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Abstract—While real-time service assurance is critical for
emerging telecom cloud services, understanding and predicting
performance metrics for such services is hard. In this paper,
we pursue an approach based upon statistical learning whereby
the behavior of the target system is learned from observations.
We use methods that learn from device statistics and predict
metrics for services running on these devices. Specifically, we
collect statistics from a Linux kernel of a server machine and
predict client-side metrics for a video-streaming service (VLC).
The fact that we collect thousands of kernel variables, while
omitting service instrumentation, makes our approach service-
independent and unique. While our current lab configuration is
simple, our results, gained through extensive experimentation,
prove the feasibility of accurately predicting client-side metrics,
such as video frame rates and RTP packet rates, often within
10-15% error (NMAE), also under high computational load and
across traces from different scenarios.

Keywords—Quality of service, cloud computing, network ana-
lytics, statistical learning, machine learning, video streaming.

I. INTRODUCTION

Next-generation telecom and internet services will execute
on telecom clouds, which combine the flexibility of today’s
computing clouds with the service quality of telecom systems.
Real-time service assurance will be critical for such environ-
ments, and real-time prediction of service-level metrics will be
a key capability to achieve service assurance.

Understanding and predicting the performance of telecom
cloud services is intrinsically hard. Such services involve large
and complex software systems that run on general-purpose
platforms and operating systems, which do not provide real-
time guarantees. One approach to understand the performance
of cloud services is to model the various layers of hardware
and software using analytical models and to develop an overall
model of the system for end-to-end predictions. Such an ap-
proach requires thorough understanding of the functionalities
of various components and their interactions, and the resulting
system model becomes highly complex.

An alternative approach, which we pursue in this work, is
based upon statistical learning whereby the behaviour of the
target system is learned from observations. In such a case, a
large amount of observational data is needed, but no detailed
knowledge about the system components and their interactions
is required.

The problem of predicting metrics in cloud and network
environments has been studied for some time, for instance, for
the purpose of predicting TCP throughput rates, the probability
of device failures, and the response times of web applications
[1]–[4]. Common to all these works is that a small number
(usually up to a dozen) of observation variables, also called
features, are selected for predicting a specific metric. Our
approach, in contrast, considers all available features (which
can be thousands). Also, in our case, feature selection is not
guided by the specific metric we want to predict, which makes
our approach more general.

The paper contains results from our work with using
statistics from a Linux kernel of a server machine in order to
predict service-level metrics on a client for a video-streaming
service (VLC) [5]. The results are based upon extensive
experimentation where we run VLC servers under various load
patterns on a laboratory testbed and collect traces with server
statistics and client-side metrics. We apply statistical learning
methods on these traces, compute models that predict service-
level metrics, and evaluate the model accuracies. (Prediction
here relates to estimating metrics for current times based on
current and past measurements.)

We consider this work as a first step towards engineering
a generic functionality for real-time prediction of service-
level metrics from device-level statistics. In fact, the current
experimental setup is simple (a server machine connected to
a client machine), and we measure under idealised conditions
(no network congestion, light load on the client machine). Even
such a system though has a high complexity when studied
at the operating-system level, and a mapping from operating-
system level to service-level metrics is far from trivial. Our
results show though that this can be done using known methods
and technologies.

This paper makes the following contributions. First, we
propose and evaluate a novel method for predicting service-
level metrics. The method is service independent in the
sense that it is designed to work with different services
without special configuration or adaptation, and it does not
require server-side service-level instrumentation. The method
not only predicts metrics for a single execution (trace), but
also for a range of realistic executions. Second, our method
is based on a simple system model. Although it assumes
time synchronisation among system components, the learning
method we are using does not consider time dependencies.
As the evaluation shows, such a simple system model can



be sufficiently accurate. Third, our results, gained through
extensive experimentation, prove the feasibility of accurately
predicting client-side metrics, such as video frame rates and
RTP packet rates, often within 10-15% (normalized mean
absolute error), also under high computational load (CPU
utilisation > 90%) and across traces from different server load
scenarios. We evaluate the accuracy of linear methods and
show that non-linear, tree-based methods generally improve the
results. Further, we show that preprocessing of kernel statistics
is needed and can improve prediction accuracies. We have
made the traces from this work available at [6].

The remaining part of this paper is organised as follows.
Section II describes the problem setting. Section III highlights
concepts from statistical learning used in our work. Section
IV discusses the specific statistics and metrics for our work.
Section V gives details about the testbed and the experiments.
Section VI includes the evaluation of the model accuracies.
Section VII compares this work with earlier results. Section
VIII concludes this paper and outlines future work.

II. PROBLEM SETTING

Figure 1 gives the basic configuration of the system under
investigation. It consists of a server that is connected to a
client machine via a network. The client accesses a service S,
which runs on the server. In this work, we consider a video-on-
demand (VoD) service. We are interested in the device statistics
X on the server during the time that the client accesses the
service. In this setting, device statistics refer to metrics on the
operating-system level, for instance, the number of running
processes, the rate of context switches, the number of active
TCP connections, etc. In contrast, service-level metrics Y on
the client side refer to statistics on the application level, for
example, video frame rates and RTP packet rates.

The metrics X and Y evolve over time, influenced, e.g.,
by the load on the server, operating system dynamics, etc.
Assuming a global clock that can be read on both the client
and the server, we can model the evolution of the metrics X
and Y as time series {Xt}t, {Yt}t, and {(Xt, Yt)}t.

Our objective is to predict a service-level metric Yti at
time ti on the client side, based on knowing the server metrics
Xti . Using the method of statistical learning, the problem is
finding a learning model M : Xt → Ŷt, such that Ŷt closely
approximates Yt for a given Xt. Our problem formulation
assumes that a sample (Xt, Yt) is drawn uniformly at random
from a joint distribution (X,Y ), and therefore, M does not
change over time.

We further assume that the relationship between X and
Y does not depend on the network state and device statistics
on the client machine. In practical terms, this means that the
network and client machine are lightly loaded. (We are aware
that these assumptions do not hold for many real systems, and
we plan on relaxing them in future work. Previous research
has shown how network measurements can be used to predict
client-side metrics [7]; therefore, including this aspect would
not necessarily add to the contributions of this work.)

III. BACKGROUND: STATISTICAL LEARNING

In this paper, we are assessing four different regression
methods to solve the problem stated in Section II. First, we

Fig. 1. System configuration for predicting service-level metrics

apply (basic) linear regression, a simple method that serves
as a baseline. It models the relationship between X and Y
as a linear function Ŷ =

∑p
j=0Xjβj whereby X0 = 1;

Xj , j = 1..p are the features of the feature space X; and
βj , j = 0..p are the model coefficients. The coefficients are
computed such that the sum of the squares of the residuals
(RSS) are minimised [8]. The solution can be obtained using
QR decomposition or a gradient descent method, for instance
[9]. (QR decomposition has a computational complexity of
O(Np2), whereby N is the number of samples.)

Second, we use the Lasso regression method, which is a
variant of linear regression and mitigates overfitting in case of
a high-dimensional feature space. Lasso regression solves the
above linear regression problem with the additional constraint∑

j |βj | ≤ λ, where λ is a regularization parameter. The
solution to the Lasso regression problem tends to yield a model
with smaller coefficients βj (which can even be zero) than the
basic linear regression [10].

In addition to the above linear methods, we apply two
tree-based methods: regression tree and random forest. The
regression tree method computes region boundaries instead
of linear coefficients, with the same objective of minimising
RSS. It recursively partitions the feature spaces into regions
R1, R2, ..., RM . For a given X , Y is estimated as Ŷ =∑

i∈Rk

Yi

|Rk| where Rk is the region that X falls into, |Rk|
is the number of training samples in Rk, and i is the index
of those samples. The regions are constructed using a greedy
algorithm, whereby during each construction step of a selected
region, a feature and a threshold are identified that fulfil the
optimisation criterium [8]. (The method has a computational
complexity of O(N2p.))

Finally, random forest is an ensemble method. Each es-
timated value of Y is an average of predictions from a
large number of regression trees [11]. Each of these trees is
constructed using a different training set, and each construction
step uses a randomised reduced feature set [8].

IV. DEVICE STATISTICS AND SERVICE-LEVEL METRICS

A. Device statistics: the feature space X

We obtain device statistics X from the kernel of the Linux
operating system that runs on the server (see Figure 1). The
Linux kernel is the core of the Linux operating system. It
gives applications access to resources, such as CPU, memory,
and network, and it schedules requests to those resources. To
access the kernel data structures, we use procfs [12].

Procfs is based on the Unix file system abstraction. There-
fore, kernel data can be accessed as if it was structured in



directories and stored in files. For every process, for instance,
procfs includes a directory named by the process identifier,
and this directory contains invocation parameters, environment
variables, status variables, etc., about that particular process.

We rely on two types of feature vectors and feature sets,
which are populated using procfs calls. We call these feature
sets Xproc and Xsar.

The feature set Xproc is based upon features extracted from
the leafs of the /proc directory. We include only features with a
numerical value and a static structure (which does not change
over time). For instance, the amount of free memory has a
static structure, while the list of running process identifiers
does not, because the length of that list changes over time.
Using static structures ensures that the same index value of
two feature vectors always corresponds to the same feature. For
example, the index 153 may consistently represent the number
of active TCP connections. Constructing the feature set in this
way, we arrive at a set of some 4000 features. When running
experiments on the testbed, a script reads out Xproc at the
configurable rate. The script takes about 300-400 milliseconds
to execute.

The feature set Xsar is constructed using System Activity
Report (SAR), a popular open source Linux tool [13]. Reading
data through procfs, SAR computes various system metrics
over a configurable interval. Examples of such metrics are CPU
core utilization, memory and swap space utilization, disk I/O
statistics, and network statistics. For the feature set Xsar, we
include only numeric features returned by the SAR tool, and
we end up with a set size of about 840.

While Xproc and Xsar share many features, there is a
major difference between these feature sets in that Xproc

contains many operating system counters, but Xsar does not.
Instead, Xsar includes many features that are either derivatives
of Xproc features (e.g., the current rate of interrupts) or ag-
gregates of such features (e.g., average CPU core utilization).
We chose to experiment with both feature sets, using Xproc

because it contains a large number of features whose values
are kernel data and using Xsar as an example of a set of
preprocessed features that does not include counters.

After collecting the samples, we perform a reduction of
the feature set Xproc or Xsar. We remove those features that
have constant values across all samples, in order to reduce
the time required for model computation. Further, some linear
regression methods, like those relying on QR decomposition,
require that the feature vectors are linearly independent. In
such a case, we reduce the feature set in such a way that
the feature vectors become linearly independent [9]. In our
work, we also applied Principal Component Analysis (PCA)
to create a feature space with a small number of dimensions.
Since we did not experience a significant reduction in model
computation time, and the model accuracy did not improve,
we did not include PCA in our prediction method and do not
report specific results in this paper.

B. Service-level metrics Y for a video-on-demand service

For this work, we chose the VLC media player software to
provide a video-on-demand service on our testbed, for which
we predict service-level metrics.

Fig. 2. Testbed setup for creating device statistics X and service-level metrics
Y under different load patterns.

The service-level metrics we are considering are measured
on the client device (see Figure 1). During an experiment, we
capture the following three metrics.

1) Video frame rate (frames/sec): the number of displayed
video frames per time unit;

2) Audio buffer rate (buffers/sec): the number of played
audio buffers per time unit;

3) RTP packet rate (packets/sec): the number of RTP
packets received per time unit.

These metrics are not directly measured, but computed
from VLC events like the display of a video frame at the
client’s display unit, etc. We have instrumented the VLC
software to capture these events.

V. TESTBED AND EXPERIMENTATION

In this section, we describe the hardware and software
setup, how we perform the experiments, how we generate load,
and how we obtain traces for model computation.

A. The testbed

We run the experiments on our lab testbed at KTH,
which includes some 60 rack-based (physical) servers that are
interconnected by Ethernet switches. The machines we use in
this work are Dell PowerEdge R715 2U rack servers, each
with 64 GB RAM, two 12-core AMD Opteron processors, a
500 GB hard disk, and a 1 Gb network controller.

The basic setup for experimentation includes three physical
machines, namely, a server machine that provides the video-on-
demand service, a client machine that runs a video-on-demand
session, and a load generator that creates the aggregate demand
of a set of VoD clients. All machines run Ubuntu 12.04 LTS,
and their clocks are synchronised through NTP [14]. Figure
2 shows the components that execute on these machines and
their interactions during experiments.

The server machine runs one or more VLC servers (version
2.1.3). Each VLC server is configured for video-on-demand
service. It transcodes the video and audio streams, and streams
the videos over the network to VoD clients. The sensor on



the server machine periodically reads out the vector X in
form of Xproc or Xsar (SAR version 10.0.3), as described
in Section IV-A. At the start of every second, the sensor reads
X and saves it on the local X trace file, together with a
timestamp. The server machine is populated with the ten most
popular YouTube videos in 2013. The client machine runs
a VLC client, whose sensor extracts service-level events. At
the start of every second, the sensor collects the events from
the last second, computes the Y metrics, and writes them to
the local Y trace file, together with a timestamp. The load
generator machine dynamically spawns and terminates VLC
clients, depending on the specific load pattern that is executed
during an experiment.

An experimental run lasts three hours, except the run for
creating the periodic-load trace (see below), which lasts 14
hours. At the beginning of a run, the VLC client on the client
machine sends a request for playing a specific video to a VLC
server, which is selected uniformly at random among the VLC
servers on the server machine. Once the video has played,
the VLC client sends a new request for the same video to a
random VLC server. Also, at the beginning of the run, the load
generator starts sending requests according to the selected load
pattern, and the sensors on the server and client machines are
started. During an experimental run, the server responds to the
incoming requests from the load generator.

Depending on the selected load pattern, the load and the
utilisation of the server machine can vary significantly.

B. Generating load patterns on the testbed

We have built a load generator that dynamically controls
the number of active VoD sessions on the testbed by spawning
and terminating VLC clients (Figure 2). When a client is
created, it sends a request for a random video to a random
VLC server on the server machine. The VLC server then starts
streaming the video content to the client. Once the video ends,
the client issues a new request, until it is terminated by the load
generator. The load generator currently supports the following
load patterns.

1) Constant-load pattern: the load generator creates 25
clients, which remain active during the experiment.

2) Linearly-increasing-load pattern: starting with 0 clients,
the load generator creates 5 additional clients every 1500
seconds, until the number of clients reaches 50.

3) Poisson-load pattern: the load generator starts clients
following a Poisson process with an arrival rate of 15
clients/minute. It terminates a client after an exponentially
distributed holding time with an average of one minute.

4) Periodic-load pattern: the load generator starts clients
following a Poisson process with an arrival rate that starts
at 30 clients/minute and changes according to a sinusoid
function with a period of 60 minutes and an amplitude of
20 clients/minute. The load generator terminates a client after
an exponentially distributed holding time with an average one
minute.

5) Flashcrowd-load pattern: the load generator starts and
terminates clients according to a flash-crowd model described
in [15]. The creation of clients follows a Poisson process with

Fig. 3. Average CPU utilisation across cores versus the number of concurrent
VoD streaming sessions

an arrival rate that starts at 5 clients/minute and peaks at flash
events, which are randomly created at a rate of 10 events/hour.
At each flash event, the arrival rate linearly increases 10-fold
to 50 clients/minute within one minute, it sustains this level
for one minute, and then linearly decreases to 5 clients/minute
within 4 minutes. The load generator terminates a client after
an exponentially distributed holding time with an average of
one minute.

The above load patterns allow us to perform experiments
that cover the full range of CPU utilisation of the server
machine. The server on our testbed is saturated when it
concurrently serves 50 VoD streams. (At 50 concurrent VoD
streams, the required bandwidth between the server machine
and the load generator machine is about 117 Mbps, which is
much lower than the capacity of the switched connection of
1Gbps.) Recall that each audio and video stream is transcoded
on the server, which is CPU intensive. Figure 3 shows the
average CPU utilisation (i.e., the utilisation across the 24 cores
of the machine) as function of the number of concurrent VoD
streams from the server machine. The measurements have been
generated based on the constant-load patterns. Each point on
the graph is an average of three measurements during a ten-
second interval.

VI. EVALUATION OF THE PREDICTION MODELS

In this section, we collect traces produced on our testbed
under different load patterns, we apply well-known statistical
learning methods on the traces to produce models for predict-
ing service-level metrics, and we evaluate these models against
test data from the traces. Then, we draw conclusions on the
accuracies of the models for different traces, device statistics,
service-level metrics, and learning methods. We have made the
traces from this work available at [6].

A. Evaluation method

To evaluate a model, we apply the validation set approach,
whereby we (1) randomly assign each sample (Xt, Yt) of a
trace to either a training set or a test set, (2) compute the
models from the training set, and (3) evaluate the models using
the test set [8]. The training set contains 70% of the samples,
and the test set 30%. The third evaluation is an exception of
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Fig. 4. The left side shows time series of measurements versus model predictions for video frame rate, audio buffer rate, and RTP packet rate, while the right
side shows the sample distribution. The measurements are taken from the trace with the periodic load pattern.

this procedure in that we obtain the training set from one trace
and the test set from another trace.

We use two accuracy measures to evaluate the learning
models. The first is the Normalized Mean Absolute Error
(NMAE), computed as 1

ȳ ( 1
m

∑m
i=1 |yi − ŷi|), whereby ŷi is

the model prediction for the measured service-level metric yi,
and ȳ is the average of the samples yi of the test set, which
is of size m. The second measure is the Normalized 90th

percentile of prediction errors (N90thE), computed as the
90th percentile of the prediction errors |yi − ŷi|, normalized
by ȳ. We use normalized accuracy measures to better compare
model accuracies across service-level metrics.

We use R version 3.1.0 for producing and evaluating the
learning models [16]. The tool includes implementations of
many regression methods in forms of R packages. In this
work, we make use of the following R packages: [17] for
linear regression using QR decomposition, [18] version 1.9-
8 for Lasso regression using coordinate descent (we use

the regularlization parameter of 0.02), [19] version 4.1-8 for
regression tree, and [20] version 4.6-7 for random forest (we
use 200 trees).

B. Evaluation results

Figure 4 gives a first impression of our predictions of the
three service-level metrics, namely, video frame rate, audio
buffer rate, and RTP packet rate. The data is taken from the
test set of the periodic-load trace that has been produced with
the device statistics Xsar. The right side shows the sample
distribution of the service-level metrics, the left side shows
the time series of the metrics, and the model predictions for
two learning methods, namely, linear regression and regression
tree. (Note that the time series show only 1000 random samples
from the test set, to make reading the plots easier.)

We observe that, for the video frame rate and the RTP
packet rate (4(a), 4(b), 4(g) and 4(h)), the evolution of the
metrics is periodic, with the same period as the load pattern.



Also, the model predictions from both linear regression and
regression tree seem to follow the measurements well.

For the audio buffer rate (4(d) and 4(e)), a periodic pat-
tern of measurements or predictions is not visually apparent
(although a frequency analysis using Fourier transform shows
its presence). In addition, the model predictions from linear
regression have large errors, while the predictions from re-
gression tree are more accurate. (See further experiments and
discussion below.)

The video and audio buffer rates (4(c) and 4(f)) show
clearly a bi-modal distribution, which is not the case for the
RTP packet rate (4(i)). Inspecting the VLC source code on the
client side explains the bi-modal distribution: in the case of a
missing video frame at play out time, VLC displays the last
frame at 12.5 frames/sec; in case of a missing audio buffer, no
buffer is played out.

We have performed four rounds of evaluation, during which
we determine model accuracies for predicting the three above
mentioned service-level metrics. Each evaluation allows us to
answer a specific set of questions.

The first evaluation addresses the questions: how accurate
are model predictions for various regression methods, and how
does the choice of device statistics, Xsar or Xproc, influence
the accuracy? The evaluation is performed on the periodic-load
trace.

Table I shows the results. First, Xsar consistently offers
better predictions than Xproc across service-level metrics and
regression methods. We believe this is due to the fact that
Xproc contains many counters, which is not the case for Xsar

(see Section IV-A).

Second, for Xsar, the linear methods produce prediction
errors (NMAE) below 20% for the video frame rate and
RTP packet rate, while the corresponding figures for the
audio buffer rate are more than 40%. The non-linear methods
produce NMAE values below 20% and N90thE values below
42% across all service-level metrics. Further, random forest
consistently outperforms regression tree for both Xproc and
Xsar (while the differences are less prominent in case of
Xproc). This indicates that the prediction errors from regres-
sion tree are the result of overfitting, which random forest
mitigates.

We conclude that (1) random forest with Xsar gives the
best results; we can predict all service-level metrics with
NMAE at most 15% and N90thE at most 27%; (2) as
expected, non-linear methods perform significantly better than
linear methods; (3) if a 20% error margin is acceptable, a linear
method for Xsar can be used for predicting video frame rate
and RTP packet rate.

In the remaining of the paper, we give results only for
Xsar, the linear regression method, and the random forest
method. Linear regression is a representative of a linear
method, random forest of a nonlinear method.

The second evaluation addresses the questions: how ac-
curate are model predictions for various load patterns (i.e.,
traces), and how does the choice of a particular regression
method (linear regression and random forest) influence the
accuracy?

Table II shows the results of the second evaluation. First,
we observe that the prediction error is positively correlated
with the variation in load, across all service-level metrics and
for both linear regression and random forest. For instance,
the constant-load trace has the lowest variation in load and
the lowest prediction error, whereas the flashcrowd-load trace
has the highest variation in load and the highest prediction
error. Second, for all service-level metrics, random forest
consistently outperforms linear regression, with NMAE at
most 11% and N90thE at most 26%.

Our conclusions from the second evaluation are consistent
with those of the first evaluation: a tree-based method gives
better results than a linear method; for predicting the video
frame rate and the RTP packet rate, both a tree-based method
or a linear method provide good prediction accuracy, while,
for predicting the audio buffer rate, only a tree-based method
is suitable. This means that the suitability of the investigated
models is consistent across load patterns (or traces).

The third evaluation addresses the questions: can a model
be trained on one load pattern and then used to predict
service-level metrics on a different load pattern? If true, which
regression method should be used? This issue is important,
because it relates to the deeper question of whether one can
learn the system behaviour for load patterns that the system
has not seen before.

Table III shows the prediction accuracies of linear regres-
sion and random forest for the three service-level metrics.
The models are learned from the periodic-load trace and are
evaluated using the test sets from the four other traces.

We observe that the model learned from the periodic-
load trace, with either linear regression or random forest, can
predict the video frame rate and RTP packet rate from all
other traces with NMAE at most 16% and N90thE at most
35%. Additionally, we observe that random forest consistently
outperforms linear regression, which confirms the findings
from the first and second evaluations. From this, we conclude
that the relationship between the device statistics and service-
level metrics is fundamentally nonlinear.

Comparing Table III with Table II, we see that a model
learned from the periodic-load trace and evaluated against
a different trace has a higher prediction error than a model
learned from one trace and evaluated against the same trace.
For instance, the model learned with linear regression from
the flashcrowd-load trace in Table II has an NMAE value of
9% for the video frame rate, while the corresponding NMAE
value in Table III is 14%.

The key lesson from this evaluation is that it is possible
to train a model on one load pattern and then use the same
model to predict service-level metrics for a different pattern.
The evaluation shows this is the case for learning from the
periodic-load trace and predicting the video frame rate and
the RTP packet rate for other traces. Unfortunately, this is
not the case for the audio buffer rate. We currently cannot
explain the high prediction error of the audio buffer rate for
the flashcrowd-load trace in Table III.

The fourth evaluation addresses the question: can our
method be used to accurately predict service-level metrics un-
der high computational load? It is well known that performance



Device statistics Regression method Video frame rate Audio buffer rate RTP packet rate
NMAE(%) N90thE(%) NMAE(%) N90thE(%) NMAE(%) N90thE(%)

Xsar

Linear regression 12 28 41 85 15 30
Lasso regression 16 29 51 85 17 31
Regression tree 11 28 19 42 19 41
Random forest 6 17 0.94 5.8 15 27

Xproc

Linear regression 26 71 59 118 39 69
Lasso regression 23 44 63 102 35 66
Regression tree 23 44 61 103 36 68
Random forest 22 44 60 103 34 68

TABLE I. MODEL ACCURACIES FOR Xsar AND Xproc . FOR THE EVALUATION OF VARIOUS MODELS, THE TRAINING AND TEST SETS ARE TAKEN FROM
THE PERIODIC-LOAD TRACE.

Regression method Trace Video frame rate Audio buffer rate RTP packet rate
NMAE(%) N90thE (%) NMAE(%) N90thE (%) NMAE(%) N90thE (%)

Linear regression

Constant-load trace 0.47 1.0 0.62 1.1 12 24
Poisson-load trace 3 6.1 3.6 6 12 26

Linearly-increasing-load trace 6.1 18 7.0 15 13 24
Flashcrowd-load trace 9 22 28 63 14 30

Random forest

Constant-load trace 0.34 0.6 0.57 0.81 10 23
Poisson-load trace 2.0 4.1 1.3 1 11 24

Linearly-increasing-load trace 3.4 12 0.69 0.89 11 24
Flashcrowd-load trace 6.0 17 4.4 10 11 26

TABLE II. MODEL ACCURACIES FOR DIFFERENT TRACES, FOR Xsar . FOR THE EVALUATION OF THE LINEAR REGRESSION OR RANDOM FOREST
MODELS, THE TRAINING AND TEST SETS ARE TAKEN FROM THE SAME TRACE.

Regression method Trace Video frame rate Audio buffer rate RTP packet rate
NMAE(%) N90thE (%) NMAE(%) N90thE (%) NMAE(%) N90thE (%)

Linear regression

Constant-load trace 16 24 19 37 14 27
Poisson-load trace 13 20 15 28 13 27

Linearly-increasing-load trace 14 34 28 62 14 29
Flashcrowd-load trace 14 30 45 85 15 32

Random forest

Constant-load trace 9.0 10 4 7 13 28
Poisson-load trace 10 16 12 23 14 30

Linearly-increasing-load trace 13 27 10 38 14 31
Flashcrowd-load trace 15 34 45 103 16 35

TABLE III. MODEL ACCURACIES FOR DIFFERENT TRACES, FOR Xsar . FOR THE EVALUATION OF THE LINEAR REGRESSION OR RANDOM FOREST
MODELS, THE TRAINING SET IS TAKEN FROM THE PERIODIC-LOAD TRACE, WHILE THE TEST SET IS TAKEN FROM ANOTHER TRACE.

predictions for high load scenarios is a hard problem. We
consider the system to be under high load when the average
CPU core utilisation exceeds 90%.

Three of our traces contain samples collected under high
load: the linearly-increasing-load trace, the periodic-load trace,
and the flash-crowd load trace. From each of these traces, we
create a test set with those samples that have been collected
under high load. We evaluate the random forest model that
we have trained using the (complete) training set from the
periodic-load trace against the three test sets. The results (for
video frame rate and RTP packet rate) show NMAE values
of at most 14.7%, 19.8%, and 12% for the the periodic-load
trace, linearly-increasing trace, and the flashcrowd-load trace,
respectively.

We conclude that our approach allows for predicting video
frame rate and RTP packet rate under high-load conditions.
In fact, there is no significant difference in prediction accu-
racy between samples collected under high load and samples
collected under any load (see Tables I and III).

VII. RELATED WORK

While our prediction method aims to be service indepen-
dent, other works on predicting service-level metrics that we
are aware of develop methods that are targeted towards a

specific service and metric. Important examples of such works
in the context of cloud and statistical learning are [4], [21]–
[23]. In contrast to our method, these works consider a small
set (less than 10) of carefully selected features to learn from.

Other works like [24]–[27] use statistical learning models
to estimate quality-of-experience metrics of a multimedia
service. A review of such metrics can be found in [28].

The authors in [29] predict quality-of-service metrics for
IPTV using decision trees. The features are selected by a
domain expert. In [7], the authors present an approach for
learning from a set of network-level metrics, e.g., delay, loss,
and jitter measurements, to estimate the quality-of-service
metrics for IPTV streaming clients. The authors conclude that
their prediction method is accurate, as long as the packet loss
ratio is low.

Predicting service-level metrics using statistical learning
has been investigated in other contexts. For instance, the au-
thors in [3] predict the effects of ageing software components
using various learning techniques.

VIII. DISCUSSION

In this paper, we proposed a novel method for predicting
service-level metrics. The method is service independent and
does not requires server-side service-level instrumentation. The



cost of service independence is a very large feature set, which
requires a significantly larger number of samples for learning
and significantly more computational resources than a small
feature set would.

We evaluated two feature sets obtained from known inter-
faces to kernel data: the proc file system, from which Xproc is
obtained, and the SAR interface, from which Xsar is gained.
SAR itself is implemented using procfs. It contains no counters
but aggregate statistics instead. We believe that this difference
is the primary reason why the models computed with Xsar are
significantly more accurate than those computed with Xproc.

Our evaluation, which includes linear and nonlinear sta-
tistical learning methods applied to various traces, shows that
accurate prediction of service-level metrics is possible in the
following sense. For linear methods, the prediction error is
below 20% (NMAE values, see Section VI); for random forest,
which is a nonlinear ensemble method, the error reduces
to below 15%. This reduction in error comes at the cost
of computational overhead, which increases by a factor of
60 when changing from linear regression to random forest.
Note that the error figures are obtained from executions with
significant periods of high load (CPU utilisation > 90%).

Our results further show that learning from statistics of
one execution and predicting metrics for another execution
is possible, although generally difficult. The difficulties stem
from the fact that, under identical load conditions, there can
be a large number of possible kernel states and thus a large
number of feature vectors X associated with these states. For
example, the utilization of a CPU core that runs a specific
video server can appear in one feature during a first execution
and in a different feature during a second execution, due to
operating system scheduling. The same applies, for instance,
to the interrupt vector of a video server. Consequently, in
order to learn the relationship between X and Y for all
possible executions of the system, learning must consider all
permutations of such features. This however is likely to result
in a state space that is infeasible to sample due to its size. One
approach to mitigate this issue is to aggregate (e.g., summing
up) features that belong to the same group, e.g., the utilisation
of various CPU cores or the rate of various interrupts. Domain
knowledge can be applied to manually identify these groups,
or an automatic procedure can be attempted.

Figures 4(c) and 4(f) suggest that the video frame rate and
the audio buffer rate have bimodal distributions. We could
therefore formulate the task of predicting these two metrics
as a classification problem rather than as a regression problem
(as done in this paper). Since our objective with this work
has been to develop a generic method, rather than a method
targeting one or more specific metrics, we decided to apply
regression for predicting all metrics.

The models developed in this work are applicable beyond
metrics prediction, for instance for model inference. Well-
known methods are available for linear models and regression
tree methods to identify the features in X that significantly
impact a specific metric Y [8]. This can be particularly
beneficial in our case, since our method relies on a very large
feature set.

Recall that the methods used in this work do not exploit
the fact that the samples (Xt, Yt), which are obtained from

measurements, are in fact points in a time series, rather
than drawn from a general joint distribution (X,Y ). Our
evaluation shows that such a simplification still gives accurate
predictions in many cases. It will be interesting to investigate,
to which extent model accuracy can be improved when time
dependencies are explicitly taken into account. One approach
would be to expand the feature set X with derivatives of its
features. Another option is to include for a feature not only
its current value, but an array of values from a given time
window.

We have begun extending our testbed and our prediction
method towards a more realistic cloud networking environ-
ment. Our plans include introducing a virtualisation layer
between operating system and service, distributing the service
components across several machines, and including statistics
from network devices for metric prediction. Obviously, such
extensions to the system make the learning problem more
complex, and mastering this complexity is key to our research
agenda.
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