in the
stressed host (line 5) in three groups according to their
placement constraint type – neutral (n), anti-affinity (x) and
affinity (a) – and considers each group in order using a greedy
approach (lines 6-17). First, the policy tries to find the least
loaded neutral VM that still has enough load to terminate
the stress situation and that can be taken by another host in
the rack (line 6). If that fails, the policy repeats the process
with the group of anti-affinity VMs (line 10), checking in
addition that no VM is selected to be migrated to a host that
is already hosting a VM from the same anti-affinity set (i.e., a
VM hosting the same application component). If that step also
fails, the policy considers at last the group of affinity VMs (line
14), first grouping the VMs into their affinity sets, and then
trying to find the smallest affinity set that could be taken by
another host in the rack. The first of these three steps that can
find a suitable migration issues said migration and terminates
the relocation process.

When the internal relocation process fails to find a suitable
migration, the policy starts its external relocation process
(see Algorithm 2), so as to migrate an entire application
to a different rack. First, the policy divides the VMs in
the stressed host into two groups, large (l) and small (s),
according to whether the VMs have enough CPU load (i.e.,
amount of CPU under consumption) to terminate the stress



situation or not (line 1). The VMs in the large group are
processed first (line 2), searching for the VM that belongs
to the smallest application (i.e., the application with the least
number of components), and selecting the least loaded VM if
there is a tie. If no VM is selected, the process is repeated
with the VMs in the small group (line 4), searching for the VM
that belongs to the smallest application, and selecting the most
loaded VM if there is a tie. If a suitable VM is found, the Rack
Manager requests assistance from its corresponding Cluster
Manager (line 7) to find a target rack to which to migrate
the application that the chosen VM belongs to. If the Cluster
Manager fails to find a suitable placement for the migrated
application in the cluster, it will in turn request assistance
from the Data Centre Manager to migrate the application to a
different cluster in the data centre.

1: l, s = classifyVms(stressed)
2: VM = processVms(l)
3: if VM == null then
4: VM = processVms(s)
5: end if
6: if VM != null then
7: send(AppMigRequest(VM .getApp()), manager)
8: return true
9: else

10: return false
11: end if

Algorithm 2: MS-EC Relocation policy at rack-level –
External process.

The Relocation policies at Levels 2 and 3 are similar to
the Placement policies at those levels, with minor differences:
when the policies consider an active rack or cluster as potential
migration target, they first verify that the computational entity
is not the sender of the migration request, and if it is, the
computational entity is skipped.

3) Consolidation: In contrast with the previous two opera-
tions, Consolidation only happens at rack-level. This operation
occurs periodically and what the policy attempts to achieve is
to empty and power off underutilized hosts by migrating their
VMs to hosts with higher utilization. However, all migrations
occur within the scope of the rack; in other words, no VM
is migrated between racks as a result of a consolidation
process. By limiting this operation to the rack scope, we reduce
overhead on the management network.

When the rack-level policy is invoked, it starts by classifying
the hosts and making two lists: the sources list contains all
underutilized hosts, while the targets list contains all non-
stressed hosts. The first list is sorted in increasing order by
CPU utilization and the second is sorted in decreasing order
by CPU utilization. For each host in the sources list, the policy
tries to migrate all its VMs into hosts in the targets list, starting
with affinity VMs, then anti-affinity VMs, and finally neutral
VMs, always respecting the constraints in the same way the
Relocation policy at rack-level does. VMs are processed in
this order according to constraint type, so as to attempt to
place the more restrictive VMs first and fail early. If suitable

migrations could be found for all VMs in the source host, then
the migrations are issued and the host is marked to be powered
off once the migrations are completed. Otherwise, no VM is
migrated away from this host.

C. Management Strategy: Relaxed Constraints (MS-RC)
This management strategy differs from MS-EC in how the

Relocation operation is handled; more specifically, the external
step of the relocation process.

The Relocation policy at rack-level performs the internal
relocation process as described for MS-EC. However, during
the external relocation process (see Algorithm 3), this policy
does not look to migrate an entire application, but rather
to migrate a single VM. This approach should offer the
benefit of terminating stress situations while performing fewer
VM migrations, though it requires the temporary violation of
placement constraints.

1: vms = sortByCpuLoad(stressed)
2: for VM in vms do
3: if VM .getAppSize() == 1 then
4: send(AppMigRequest(VM .getApp()), manager)
5: return true
6: end if
7: if na == null and VM .getConstraintType() != affinity

then
8: na = VM
9: end if

10: if a == null and VM .getConstraintType() == affinity
then

11: a = VM
12: end if
13: end for
14: if na != null then
15: send(VmMigRequest(na), manager)
16: return true
17: else if a != null then
18: send(VmMigRequest(a), manager)
19: return true
20: end if
21: return false

Algorithm 3: MS-RC Relocation policy at rack-level –
External process.

The policy sorts the VMs in the stressed host in increasing
order by CPU load (though it ignores the VMs with not
enough load to terminate the stress situation) (line 1), and
traverses the list (lines 2-13), searching for the first single-
VM application it can find (lines 3-6). In case no such VM
is found in the list, the policy also identifies the first non-
affinity VM (na) (i.e., neutral or anti-affinity) (lines 7-9)
and the first affinity VM (a) (lines 10-12). If a single-VM
application is found, the Rack Manager requests assistance
from its corresponding Cluster Manager to migrate away the
application (line 4). Otherwise, the Rack Manager requests
assistance from the Cluster Manager to migrate away the
non-affinity VM identified (line 15), or if no such VM was
identified, to migrate away the affinity VM (line 18).



It is easy to see that if a single-VM is found and migrated,
no constraints are violated. However, if a VM that is part of a
larger application is chosen for migration, then this action will
violate the single-rack constraint. In addition, if the migrated
VM is the one related by affinity, then the system will violate
this other constraint as well.

The Relocation policy was not only modified to allow for
the violation of placement constraints, but also to correct
these situations. Given an application that has one or more
of its VMs hosted remotely, the Rack Manager contacts
the corresponding remote Rack Managers to request current
resource consumption information about the VMs and see if
the VMs can be hosted back in the local rack, respecting the
placement constraints of the application. If a suitable local
target host can be found for any of the VMs, the migration
is issued. This procedure is invoked every hour, starting one
hour after a VM was migrated away, and it continues until the
VM is recovered.

V. EVALUATION

We evaluate the two management strategies proposed in
Section IV through simulations using DCSim [20], [21], a tool
designed to simulate a multi-tenant, virtualized data centre. In
this section, we describe the experimental setup and design,
list and explain the metrics used for evaluation, and discuss
the results obtained.

A. Experimental Setup

We created a simulated infrastructure consisting of 5 clus-
ters, with each cluster containing 4 racks, and each rack
containing 10 hosts. The hosts were modelled after the HP
ProLiant DL160G5 server, with 2 quad-core 2.5GHz CPUs
(2500 CPU shares per core) and 16GB of memory. As
many hypervisors nowadays, the hosts make use of a work-
conserving CPU scheduler, which means that CPU shares not
used by one VM can be used by another VM. However,
CPU caps are not supported. If the total CPU demand of co-
located VMs exceeds the CPU capacity of their host, CPU
shares are divided among VMs in a fair-share manner. Memory
is statically allocated and is not overcommitted. Network
switches were modelled after the power measurement study
conducted by Mahadevan et al. [22]. Rack switches have 48
1-Gpbs ports and have a power consumption of 102 Watts.
Cluster and data centre switches have 48 1-Gpbs ports and
consume 656 Watts.

We defined three different VM sizes:
1) 1 virtual core of 1500 CPU shares, 512MB RAM
2) 1 virtual core of 2400 CPU shares, 1024MB RAM
3) 2 virtual core of 2400 CPU shares, 1024MB RAM
Note that these are maximum resource requirements. At

runtime, however, VMs are allocated enough resources to meet
their current demand, not their maximum requirements.

We created five different application types based on the
templates defined in Section III-A. At the start of the sim-
ulation, applications are randomly assigned a VM size, which
determines the resource requirements of their components (and

App. Service
Type Task Id Time (s) Visit Ratio #Instances

1 1 0.03 1 1
2 1 0.02 1 1

2 0.015 1 1
3 1 0.02 1 1

2 0.015 1 1
3 0.015 1 1

4 1 0.01 1 1
2 0.02 #Instances/2 2..4
3 0.008 1 1
4 0.007 1 1

5 1 0.01 1 1
2 0.04 #Instances/4 4..6
3 0.01 1 1
4 0.02 #Instances/2 2..3
5 0.01 1 1

TABLE I
APPLICATIONS

in that way, the size of the VMs that host those components).
We did not allow for application elasticity, meaning that once
an application is deployed in the data centre, the number of
its components stays fixed. The application types created are
shown in Table I with their respective configuration.

The application model used is that of an interactive, multi-
tiered web application. In this model, a number of clients
issue requests to an application, wait for a response, and
issue follow-up requests. Applications are modeled as a closed
queueing network, solved with Mean Value Analysis (MVA).
Applications have an associated think time, which is the time
clients wait between receiving a response to a request and
producing a follow-up request, and a workload, which is the
number of clients currently using the application. Workloads
change over time, according to trace data from an input
file. Individual tasks – the term used in DCSim to refer
to application components – have their own configuration
parameters: service time indicates the time it takes for the task
to process a request, while visit ratio indicates the number
of times the task is invoked by a single request. If a task
instance does not have its resource demand met (due to its
host being stressed), its service time is incremented to account
for processor queueing, which would impact the application’s
response time, potentially causing SLA violations. When there
are multiple instances of a task, the load (i.e., the requests) is
shared equally between the instances.

All applications were configured with a think time of 4
seconds and were randomly assigned a trace built from one of
three sources: ClarkNet, EPA or SDSC [23]. Each of these real
workload traces was processed and normalized request rates
calculated, in 100-second intervals. These values were used
to indicate the number of clients using the application over
time. The normalized workloads were scaled so that, when the
number of clients was at its peak, the application’s response
time was 0.9 seconds (just below the 1-second response time
threshold associated with SLA violations – see Section V-C).
Each application was assigned a random offset to start reading
its associated trace, so as to prevent applications with the same
trace from exhibiting synchronized behaviour.



B. Experimental Design

To evaluate the management strategies, we ran each strategy
under four different scenarios. Each scenario consisted of a
subset of the five application types described in the previous
section. Each number in the set corresponds to an application
type listed in Table I. The four scenarios used were the
following:

1) Set A: { 2 }
2) Set B: { 2, 3 }
3) Set C: { 2, 3, 4 }
4) Set D: { 2, 3, 4, 5 }
The set of applications to submit to the data centre con-

sisted, in every scenario, of 1,200 applications divided equally
between the available application types. All generated applica-
tions were submitted to the data centre within the first 5 days
of simulation at a rate of 10 applications per hour. During
this period metrics were not recorded. The system was given
1 additional day to stabilize itself before recording metrics.
After that time, metrics were collected for 7 days, and then
the simulation was terminated.

We define a workload pattern as a randomly-generated
sequence of application submission times and random offsets,
which is reproducible by specifying the random seed used to
generate the pattern. For this experiment, we generated five
different workload patterns and ran each scenario once per
pattern. Results were averaged across scenarios.

A second experiment was conducted with slighly different
scenarios. While the scenarios in the first experiment consisted
solely of multi-VM applications, every scenario in the sec-
ond experiment included single-VM applications (that is, the
scenarios included Application Type 1). The purpose of this
experiment was to evaluate how the management strategies
performed when unconstrained applications were included.
The four scenarios used were the following:

1) Set A’: { 1, 2 }
2) Set B’: { 1, 2, 3 }
3) Set C’: { 1, 2, 3, 4 }
4) Set D’: { 1, 2, 3, 4, 5 }
Finally, host managers were configured to send status up-

dates every 2 minutes, and rack and cluster managers to do so
every 5 minutes. Hosts were considered stressed when their
CPU utilization exceeded 90% (non-stressed otherwise), while
they were considered underutilized when their CPU utilization
fell below 60%. The target utilization was set at 85%.

C. Metrics

Active Hosts (Hosts): The average number of hosts powered
on. The higher the value, the more physical hosts are being
used to run the workload.
Average Active Host Utilization (Host Util.): The average CPU
and memory (MEM) utilization of all powered on hosts. The
higher the value, the more efficiently resources are being used.
Power Consumption (Power): Power consumption is calcu-
lated for each host and switch, and the total kilowatt-hours
consumed during the simulation are reported. Hosts’ power

consumption is calculated using results from the SPECPower
benchmark [24], and is based on CPU utilization. Switches’
power consumption is assumed constant and independent of
network traffic – as long as the switch is powered on – and is
based on the power benchmarking study by Mahadevan et al.
[22].
SLA Achievement (SLA): SLA Achievement is the percentage
of time in which the SLA conditions are met. We define the
SLA for an application as an upper threshold on its response
time – set at 1.0 seconds. While the response time stays below
the threshold, we consider the SLA satisfied; otherwise, the
SLA is violated. Response times exceeding the threshold are
a consequence of underprovisioned CPU resources to a VM (or
application component), as a consequence of CPU contention
with other VMs on the host.
Migrations (Migrations): The number of VM migrations
triggered during the simulation (due to both Relocation and
Consolidation). Typically, a lower value is preferable, since
fewer migrations means less network overhead.
Applications Deployed (Apps.): The number of applications
successfully deployed in the data centre. Since application
submissions can be rejected, this number may be lower than
the total number of submissions.
VMs Instantiated (VMs): The total number of VMs instanti-
ated in the data centre.
Spread Penalty (Spread): The Spread Penalty is calculated as
the amount of time, measured in hours, that an application
had its components distributed across multiple racks. This
metric indicates the extent to which the single-rack constraint
(defined in Section III) has been violated by the management
system. Since DCSim is not able to simulate application
performance degradation due to network congestion, we use
this metric to approximate the extent to which applications
are adversely affected by having their components spread over
the data centre. We report the mean Spread Penalty (Mean)
calculated over all the applications in the data centre, as well
as the percentage of application with non-zero Spread Penalty
(Apps), calculated over the total number of applications in the
data centre.

D. Results and Discussion

The results of the first experiment (presented in Table
II) show that both strategies use similar number of hosts
and achieve equally high host resource utilization. Power
consumption and SLA achievement metrics are also very close
in both strategies. Regarding migrations, the strategies issue
similar numbers – in two scenarios, the difference is negligible,
and in the other two, the difference is 6% and 9%, respec-
tively. In other words, MS-RC does not provide any major
advantage over MS-EC. On the contrary, MS-RC suffers
the disadvantage that, by temporarily violating constraints,
it degrades the performance of the affected applications. In
this experiment, we see that about 70% of the applications
deployed in the data centre have the single-rack placement
constraint violated at least once during their lifetime (see
column Spread (Apps)). In addition, the average amount of



App H. Util. H. Util. Spread Spread
Strategy Set Hosts (CPU) (MEM) Power SLA Migrations Apps. VMs (Mean) (Apps)
MS-EC A 139.8 69.0 83.1 6,737.8 99.7252 62,914.8 1,116.0 2,232.0 - -
MS-EC B 172.1 67.5 84.2 7,839.6 99.6568 75,832.6 1,115.6 2,785.0 - -
MS-EC C 198.9 73.1 92.7 8,936.3 99.2466 81,636.2 1,004.0 3,555.6 - -
MS-EC D 197.9 71.5 94.3 8,860.6 99.3208 55,056.4 842.0 3,667.8 - -
MS-RC A 132.0 71.9 86.8 6,512.5 99.6554 61,957.8 1,101.6 2,203.6 39.8 69.6
MS-RC B 160.0 70.9 89.0 7,490.9 99.5673 69,727.8 1,094.3 2,735.0 42.4 72.1
MS-RC C 189.4 72.8 92.5 8,589.1 99.2654 79,184.6 954.6 3,384.6 28.2 68.7
MS-RC D 198.9 71.9 95.5 8,905.1 99.0890 61,693.8 847.6 3,720.2 23.8 70.3

TABLE II
EXP. 1: MULTI-VM APPLICATIONS

App H. Util. H. Util. Spread Spread
Strategy Set Hosts (CPU) (MEM) Power SLA Migrations Apps. VMs (Mean) (Apps)
MS-EC A’ 106.3 70.9 81.8 5,576.0 99.7638 35,121.0 1,116.4 1,671.4 - -
MS-EC B’ 139.1 69.2 84.1 6,713.0 99.6990 48,624.4 1,116.8 2,246.0 - -
MS-EC C’ 193.0 72.0 88.3 8,701.4 99.5938 61,417.0 1,104.2 3,285.4 - -
MS-EC D’ 197.8 71.8 92.6 8,869.8 99.6196 47,498.8 962.2 3,568.0 - -
MS-RC A’ 104.7 71.8 82.9 5,533.6 99.7828 38,981.8 1,114.6 1,669.0 6.4 22.5
MS-RC B’ 135.4 70.6 85.9 6,608.7 99.6916 53,352.0 1,109.4 2,232.8 16.0 40.9
MS-RC C’ 186.3 72.8 89.4 8,477.1 99.4846 76,976.0 1,073.6 3,204.8 11.7 46.4
MS-RC D’ 196.1 72.2 93.1 8,817.0 99.4866 65,477.0 955.2 3,558.8 13.5 52.0

TABLE III
EXP. 2: SINGLE- AND MULTI-VM APPLICATIONS

time that affected applications spend with their components
spread across multiple racks (over their 7-day lifetime) varies
between 23.6 and 42.8 hours.

The results of the second experiment (presented in Table
III) allow for the same observations to be made with regard
to active hosts, host resource utilization, power consumption
and SLA achievement. However, when we look at the number
of migrations, we see that MS-RC consistently issues more
migrations than MS-EC (8.6% to 41.4% more). As for the
spread penalty, the percentage of applications with violated
constraints varies between 20.7% and 51.4%, and the average
amount of time applications are affected by this situation varies
between 5.7 and 15.9 hours.

A few additional observations can be made by looking at the
results of both experiments. First, both strategies issue fewer
migrations in the second experiment than in the first one (up
to 40% less) – with the exception of MS-RC in the fourth
scenario. Second, MS-RC violates constraints less often in
the second experiment (20.7% to 51.4% affected applications
against about 70%) and the amount of time applications remain
with their constraints violated is considerably smaller. Both
of these observations can be explained by the presence of
single-VM applications in the second experiment. Regarding
the smaller number of migrations, both strategies always give
priority to small applications during Relocation: MS-EC se-
lects for relocation the application with the fewest components
available, so whenever there is a single-VM application among
the candidates, that application will be relocated; and MS-RC,
before violating a constraint, checks whether a single-VM can
be found in the stressed host, so as to relocate that application
instead. This latter behaviour of MS-RC also explains the
decrease in the number of applications affected by violated
constraints.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the issue of managing multi-
VM application with placement constraints in data centres.
We developed a management strategy for a hierarchical man-
agement system to place, relocate and consolidate this type of
applications, satisfying at all times the applications’ placement
constraints. In addition, we developed a variant of the original
management strategy to allow for constraints to be temporarily
violated. The experiments showed that the first management
strategy could satisfactorily deal with applications’ placement
constraints, while at the same time achieving high levels of
resource utilization and SLA achievement. While the second
strategy performed equally well with regard to resource uti-
lization and SLA achievement, it tended to issue more migra-
tions. In addition, the second strategy causes application per-
formance degradation when violating placement constraints.
Therefore, the second strategy provides no advantages over
the first strategy, while adding an extra cost.

However, the conclusions reached in this study assume no
application elasticity (i.e., the ability of an application to
change the number of its components at runtime to match
current service demand). If we were to remove this restriction,
would enforcing constraints at all times still be possible (and
desirable), or would violating constraints become a necessity?
In other words, would our conclusions still hold? Other issues
to explore include the expansion of the set of available
application templates and the violation of other placement
constraints besides single-rack, such as affinity or anti-affinity.

ACKNOWLEDGEMENTS

We thank the National Sciences and Engineering Research
Council of Canada (NSERC) and the Government of Ontario
for their support.



REFERENCES

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, pp. 7–18, 2010.

[2] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and
A. Kemper, “An integrated approach to resource pool management:
Policies, efficiency and quality metrics,” in 38th Annual IEEE/IFIP Int.
Conf. on Dependable Systems and Networks (DSN), June 2008.

[3] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. Mc-
Kee, C. Hyser, D. Gmach, R. Gardner, T. Christian, and L. Cherkasova,
“1000 islands: Integrated capacity and workload management for the
next generation data center,” in Proceedings of the 2008 International
Conference on Autonomic Computing (ICAC’08), Chicago, IL, USA,
Jun. 2008, pp. 172–181.

[4] M. Cardosa, M. R. Korupolu, and A. Singh, “Shares and utilities
based power consolidation in virtualized server environments,” in IM
Proceedings, 2009 IEEE/IFIP Int. Symp. on, 2009.

[5] B. Speitkamp and M. Bichler, “A mathematical programming approach
for server consolidation problems in virtualized data centers,” IEEE TSC,
vol. 3, no. 4, pp. 266 –278, 2010.

[6] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Gener. Comput. Syst., vol. 28, no. 5, 2012.

[7] G. Foster, G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “The
Right Tool for the Job: Switching data centre management strategies
at runtime,” in Integrated Network Management (IM), 2013 IFIP/IEEE
International Symposium on, May 2013.

[8] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual ma-
chines for managing sla violations,” in IM Proceedings, 2007 IEEE/IFIP
Int. Symp. on, 2007, pp. 119–128.

[9] G. Khanna, K. Beaty, G. Kar, and A. Kochut, “Application performance
management in virtualized server environments,” in NOMS Proceedings,
2006 IEEE/IFIP, 2006.

[10] A. Verma, P. Ahuja, and A. Neogi, “pmapper: power and migration cost
aware application placement in virtualized systems,” in Proceedings of
the 9th ACM/IFIP/USENIX Int. Conf. on Middleware, 2008.

[11] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova, “Resource
allocation algorithms for virtualized service hosting platforms,” J. Par-
allel Distrib. Comput., vol. 70, no. 9, pp. 962–974, Sep. 2010.

[12] G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “An analysis of first fit
heuristics for the virtual machine relocation problem,” in Network and
Service Management (CNSM), 2012 8th International Conference on.
IEEE, Oct. 2012, pp. 406–413.

[13] (2014) AWS Reference Architectures. Amazon Web Services, Inc.
[Online]. Available: http://aws.amazon.com/architecture/

[14] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proceedings of the 6th International
COnference. ACM, 2010, p. 15.

[15] M. G. Rabbani, R. P. Esteves, M. Podlesny, G. Simon, L. Z. Granville,
and R. Boutaba, “On tackling virtual data center embedding problem,”
in Integrated Network Management (IM 2013), 2013 IFIP/IEEE Inter-
national Symposium on. IEEE, 2013, pp. 177–184.

[16] M. Zhani, Q. Zhang, G. Simon, and R. Boutaba, “Vdc planner: Dynamic
migration-aware virtual data center embedding for clouds,” in Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Sym-
posium on, 2013, pp. 18–25.

[17] A. Gulati, G. Shanmuganathan, A. Holler, C. Waldspurger, M. Ji, and
X. Zhu, “Vmware distributed resource management: design, implemen-
tation, and lessons learned,” VMware Technical Journal, vol. 1, no. 1,
2012.

[18] V. Shrivastava, P. Zerfos, K.-W. Lee, H. Jamjoom, Y.-H. Liu, and
S. Banerjee, “Application-aware virtual machine migration in data
centers,” in INFOCOM, 2011 Proceedings IEEE, 2011, pp. 66–70.

[19] L. Shi, B. Butler, D. Botvich, and B. Jennings, “Provisioning of
requests for virtual machine sets with placement constraints in iaas
clouds,” in Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on. IEEE, 2013, pp. 499–505.

[20] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “Towards an improved
data centre simulation with DCSim,” in Network and Service Manage-
ment (CNSM), 2013 9th International Conference on. IEEE, Oct. 2013,
pp. 364–372.

[21] (2014) DCSim on GitHub. Distributed and Grid Systems (DiGS).
[Online]. Available: https://github.com/digs-uwo/dcsim

[22] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A power
benchmarking framework for network devices,” in Proceedings of the
8th International IFIP-TC 6 Networking Conference. Springer-Verlag,
2009, pp. 795–808.

[23] (2014) The Internet Traffic Archive. [Online]. Available:
http://ita.ee.lbl.gov/

[24] (2014) SPECpower ssj2008. Standard Performance Evaluation
Corporation. [Online]. Available: http://www.spec.org/power ssj2008/


