
STS: Space-Time Scheduling for Coordinating
Self-Organization Network Functions in LTE

Stephen S. Mwanje, Andreas Mitschele-Thiel
Integrated Communications Systems

Techniche Universität Ilmenau
Email: {stephen.mwanje, andreas.mitschele-thiel}@tu-ilmenau.de

Abstract—Self-Organizing Networks (SON) and a number of
SO functions (SFs) have been proposed, e.g. in the LTE standard.
Since SFs operate on the same network, adjusting the same set
of parameters, conflicts arise. Mechanisms are thus required
to resolve or minimize these conflicts. We propose Space-Time
scheduling procedures that allow for separating the execution of
SFs at different space and time points so as to minimize negative
cross effects among the SFs. Using two Q-learning based SFs,
our results show that the combined scheduling in space and time
ensures that SFs learn optimal behaviors that are only due to
their own actions and not the peers’ actions. In doing so, they
maintain good performance even within the shared environment.

Keywords- LTE; SON; Coordination; Conflicts;

I. INTRODUCTION

The number and density of cellular base stations have
increased as a result of increase in desired user throughput
and the subsequent the network traffic. This has resulted
in increases in networks’ capital and operational expenses
as well as their complexity of operation. To handle these
challenges, SON has been proposed ([1] [2]) and a number
of SFs defined, e.g. in the LTE SON standard [3] [4]. A SF in
this case is any network function that can be automated, e.g.
Mobility Robustness Optimization (MRO) or Mobility Load
balancing (MLB). Since SFs operate on the same network
adjusting the same or related parameters, conflicts arise during
their operation. Mechanisms are thus required to resolve or
minimize these conflicts.

In [5] and [6] two ideas were presented for managing SON
conflicts. The first suggests classifying SFs using Functional
Parameter Groups, created in a way that parameters in any one
group contribute to the satisfaction of the same goal(s) and
are decoupled from other groups. However, most parameters
were found to fall under the same group which would lead to
impractical results, as many SFs would need to be implemented
together and possibly concurrently. The second idea introduced
a control plane to decide the activation of triggers and a
coordination plane to process parameter changes proposed by
concurrent SFs. However, the need for control and coordination
rules for every pair of SFs renders the solution impractical for
a large set of SFs. Meanwhile, a coordination function that
separates SFs in time so as to minimize race conditions is
presented in [7]. However, deactivating an SF i throughout
the network at all execution times of the other SF(s) is not
acceptable as it might lead to sub optimal performance in i.

In this paper we present Space-Time Scheduling (STS)
procedures that separate the execution of different SFs in space

and time so as to minimize the cross effects among SFs. We
evaluate the performance of the STS procedures using two Q-
learning (QL) based SON functions published in [8] and [9].

We begin with a discussion of the QL SFs in Section II and
describe our proposed approaches in Section III. In Section IV,
we describe the simulation scenario, the results both with and
without coordination and the envisaged performance limits. We
conclude with a summary and research outlook in section V.

II. Q-LEARNING SON FUNCTIONS

As shown in Fig. 1, each SF acts as a control agent that: 1)
observes the network to evaluate its trigger, 2) takes an action
and 3) gets feedback on the effect of that action at the end
of a monitoring period called the SON interval. The action is
the adjustment or configuration of the associated parameters.
Meanwhile the feedback measures how well or badly the target
metrics have been affected by the action. A rule-based SF
determines the next action based on defined rules. On the
other hand, a learning-based SF explores the actions, using
the feedback to learn the effect of each action. The two SFs
considered in our study are the Q-learning functions for MLB
(QLB) [8] and for MRO (QMRO) [9].

Q-Learning (QL) is a model free Reinforcement learning
technique which, using Temporal Difference (TD) methods can
solve learning problems that do not have explicit behavioral
models. To do so, QL estimates a value function Q, for each
state-action pair as the expected reward of taking an action
a∈A when starting in state x and thereafter acting according
to a fixed policy π. Both QMRO and QLB require actions that
achieve instantaneous results on the set objectives as explained
in the next sections. Each solution maintains a Q-table whose
entries are the Q-values for the corresponding state-action
pairs. Each Q at time i+1 is estimated iteratively using the
TD update method [8] modified for instantaneous rewards as

Qi+1(xi, ai) = (1− β)Qi(xi, ai) + β[ri(xi, ai)] (1)

The learning rate β in range [0,1] defines the influence of new
information on previous knowledge. β=0 implies no learning
while β=1, means considering only the latest information.

Fig. 1. Abstract SON Controller



A. HO Modeling

Both MRO and MLB rely on the handover (HO) procedure.
HOs are triggered using the A3 event [10] which for HO from
serving cell s to the target cell t is

Ft +Ot
s −Hys > Fs +Os

t. (2)

Ft,Fs are respectively the Reference Signal Receive Power
(RSRP) in dBm of the t and s cells, without any offsets. Ots,
Os
t are the Cell Individual Offsets (CIO) in dB respectively

for HO from t to s and from s to t. Hys is the hysteresis in
dB which is uniform for the serving cell. If A3 is fulfilled for
a critical time called Time-to-Trigger (TTT), the UE initiates
HO by sending a measurement report of the values Fs and Ft.

B. QMRO: Q-Learning for MRO

QMRO learns the best Hys-TTT configuration for a given
mobility state in a cell. Since the mobility state observed in one
cell is likely to re-occur in another, the cells learn cooperatively
by sharing the Q-table. The elements of QMRO are [9]:

1) Performance metrics: MRO aims to minimize Radio
Link Failure (RLF) rates without increasing the Ping-pong (PP)
rate. A RLF occurs if the SINR stays below a threshold for the
critical time T310 [10]. The RLF rate (F), either due to too late
HOs (FL) or due to too early HOs (FE), is the rate of RLFs
per second, calculated either for the cell or the entire network.
On the other hand, a PP occurs when a successful HO from
a cell A to B is followed by another successful HO from B
back to A in a time less than PP time. Then the PP rate (P)
is the number of PPs per second in the cell or the network.
We evaluate HO performance in terms of a HO Aggregate
Performance (HOAP) metric defined as

HOAP = w1P + w2FE + w3FL;
∑

(wi) = 1 (3)

We select the weights wi to equally balance effects of early
HOs (P and FE) against effects of late HO (FL). Since for
positive Hys, FE ≈ 0, we set w1 > w2 so that early HOs are
not disproportionately favored. The applied weight vector is
thus w = (0.3, 0.2, 0.5). Note that this selection is subjective
and could be done differently but we assume in general that
such a definition would be the input of operator policy.

2) State-action space: The states capture the average ve-
locity in the cell, which here are defined by the states in Table
I [9]. An action is the (Hys-TTT) tuple each cell signals to all
its users in any state. Specifically, we consider the 49 tuples
defined by Hys = (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) in dB and TTT
= (100, 128, 256, 320, 480, 512, 640) in msec.

3) Rewards: The reward function aims to minimize RLFs,
without increase in PPs and HOs. The reward rx,i is thus the
negative HOAP in (3) evaluated over the SON interval and
applying the same weight vector.

rx,t = −(w1P + w2FE + w3FL); (4)

TABLE I. QMRO MOBILITY STATES

Average
Velocity
(kmph)

0-4 4-8 8-12 12-17 17-22 22-28 28-34 34-41 41-48 48-56 56-65 65-75 75+

State (x) 0 1 2 3 4 5 6 7 8 9 10 11 12

C. QLB: Q-Learning for MLB

MLB seeks to move users from an overloaded cell to a set
T of less loaded neighbor cells (the target cells). From (2),
if Ots is positive and/or Ost is negative, the HO condition is
fulfilled in advance. Then s to t HOs will be executed earlier,
effectively forcing users out of the serving cell.

Assume a cell c has U users and user u∈U requires
Xc,u Physical Resource Blocks (PRBs). With PRB bandwidth
BPRB (=180 KHz [10]) and c bandwidth Bcell, the cell load
ρ is

ρ =

∑
u∈U

Xc,u

Bcell/BPRB
. (5)

ρ can be greater than 1, representing the case when the total
required PRBs exceed the maximum possible PRBs within
Bcell, but c is overloaded when ρ exceeds a threshold ρmax.

The LB algorithm adjusts the generic boundary between
the s and t cells by changing the CIOs according to

all t ∈ T .Ot
s = Ot

s − φ
Os

t = Os
t + φ

(6)

The size of the change in boundary (i.e. the size of φ) depends
on the load status in the serving cell and its neighbors. As such,
different φ values need to be learned for the different load
conditions. Moreover because the load states can reappear in
any cell in the network, QLB also applies cooperative learning
among the cells. The elements of the QLB algorithm are [8]:

1) Performance metrics: When the cell is overloaded, users
are unsatisfied, i.e. they are allocated fewer PRBs resulting in
lower data rates than expected. Due to scheduling variations, a
user is considered unsatisfied (an un-satisfaction event occurs)
only if it’s total achieved data rate in a continuous 1 second
period is less than the Guaranteed Bit rate (GBR). We evaluate
performance in terms of the Number of unsatisfied users (Nus),
which is the average number of un-satisfaction events in the
cell/network within the evaluation period.

2) State-actions space: The size of φ in (6) depends on:
ρs - the load in the serving cell s; ρn - the average load in the
T-cells; and uD - the user distribution in cell s. Each state is
thus a vector [ρs ρn uD], with entries discretized as described
in [8]. Actions are the possible values that φ can take, which
were selected as the set [0.2, 0.4, 0.6, 0.8, 1.0] in dB.

3) Rewards: QLB aims to determine the action φ that
instantaneously removes overload from the serving cell, but
without overloading the target cell(s). As such the rewards, as
set in Table II consider δρs the achieved reduction in ρs and
the extra load created in neighbor-cells. Positive δρs (reduction
in ρs) is rewarded while the reverse is penalized. Since ρn is
expected to increase, only δρn of more than 1 is penalized. In
general, larger δρs receive greater reward, but are accompanied

TABLE II. QLB REWARD FUNCTION

Change in serving cell Load δρs
-2 -1 0 1 2+

change in neighborhood
load, δρn

<1 -2 -1 0 1 2
1+ -3 -2 -1 0 1

Notes:
1. δρs < 0 represents a reduction in serving cell Load δρs and vise versa
2. Extra reward is allocated to encourage large steps that do not overload target cells



by penalties for unrestrained actions taken in LB-states with
high ρn. This allows high load target cells to overload just
enough to propagate the load outwards but not so much as to
counter-productively cause further dissatisfaction after LB.

III. PROPOSED SON COORDINATION APPROACHES

The individual SON solutions assume that each agent acts
separately within the environment i.e. that the observed effects
are caused only by its actions and not by any actions of
other agents. In reality however, multiple agents act in and
observe the same environment, either within a single cell or
as neighbor cells. Without coordination, the agents then learn
based on effects that are due to their actions as well as the
actions of their peers. Coordination provides a mechanism for
accounting for each SFs effects on other SFs or a mechanism of
separating such effects. In the following sections we describe
3 approaches to scheduling the execution of the SFs so as
to minimize these effects: 1) Temporal Separation during
Learning (TSL), Concurrent learning with Spatial Separation
(CSS), and Space-Time Scheduling (STS).

A. Temporal Separation during Learning (TSL)

If two conflicting SFs concurrently take actions in the same
cell, they cannot fully differentiate the effects of their actions
on the cell. For this reason a number of studies have proposed
separation of the SFs such that at any time only one is allowed
to act. However, any SFs will register poor performance during
the time when it is deactivated. For example consider that MLB
is deactivated to wait for MRO which requires time for at least
1000 HOs to obtain adequate statistics on HO metrics. During
this period, even if free resources exist in the neighbor cells,
any affected cell will not take any action even if it experiences
excessive overload. This is even worse if the SF is deactivated
not only in one cell but throughout the whole network.

To counter this, we propose that time separation is executed
only during the learning period, and that all SFs are reactivated
thereafter. Effectively, only 1 SFs learns at a time. Prioritizing
which SF learns first could be an operator policy but it should
in general consider which SF is likely to be more affected by
the other. For MLB and MRO, since MLB adjusts the HO
boundary between cells, it should do so in an environment
of optimum HO performance. As such, QMRO is selected to
learn first as shown in Fig. 2.

The challenge with TSL is that learning is actually executed
concurrently in multiple cells. There is thus a possibility that
the effects observed in one cell are not only due to the actions
taken by that cell but could also have been contributed by
other cells. Moreover this poor performance is made worse
when, after learning, the SF acts concurrently with other SFs
that are also continuously changing parameters. The alternative
approach then is to consider separating SFs in space as we
describe in the next section.

B. Concurrent learning with Spatial Separation (CSS)

In neighbor cells, actions of one SF in one cell can also
affect a similar or different SF in another cell. For example
MRO affects load distribution (MLB) in both the acting cell
as well as its neighbors. In that case, the two conflicting SFs
(similar or not) should not concurrently take actions in two
neighbor cells. Although it is possible that there could be

Fig. 2. TSL between QMRO & QLB Fig. 3. Cell clustering for
spacial scheduling

Algorithm 1: CSS Clustering Algorithm
Require: Seed cell a; sets Xi, i = 1, 2, 3 for the 3 colors
1. add seed a to X1

2. Select c = any neighbor of a with exactly 1 colored neighbor
3. add c to X2

4. Repeat while not all cells colored / allocated
5. for each uncolored cell c with exactly 2 colored neighbors; do
6. given neighbors’ colors as Xi=j , Xi=k
7. Allocate c to third color Xi=l

done

some non conflicting SFs, we only consider the generic case in
which all SFs are assumed to have degree of conflict however
small that may be. Thus, actions are only taken concurrently
in two cells, if there is at least 1 other cell in between the
two. The result is a reuse-3 concurrency structure among the
cells as shown in Fig. 3. To that respect we have designed
a clustering scheme that allows one of any 3 neighbor cells
to act. We assume that the clustering is executed centrally
as part of the network configuration. Essentially each time,
a new eNB is added, the clustering scheme of algorithm 1 is
executed to allocate cluster indices (or colors) to the cells. The
algorithm requires a seed which can be selected randomly or
by the operator. The seed is allocated to the first cluster index
and the subsequent cells colored depending on their neighbors
colors. In the uniform hexagonal grid as here considered, the
clustering scheme achieves the same cell distribution of Fig.
3 among the cells regardless of the applied seed. Each cluster
of cells is allocated a time-frame within a single multi-frame
as shown in Fig 4. Each cell then schedules SFs within the
frame according to its local requirements.

C. Space - Time Scheduling (STS)

The clustering solution above ensures that SFs in any
two cells do not conflict with each other. It is however
possible that SFs conflict with one another within a single
cell, degrading the expected performance. Such degradation is
worse in learning functions since the SFs will learn effects
which are due to the combination of their actions and their
peers actions. To counter the degradations, we combine time
separation and special scheduling thus Space-Time scheduling
(STS). As earlier proposed, we apply time separation only
during the learning. This ensures that SFs learn functions that
are only due to their actions and that after learning no SF under
performs owing to being deactivated as it waits for other SFs.

Each cluster is allocated a time frame as shown in Fig. 4,
such that each cell has 1 out of the 3 frames of the multi-frame
within which to take actions. For example, in Fig. 5, cluster
1 cells a and k always take action in frame 1. Within each
frame, the cells apply a time division scheduling to allocate
time to each of the active SFs. It is imaginable that all cells
in a cluster will have the same SF acting. We however, do



Fig. 4. CSS Multi-frame

Fig. 5. STS Frames in CSS Multi-frame

not consider this. We instead assume the generic case that
cells could have different requirements at different times, so
that each cell schedules SFs according to its requirements. As
such, each cell will determine how to schedule SFs within
its allocated time-slot based on those requirements but also
based on the timing requirements of the different functions.
For example in Frame 1 in Fig. 5, cells a and k respectively
schedule MRO and Coverage-Capacity Optimization (CCO).
Contrarily, cell k schedules multiple SFs (e.g. twice MLB and
once Inter-Cell Interference Coordination (ICIC)) at a time
when cell a schedules CCO.

IV. PERFORMANCE RESULTS AND DISCUSSION

Simulation studies were done using a C++ event based LTE
downlink system level simulator based on software libraries
provided by Alcatel-Lucent Bell Labs Germany and the Uni-
versity of Stuttgarts Institute of Communication Networks and
Computer Engineering [11]. The network scenario consists of
7 eNBs each with 3 cells. A wrap-around is implemented for
reliable interference and SINR calculations. Mobile users that
are initially randomly placed in the coverage area, move with a
random walk mobility model. To implement overload in some
cells, a hot-spot area is created by adding a number of fixed
users in a cell in the middle of the network. Simulations are
repeated over multiple batches, specifically 50 batches each
simulating 200 s of operation. In each batch users are re-
deployed in the same way i.e. mobile users randomly placed
anywhere in the network and fixed users placed in the center
cell. All users are connected to the network throughout the
simulation interval. In case of a RLF, a user is reconnected to
the best available cell as expected for LTE. Further details of
the simulation parameters are given in Table II.

First, we consider the scenario where mobile users move at
an average velocity of 60 kmph (i.e. individually between 36
and 84 kmph), but consider the effect of speed by evaluating
another scenario where users move at 30 kmph. Similarly, we
start with a network having a hot-spot of 50 m in radius but
also evaluate the network with a smaller hot-spot of 20 m. As
mentioned, the performance metric is HOAP for QMRO while
QLB is evaluated in terms of the load ρ and the Number of
Unsatisfied users (Nus).

A. Performance of Q-learning SON Functions

Fig. 6 to 9 show the performance of the QL functions.
We begin with a reference environment to which we apply

TABLE III. SIMULATION PARAMETERS

Parameter value
System bandwidth 10 MHz
Inter-site distance 500 m

Time between snapshots 50 ms
Number of users 420 mobile, 40 static

User velocity variable with mean 30 and 60 Km/h
Mobility Model random walk

Pathloss 128.1 + 37.6 log10[max(dKm, 0.035)]
Shadowing standard deviation, 50m

Decorrelation distance 50m
eNB Tx power 46 dBm

eNB Tx antennas 1 per sector at height = 32 m
UE receive antennas 1 Omni at height = 1.5m

eNB max. antenna gain 15 dBi
UE max. antenna gain 2 dBi

Data rate 512 Kbps

the QL functions, first considering each individually and then
evaluating the case when both act concurrently but without
coordination. Figs. 6 and 7 evaluate the per-cell averages
over an entire batch of 200 s while Figs. 8 and 9 evaluate
the instantaneous performance per cell. In particular Fig. 7
attempts to combine the two plots in Fig. 6 to compare the
steady state performance after learning has been completed.

1) Reference performance(Ref): The Reference Perfor-
mance (denoted by Ref in the results) represents the perfor-
mance of the network when configured with the best manual
settings. Since we can not predict the cells that are likely to be
in overload, Ref is configured with the default CIO of 0dBs,
so that HO triggering depends only on HO parameters - Hys
and TTT. The HO settings on the other hand are obtained
by manually sweeping the Hys-TTT parameter space at the
average velocity of 60 kmph. The best settings, obtained as
[Hys=0.5dB, TTT=0.1s], are then applied to the network as the
reference settings. This is important since we need to evaluate
the performance of QLB based on a network with optimal HO
settings. The resulting performance, for this reference scenario
that does not apply any SFs, represents the starting point that
should be improved by the SFs. In that case, since HO settings
are optimal or nearly optimal, QMRO should achieve similar
or better performance as Ref. Conversely, QLB should by all
means achieve better results as compared to Ref.

2) QMRO performance: QMRO needs to autonomously
learn the HO settings that achieve the same or even better
HO performance as Ref. We observe in Figs. 6 and 8 that
QMRO achieves this. It starts out with poor performance but
improves over time such that the steady state performance is
comparable to Ref as shown in Fig. 7.

3) QLB performance: QLB aims to redistribute load and
minimise user dissatisfaction. We observe in Figs. 6 and 7
that QLB is able to reduce the number of unsatisfied users
by almost 50 %. On a micro scale, Fig. 9 evaluates the
instantaneous load in 3 cells -the overloaded cell 12, a tier one
neighbor 14 and an outer tier two neighbor cel 6. We observe
that QLB re-balances the load distribution by transferring the
load not only to the neighbors (e.g. cell 14) but eventually to
the outer cells (e.g. cell 6).

4) QLH: Uncoordinated operation of QMRO and QMLB:
Without coordination we observe that the performance of both
SFs degrades as denoted by QLH in Figs. 6 and 7. Effectively,
during learning, each SFs observes effects that are due to the
combination of its actions and the peer’s actions. As such,



Fig. 6. Performance of the individual and uncoordinated QL SON Functions

Fig. 7. Steady state performance of QL functions

each SF’s action perceived as optimum for any state is actually
worse than the one that SF would select when acting alone. The
resulting worse performance justifies the need for coordination.

B. Coordinated operation of QLB and QMRO

In Figs. 10 and 11(a), we evaluate the performance for :
1) the independent SFs, QMRO and QLB, when acting alone;
2) the uncoordinated operation QLH ; and 3) the coordinated
operation using each of the three proposed approaches.

1) Coordination with TSL: We observe that with TSL there
is some improvement in LB performance compared to the
case without coordination albeit with more degradation in
HO performance. In general, as explained in Section III-A,
concurrent action among neighbor cells implies that SFs do not
learn independent effects of their actions but also the actions
in neighbor cells. Although the agents may still perform
well when only one SF is active, the performance then gets
degraded when another agent is introduced in the network.

2) Coordination with CSS: By eliminating conflicts among
neighbor cells, CSS improves performance for both SFs, even
while both SFs run concurrently in each cell. This implies
that the cross effects among neighbor cells are actually more
important than those among SFs in a single cell. However,
Concurrent action among SFs still imposes limitations to
the performance gains, since SFs are not learning strictly
independent behavior.

Fig. 8. Instantaneous average HOAP per cell for Ref and QMRO

Fig. 9. QLB instantaneous performance: Load variation in 3 selected cells

3) Coordination with STS: By separating both in space
and time, STS enables SFs to learn the strictly independent
behavior that is free of peers’ actions. This results in better
performance compared to TSL and CSS. However, because
during operation each SF actions are superimposed onto peers’
actions, the performance gains will still not be equivalent to
that when the SF acts independently in the network. In general

Fig. 10. Performance of the QL SFs without and with uncoordinated



a) 50m hotspot, 60kmph b) 20m hotspot, 60kmph c) 50m hotspot, 30kmph

Fig. 11. SFs Performance results for hotspot sizes and mobile velocities respectively

however STS achieves the best performance where the multiple
SFs all need to act concurrently in the network.

It is tempting to assume that some solutions achieve the
same performance owing to the closeness of the lines in Fig.
10. It is evident however from the two dimensional plot in
Fig. 11(a) that no two solutions can always achieve the same
results in both dimensions. Besides the performance is also
highly dependent on the operational scenario as described in
the next section.

C. Discussion on performance limits

1) Scenario dependent performance: We note that the
observed performance in not always fixed but will in general
depend on the specific scenario in the network. For example in
case of a small hotspot (like 20m radius in Fig. 11b), the QLB
gain may be insignificant but owing to extreme degredation,
coordination still achieves good results Similarly if the hotspot
occurs in a lower velocity environment (say 30 kmph in Fig.
11c), coordination may achieve even more reduction in the
number of unsatisfied users by optimally handing over users
to cells where they have better SINR conditions.

2) Sizing the frames: Caution is required to ensure that
SFs are allocated the appropriate lengths of time to execute
appropriately. As such the frame periods should be designed
from the inside outwards; first by establishing the SF requiring
the longest interval so that the frame length is greater or equal
to this interval. Shorter SFs would then either use part of the
frame with some time remaining unused or would be cascaded
one after another if their combined time can fit within the frame
(e.g. cell k in multi frame n+1 in Fig. 5).

V. CONCLUSION AND OUTLOOK

In this work, we have presented our proposed Space-
Time scheduling procedures aimed at minimizing negative
cross effects among SON functions. Considering 2 Q-learning
based SON functions, our results justified and quantified the
degree of conflict that arises when SFs are not coordinated,
and showed that spatial scheduling is able to achieve good
compromise performance. We then showed that combined
scheduling in space and time not only achieves the best
performance but will in some cases achieve better results
than those achieved when SFs act alone in the network. We
concluded with a discussion highlighting the potential limits

to the performance gains and the dependency of the absolute
gains on the specific scenario in the network. Future research
activities will focus on generalizing the proposed approaches
for multiple SON functions. We intend to evaluate the best
approach (STS) in an environment implementing more than 2
SFs to prove that it can easily be scaled to any number of SFs.

ACKNOWLEDGMENT

The authors wish to thank E. Kühn and S. Klein of Alcatel-
Lucent Bell Labs, Germany for support with the simulator
libraries. This work has been financed by DAAD and DFG.

REFERENCES

[1] NGNM, “Use cases related to self organising net-
work, overall description,” May 2007. [Online]. Available:
http://www.ngmn.org/technology.html

[2] SOCRATES, “Self-optimisation and self-configuration in wireless
networks.” [Online]. Available: http://www.fp7-socrates.org/

[3] 3GPP, “Evolved universal terrestrial radio access network (e-utran);
self-configuration and self-optimizing network use cases and solutions,”
TR 36.902 V0.0.1, Tech. Rep., December 2009. [Online]. Available:
http://www.3gpp.org

[4] SOCRATES, “Deliverable d2.1: Use cases for self-organising networks,
eu strep socrates,” EU STREP SOCRATES (INFSO-ICT-216284),
Tech. Rep., March 2008. [Online]. Available: http://www.fp7-
socrates.org/?q=node/10

[5] T. Jansen, M. Amirijoo, U. Türke, L. Jorguseski, K. Zetterberg,
R. Nascimento, L. C. Schmelz, J. Turk, and I. Balan, “Embedding mul-
tiple self-organisation functionalities in future radio access networks,”
in proc. 69th VTC, Barcelona, Spain, 2009.

[6] SOCRATES, “Deliverable d5.9: Final report on self-organisation and
its implications in wireless access networks,” EU STREP SOCRATES
(INFSO-ICT-216284), Tech. Rep., December 2010.

[7] K. Tsagkaris, N. Koutsouris, P. Demestichas, R. Combes, and Z. Alt-
man, “Son coordination in a unified management framework,” in proc.
77th VTC, Dresden, Germany, 2013.

[8] S. S. Mwanje and A. Mitschele-Thiel, “A q-learning strategy for lte
mobility load balancing.” in PIMRC, 2013, pp. 2154–2158.

[9] S. Mwanje and A. Mitschele-Thiel, “Cooperative q-learning for lte self-
organized handover optimization,” in IEEE 19th International Sym-
posium on Computing and Communications (ISCC 2014), Madeira,
Portugal, May 2014.

[10] 3GPP, “E-utra radio resource control (rrc) protocol specification (release
8),” 3GPP TS 36.331 V8.16.0, Tech. Rep., December 2011.

[11] Institute of Communication Networks and Computer Engineering
(IKR), “Ikr simulation and emulation library.” [Online]. Available:
http://www.ikr.uni-stuttgart.de/en/Content/IKRSimLib/


