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Abstract— In network virtualization environments (NVEs), the
physical infrastructure is shared among different users (or service
providers) who create multiple virtual networks (VNs). As part of
VN provisioning, virtual routers (VRs) are created inside physical
routers supporting virtualization. Currently, the management of
NVEs is mostly realized by proprietary solutions. Heterogeneous
NVEs (i.e., with different equipment and technologies) are diffi-
cult to manage due to the lack of standardized management solu-
tions. As a first step to achieve management interoperability, good
performance, and high scalability, we implemented, evaluated,
and compared four management interfaces for physical routers
that host virtual ones. The interfaces are based on SNMP (v2c and
v3), NETCONF, and RESTful Web Services, and are designed to
perform three basic VR management operations: VR creation,
VR retrieval, and VR removal. We evaluate these interfaces
with regard to the following metrics: response time, CPU time,
memory consumption, and network usage. Results show that the
SNMPv2c interface is the most suitable one for small NVEs
without strict security requirements and NETCONF is the best
choice to compose a management interface to be deployed in
more realistic scenarios, where security and scalability are major
concerns.

I. INTRODUCTION

Network virtualization emerged as an alternative to sup-
port the development of new network architectures and over-
come Internet ossification [1]. In a network virtualization
environment (NVE), the underlying physical infrastructure,
called substrate, is shared among different users (or service
providers) who create multiple virtual networks (VNs), each
one employing independent protocols, forwarding schemes,
and policies. Unlike server/host virtualization, which usually
happens only at the edge nodes of a networked environment,
network virtualization takes place in the core of the network
[2]. Thus, virtual routers (VRs) are created and hosted within
physical routers, enabling multiple independent networks to
operate simultaneously on a single physical infrastructure [3].

Current NVEs are mostly manually operated through pro-
prietary command line interfaces (CLIs) or proprietary man-
agement tools. The management of NVEs built on top of
heterogeneous physical substrates (i.e., with different equip-
ment and technologies) poses difficulties to NVE operators
because several independent tools are required to perform a
management task, e.g., creating a virtual network. To mini-
mize the hurdle of managing a diversified pool of physical
resources, standardized management interfaces must be de-
fined and evaluated to allow interoperability between different
virtualization platforms and management tools. In addition,
virtual networks may be constructed from resources located

at different administrative domains [4] and must be properly
managed. Therefore, NVE operators should opt for a man-
agement interface/protocol that allows efficient and scalable
management of physical routers hosting several virtual ones.

Standardization efforts have been conducted under Internet
Engineering Task Force (IETF) to enable the management
of VRs in different contexts. For example, the VR-MIB [5]
was proposed to manage VRs in the context of L3VPNs. The
VRRP-MIB [6] defines a VR as an abstract representation of
a physical router and is used to handle failures. Motivated
by the IETF efforts, Daitx et al. [2] proposed an NVE
management solution based on Simple Network Management
Protocol version 2c (SNMPv2c) extending the VR-MIB [5].
Although SNMP is not traditionally used for configuration-
related tasks, Daitx et al. have demonstrated that SNMP can
still be used in NVE management.

In this article, we evaluate SNMP version 3 (SNMPv3) [7],
Network Configuration Protocol (NETCONF) [8], and REST-
ful Web services (RWS) 1 as alternatives to SNMPv2c for the
management of physical routers supporting virtualization, thus
extending the analysis presented by Daitx et al. [2]. SNMPv3
has been investigated because of its security and remote
configuration features [9] that were not originally present
in SNMPv2c. NETCONF and RWS have been considered
possible alternatives to SNMP for network management and
can overcome the limitations of SNMP in terms of scalability
[10], [11]. However, neither NETCONF or RWS have been
properly investigated in the context of router virtualization and
management issues related to the NVE domain require further
analysis. RWS were chosen because they are more lightweight
than SOAP-based Web services and are being widely deployed
in many Web services implementations.

In addition, we propose an updated data model as alterna-
tive to VR-MIB considering that VR-MIB did not progress in
the standardization path, remaining as an expired draft since
2006 and leaving the area with no SNMP-based solution. In-
spired by the recent VMM-MIB [12], we proposed a new MIB,
called NEW-VMM-MIB, which is aligned with current IETF
efforts towards the management of virtualized environments.
For each protocol, we developed a corresponding management
interface and compared them using three basic operations:
VR creation, VR retrieval, and VR removal. We evaluated
these interfaces with regard to the following metrics: response
time, CPU time, memory consumption, and network usage.

1From this point we use the acronym RWS to refer to RESTful Web services
along the text



In our implementations we used Net-SNMP [13] for SNMP,
OpenYUMA [14] for NETCONF, and Jersey [15] for RWS.
We used the XenServer [16] hypervisor to emulate a physical
router supporting virtualization and the Vyatta routing suite
[17] to implement VRs.

The remaining of this article is organized as follows. In
Section II, we review both VR-MIB and VMM-MIB proposals
along with other solutions that rely on the aforementioned
protocols in network virtualization management. In Section III,
we outline the architecture of a manageable physical router
hosting virtual ones, describe the updated data model, and
explain the message flow of each proposed management inter-
face. The performance of the proposed management interfaces
is evaluated and the results achieved are presented in Section
IV. Finally, in Section V we conclude the article with final
remarks and directions for future work.

II. RELATED WORK

Network virtualization reduces infrastructure costs by al-
lowing multiple virtual resources to share a single physical
one, which is often referred to as network consolidation [18].
Moreover, network virtualization improves the reliability of
network infrastructures by offering hardware independence to
virtual network components (e.g., virtual routers). Manage-
ment is considered a crucial aspect to enable NVEs, which
is endorsed by many research projects that consider NVE
management at the design stage, instead of tackling it after the
NVE is already operational [19]. In this section, we discuss a
number of proposals related to the management of NVEs.

The Virtual Router MIB (VR-MIB) [5], originally proposed
by the L3VPN IETF Work Group [20] for Layer 3 Virtual
Private Networks (L3VPNs), was one of the first initiatives to
use SNMP for router virtualization management. The VR-MIB
module contains objects related to the high-level configuration
of VRs structured in three main tables, as shown in Fig.1(a):
the vrConfigTable, responsible for the creation and removal
of VRs; the vrStatTable, which stores statistics of VRs
hosted in a physical router; and the vrIfConfigTable that
manages the mapping between VRs and their virtual network
interfaces. The main problem with VR-MIB is the lack of
progression in the IETF standardization path and the absence
of updates since 2006.

In July 2012, the VMM-MIB [12] was proposed in
IETF for managing virtual machines (VMs) controlled by
a hypervisor. This MIB module, which the structure is
shown in Fig.1(b), consists of managed objects related to
the hypervisor (vmHypervisor group), VMs (vmTable),
and virtual resources allocated to VMs, i.e., processors
(vmCpuTable, vmCpuAffinityTable), network interfaces
(vmNetworkTable), and storage devices (vmStorageTable).
Despite the VMM-MIB appears to be useful for the man-
agement of VRs, because a VR can be implemented by a
software-based router running in a VM, most objects of this
MIB module are read-only, preventing proper VR configu-
ration. Therefore, VMM-MIB requires configurable objects to
support, for example, VR creation and removal.

Daitx et al. [2] have proposed a network virtualization
management interface based on SNMP, extending the VR-
MIB module to allow flexible interface binding. Daitx et al.

(a) VR-MIB (b) VMM-MIB

Fig. 1. VR-MIB and VMM-MIB structures

used some basic management operations to evaluate the per-
formance of the proposed interface in two virtualization plat-
forms: XenServer and VMWare. Although, they have shown
that SNMP performance largely depends on the virtualization
platform, they did not investigate others management protocols
and used the obsolete VR-MIB as data model.

Patricio et al. [21] have proposed a NETCONF-based in-
terface for configuring virtual switches in VLAN-based virtual
networks. This interface has been tested with Open vSwitch
(OVS) [22] in the context of Software Defined Networks
(SDNs) and supported five management operations: creation
and removal of virtual switches, creation and removal of a port
of a switch, and creation of a port with a VLAN tag in a switch.
Aside from the fact that this interface did not manage virtual
routers but switches, there was no performance evaluation to
demonstrate the feasibility of the proposed interface.

Rendon et al. [23] have used the Mashup [24] [25] tech-
nology to provide a mechanism able to monitor heterogeneous
Virtual Nodes. The proposed model enables any Virtual In-
frastructure Administrator to adapt, customize, and combine
existing monitoring tools in order to improve system and
network monitoring tasks in virtualized environments. Rendon
et al. have used RWS to develop Virtual Node Wrappers.
These elements, located at the Adaption Layer, receive service
requests from a Composition Layer and provide monitoring
operations to a Managed Resources Layer to hide the com-
plexity and heterogeneity of the substrate. Although this work
has proposed a flexible and extensible system, it focused on
monitoring and did not support configuration of Virtual Nodes
(e.g., VR creation).

The previous works addressed several management issues
and provided important contributions to the network virtu-
alization area. However, most proposals have not evaluated
traditional network management protocols when applied to
router virtualization management. This investigation is im-
portant to provide a better understanding about the benefits
and limitations of such protocols in NVE management and
identify requirements of an standardized management interface
for physical routers supporting virtualization. Vendors will be
encouraged to support such an interface to allow their products
to be easily compatible with existing management tools and
thereby facilitate the deployment of their equipment in NVEs



with predominance of other manufacturers.

III. MANAGEMENT INTERFACES FOR ROUTER
VIRTUALIZATION

In this section we first introduce the conceptual architecture
of a physical router hosting virtual ones [2]. Then, we present
the proposed management interfaces for SNMPv2c, SNMPv3,
NETCONF, and RWS, respectively, describing the data model
and the message flow for each management interface.

A. Architecture

A physical router is conceptually divided in two layers: a
substrate layer and a virtualization layer. The substrate layer
consists of the physical device itself and a layer of software,
called hypervisor, that allows deployment of VRs on top of
it. The virtualization layer comprises multiple isolated VRs
running their own control planes. In our proposed architecture,
depicted in Fig.2, the management interface is located between
the VRs and the hypervisor.
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Fig. 2. Architecture of a physical router hosting VRs

The management interface allows the Infrastructure
Provider (InP) operator to access, operate, maintain, and ad-
minister a physical router that supports virtualization [19]. In
our case, the InP operator uses the management interface to
perform basic VR management operations, such as creation,
removal, and information retrieval. The definition of an appro-
priate data model is fundamental to support such operations.

B. Data Model

As a starting point to define a data model, we analyzed the
VR-MIB structure, objects, and functionality. As mentioned
before, VR-MIB is outdated, which hinders its utilization in
practice. On the other hand, the VMM-MIB is an ongoing
effort that focus on the management of virtual machines
controlled by a hypervisor. However, VMM-MIB currently
does not support VR configuration. To address these issues, we
propose a NEW-VMM-MIB using the VMM-MIB as a basis
and incorporating objects from VR-MIB to enable proper VR
management. To achieve this, we had to add tables and objects
from VR-MIB, changed access permissions for some objects
in VMM-MIB, and migrated some objects from their original
tables to other tables.

As depicted in Fig.3, the NEW-VMM-MIB has the same
basic structure of VMM-MIB, with the addition of 2 new
tables (vmConfigTable and vmNetworkConfigTable) and

3 new scalar objects (vmConfigNextAvailableVmIndex2,
vmConfiguredVMs3, and vmActiveVMs4) adapted from VR-
MIB. The vmConfigTable, depicted in Fig.3(c), has been
included in NEW-VMM-MIB containing objects with read-
create permission, inspired by VR-MIB, to allow VR con-
figuration features that were missing in VMM-MIB, e.g., VR
creation and removal. The vmNetworkConfigTable, depicted
in Fig.3(d), has also been included to enable the configu-
ration of VR network interfaces. VR routing information is
modeled by 5 objects (Fig.3(b)) added to vmTable, based
on vrStatTable of VR-MIB. Moreover, the objects vmName
and vmAdminState have been migrated from vmTable to
vmConfigTable. As a result, the NEW-VMM-MIB is capable
of managing VRs and VMs as well, and consequently, we used
it as the data model of the SNMP management interface.

(a)

(c)

(b)

(d)

Fig. 3. NEW-VMM-MIB structure with new objects and tables

YANG is a data modeling language used to model device
configuration, device state, remote procedure calls, and notifi-
cations using the NETCONF protocol [26] and we can translate
Structure of Management Information version 2 (SMIv2) MIB
modules to YANG modules [27]. Thus, we have defined an
YANG-based data model for the NETCONF interface by
directly translating the NEW-VMM-MIB module. The tree
structure remains the same of NEW-VMM-MIB but tables are
translated into lists and objects into leaves.

Unlike SNMP and NETCONF, the RWS solution does not
have an standardized data model language. In RWS, the data
model is highly coupled with the implementation. Because we
have implemented a Java solution for the RWS interface, we
used the Java Architecture for XML Binding (JAXB) [28] to
create the data model. Using JAXB, each row of a table (e.g.,
vmConfigTable) is represented in XML format but is stored
as an Object in a Map<K,V>5, where the index (e.g., vmIndex)
refers to the key.

Despite the particularities of each data model, the in-
formation that is modeled is essentially the same. The key
difference between the proposed management interfaces relies

2vmConfigNextAvailableVmIndex provides the next available VM index
value to be used to create an entry in the associated vmConfigTable

3vmConfiguredVMs provides the number VMs configured in the network
element.

4vmActiveVMs provides the number of active VMs in the network element.
5Map<K,V> is an object that maps a key (K) to one value (V) at most

and cannot contain duplicate keys.



on the management protocol, i.e., SNMP, NETCONF, and
RWS. Next, the messages exchanged between a manager (or
client) and an agent (or server) for each interface (i.e., the
message flow) are discussed.

C. Message Flow

The message flow for VR creation or VR removal in the
SNMPv2, SNMPv3, NETCONF, and RWS management inter-
faces is shown in Fig.4. The message flow for VR information
retrieval for each management interfaces is shown in Fig.5. We
start by describing the message flow of the SNMP interface.

A typical message exchange between an SNMPv2c man-
ager and an agent using the proposed NEW-VM-MIB module
to create/remove VR is depicted in Fig.4(a). Initially, the man-
ager sends an SNMP set-request carrying the information
needed by the agent to perform the desired operation. As a
reaction, the agent issues a CLI request to the hypervisor that
actually creates/removes the VR. Because the action at the
router side may last awhile, the set-request is immediately
replied in parallel with a get-response. When the requested
operation finishes, a trap message is issued by a trap generator
running inside the physical router, informing that the VR was
successfully created/deleted. Since the trap message can be
lost (because SNMP uses UDP), the manager initiates a timer
together with the first set-request. If the timer expires
and the confirmation trap is not received, the manager cannot
guarantee the VR creation/removal. In this case, additional
queries to the agent are needed to confirm the operation.

To retrieve information of a VR, the manager sends an
SNMP getbulk-request carrying the OID of the required
objects. The manager must know the vmIndex to retrieve
information of a specific VR. Otherwise, the manager can
discover the VR index by consulting the vmConfigTable and
matching another attribute, e.g., the VR name (vmName). The
agent replies with a get-response containing the values of
the requested objects, as depicted in Fig.5(a).

The SNMPv3 defines a number of security-related capabil-
ities and, among them, the User-based Security Model (USM)
[29] is largely used. USM provides authentication and privacy
(encryption) services for SNMP. We choose HMAC-SHA-
96 as the authentication protocol [29] and AES encryption
[30]. Initially, the manager sends an SNMP get-request re-
questing contextEngineID6 and contextName 7 [31]. Then,
the agent responds with a report PDU message carrying, in
addition to context information, security-related parameters in
the message header. Subsequent packets contain the same mes-
sages exchanged by the SNMPv2 protocol, but are encrypted
by AES and have USM security parameters in the header. The
creation/removal operation messages are shown in Fig.4(b) and
the retrieval ones in Fig.5(b).

In the NETCONF management interface, we choose SSH
as the transport mechanism [32]. For the sake of simplicity,
SSH is not depicted. In order to perform a configuration action,
the NETCONF client (manager) establishes a session with
the server (agent) only if a previous session is not present.

6contextEngineID uniquely identifies an SNMP entity that may realize an
instance of a context with a particular contextName.

7contextName must be unique within an SNMP entity and is used to name
a context.

The session establishment involves opening a TCP connection
(omitted in the diagrams for simplicity) and the subsequent
exchange of <hello> messages. After session establishment,
the NETCONF client issues an <edit-config> message
containing VR data (in XML format). After a <commit>, this
configuration is applied to the running datastore triggering the
hypervisor to actually create or remove the VR, as shown in
Fig.4(c). The action of creating or removing a VR is defined
in XML data as operation=”create” or operation=”delete”,
respectively.

As depicted in Fig.5(c), to retrieve information of a VR, the
client must send a <get-config> message to the NETCONF
server. The server responds with a <rpc-reply> message if
the operation is successful, or with a <rpc-error> message
otherwise. If the retrieval operation is successful, the response
message contains a <data> element in the query results.
After all configurations/queries, the NETCONF session can
be closed by sending the <close-session> message to the
NETCONF server.

The RWS management interface, as the name says, is based
on REST architecture [33]. The RWS solution uses HTTP
methods (e.g., GET, POST and DELETE) as verbs to request
a resource identified by a Uniform Resource Identifier (URI)
[34], [35]. In order to create a VR, the RWS client sends a
POST method with data in HTTP, XML, or JSON formats.
We chose XML for fairness because NETCONF data is also
based on XML. The RWS server processes the request, stores
the new VR information, and calls the hypervisor to create the
VR. After successfully creating the VR, the server answers by
sending a HTTP response with status code 200 OK [36], as
shown in Fig.4(d). VR removal (Fig.4(d)) is analogous to VR
creation, except for the fact that the client sends a DELETE
method to an URI containing the index of the VR (vmIndex)
to be removed.

The VR information retrieval is just as simple as VR
creation and removal. As shown in Fig.5(d), the client sends
a GET method to a URI containing the index of the VR to be
queried. The server searches in the datastore and, in case of
success, sends back a HTTP response containing the retrieved
data in XML format. If the queried VR index does not exist
in the datastore, the server responds with status code 204 No
Content.

IV. EVALUATION

In this section we evaluated management interfaces based
on SNMPv2, SNMPv3, NETCONF, and RWS to investigate
which is the best solution for managing physical routers
hosting VRs with regard to performance and scalability. We
start by describing the test environment and pointing out
all the tools used in the experiments. Then, we explain the
methodology and define the metrics used in the evaluation.
Finally, we present and analyze the results.

A. Test Environment

The experiments were performed on a computer with
Intel Core 2 Duo 1.86GHz processor and 4GB of RAM.
Citrix XenServer 5.6 [16] was used to emulate a physical
router supporting virtualization. Vyatta 6.2 [17] was used as a
template for VRs.
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The proposed NEW-VMM-MIB module, previously dis-
cussed in Section III-B, has been compiled, instrumented,
and attached to a Net-SNMP 5.7.2 agent (snmpd) [13].
The SNMP interface runs SNMP versions 2c and 3. The
SNMP interface uses two Net-SNMP applications: snmpset
to send SetRequest messages and snmpgetbulk to send
GetBulkRequest messages. The SNMPv3 interface has been
configured to use SHA as the authentication protocol and AES
for data encryption.

We implemented the NETCONF interface using the
OpenYUMA (YANG Unified Modular Automation) 2.2.5
toolkit [14]. OpenYUMA includes a NETCONF client and
server (yangcli and netconfd), a YANG module compiler
(yangdump), and a server instrumentation library (SIL). We
translated the NEW-VMM-MIB from SMIv2 to YANG, ac-
cording to RFC6643 [27], and compiled the new YANG
module using yangdump. Then, we instrumented the generated
SIL code and attached it to a NETCONF agent. We also have
configured this interface to use NETCONF over SSH mapping.

Finally, we deployed the RWS interface using Jersey [15]
implementation of JAX-RS [37], a Java API for RESTful Web
services. We have used Apache Tomcat 8.0.11 [38] with Java
SE Runtime Environment 1.8.0 20 [39] as a server to run
the Jersey servlet, and cURL 7.37.1 [40] as a client to send
messages to a URL using the HTTP methods POST, GET, or
DELETE.

As a common characteristic, all implementations have been
integrated into the virtualization platform through the native
management interface of XenServer, xe CLI.

B. Methodology and Metrics

The experiments have been conducted according to the
following sequence of operations: create VR, start VR, retrieve
information about the created VR, and, finally, remove VR.
Each step (except for ‘start VR’) was a management operation
measured with regard to response time, CPU time, memory
consumption, and network usage.

The response time is the total time that each VR operation
takes to be completed. This evaluation intends to discover
if there are significant differences between the interfaces
regarding response time. Here, we consider response time as
the interval between the first (T1) and the last (T2) timestamps,
indicated in Fig.4 and 5. All management operations were
performed locally, i.e., managers (clients) and agents (servers)
were executed in the same computer, to avoid network delays.

CPU time and memory consumption metrics check the
processing time and the amount of memory used by the
server/agent when performing a management operation, e.g.,
VR creation. Both metrics were obtained using the ps program
from procps package [41] to gather CPU time and mem-
ory consumption of the server/agent processes, i.e., snmpd
(SNMP), netconfd (NETCONF), and java (RWS). CPU time
and memory consumption were collected at the beginning
(T1) and at the end (T2) of every manager operation, as
indicated in Fig.4 and 5. CPU time is calculated as the
difference between the final CPU time and the initial one,
and memory consumption is the last memory measurement
returned by ps because it reflects a percentage of the host
total memory. In XenServer, the host memory is limited by



the memory of Domain-0 (dom08). Therefore, we calculated
memory consumption by multiplying the percentage of used
memory (in decimals) by the total memory of dom0.

After 30 cycles of measures, we increased the number
of pre-existing active VRs. Each cycle is a sequence of
management operations for a single VR, i.e., creation, start,
retrieval, and removal. In order to obtain statistically sound
results, we used a confidence level of 95%.

The last evaluated metric reflects the network usage when
management traffic is generated to create, retrieve, and remove
VRs. The goal of this evaluation is to verify the impact of
each management interface on the network. Network usage
was evaluated using tcpdump [42] program to capture network
packets exchanged between clients and servers (i.e., managers
and agents), including protocol overhead and session establish-
ment/termination. Then, we calculated the amount of traffic (in
bytes), by summing the length of exchanged packets for each
type of operation, i.e., creation, retrieval, and removal. As in
the previous experiment, this one was performed locally to
avoid other network-related issues, such as packet loss.

Unlike the previous experiments, for network usage we
increased the number of VRs to be created, retrieved, or
removed after 30 cycles of measure, instead of increasing the
number of pre-existing active VRs. Network usage results were
also presented with a confidence level of 95%.

C. Results

As a first observation, we found out that our XenServer
did not allowed more than 6 active VRs simultaneously. This
happens because our XenServer allocates 752MB of RAM for
dom0 (by default) and each Vyatta-based VR allocates 512MB
(the total RAM is 4GB). Using the xentop utility we could
get information about the memory allocated to dom0 and to
the active VRs. Fig.6 shows the total memory consumption in
our setup when VRs are activated.
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Regarding response time in VR creation, depicted in
Fig.7(a), the SNMPv2c and RWS interfaces presented the low-
est response times, with statistically equal results. NETCONF
and SNMPv3 also presented similar results but slightly higher

8Domain-0, dom0, or Domain Zero is the initial domain started by the Xen
hypervisor on boot and contains the host operating system.

than the previous two. For VR retrieval, the SNMPv2c in-
terface presented a faster response, followed by NETCONF,
SNMPv3, and RWS, as shown in Fig.7(b). For VR removal,
SNMPv2c interface presented lower response time than the
other three interfaces, whose results were statistically equal
in most measurements, as shown in Fig.7(c). However, VR
removal presented a far greater response time than VR creation
because XenServer has to shut down a VR before deleting it,
and this process takes a considerable time.

Fig.8 shows that CPU time varied irregularly as we have
increased the workload. In spite of these variations, the RWS
interface presented higher CPU time than the others, showing
that the Java process needs more CPU compared to the others
server/agents processes. The SNMPv2c interface presented
the lowest CPU time in most measurements for VR creation
and removal (Fig.8(a) and Fig.8(c)). For VR retrieval, the
NETCONF interface resulted in the lowest CPU time when
the number of pre-existing active VRs is two or higher, as
shown in Fig.8(b).

With respect to memory consumption, Fig.9 shows that the
RWS solution consumes much more (around 70MB) memory
than the others. This result was expected because the Java
process is more robust and heavier than both snmpd and
netconfd processes. The SNMPv2c interface had the lowest
memory consumption, followed closely by SNMPv3 and NET-
CONF. Memory consumption presented slight linear growth
for SNMPv2c, SNMPv3, and NETCONF as the workload
increased. However, results for RWS showed some variation.

The experiments for network usage were conducted with-
out VR activation because VR activation does not generate
network traffic. Therefore, it was possible to evaluate network
usage for more than 6 VRs. VR configuration results (Fig.10(a)
and 10(c)) show that for few VRs (up to 16 for creation, 20
for removal), the NETCONF interface generated the highest
amount of traffic, followed by RWS, SNMPv3, and SNMPv2c.
When the number of managed VRs was increased, NETCONF
traffic grew less compared to the other interfaces. NETCONF
became better than RWS when 16 or more VRs were created
(Fig.10(a)) or 20 or more VRs were removed (Fig.10(c)).
When 22 VRs were created or 30 or more VRs were re-
moved, NETCONF became better than SNMPv3. Regarding
retrieval operations, Fig.10(b) shows that network traffic grows
uniformly when the number of retrieved VRs increases for
all interfaces. However, the NETCONF interface generated
more traffic compared to the others. The SNMPv2c interface
presented the lowest network usage for all operations.

The network usage results reflects protocol overhead.
SNMPv2c uses UDP and therefore has the lowest overhead.
SNMPv3, despite using UDP as well, is configured to use
authentication and encryption, which results in a higher over-
head than version 2. RWS is based on HTTP, which uses TCP,
and therefore has higher overhead than SNMP. NETCONF
has the highest overhead, because it uses an XML-based data
encoding for both configuration data and protocol messages,
and uses SSH as the transport mechanism. In spite of that,
the NETCONF interface presents a lower traffic growth when
the number of created/removed VRs increases. This can be
explained by the fact that NETCONF first opens the session,
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Fig. 7. Response time of the management interfaces
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Fig. 8. CPU time of the management interfaces
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Fig. 9. Memory consumption of the management interfaces

deploys all VRs configurations and, at last, closes the session.
In contrast, the interfaces based on SNMP and RWS configure
multiple VRs by configuring each VR independently. On the
other hand, for VR retrieval, SNMP and RWS are more
efficient because SNMP relies on GetBulkRequest messages
to get all objects at once and RWS retrieves all objects stored
in the Map with a single HTTP GET message.

D. Comparison

Regarding response time, the SNMPv2c interface presented
the best results. Considering the similarity of the results, we
analyzed the average response time of the management inter-
faces, as shown in Table I. For VR creation, the RWS interface
was better than SNMPv3, followed closely by NETCONF.
However, RWS and NETCONF interfaces presented equivalent
average response times to remove VRs. In retrieval operations,
the average response time of the NETCONF interface was very
close to SNMPv2c, but in this case, the RWS interface resulted

in the highest times.

TABLE I. AVERAGE RESPONSE TIME OF MANAGEMENT INTERFACES

Interfaces VR Creation [s] VR Retrieval [s] VR Removal [s]

SNMPv2c 1.02 0.03 3.41
SNMPv3 1.12 0.08 3.53
NETCONF 1.08 0.04 3.48
RWS 1.06 0.16 3.48

With regard to resource consumption, RWS achieved the
highest CPU time and memory consumption. Analyzing max-
imum CPU time for configuration operations, there is a simi-
larity between SNMPv2c and NETCONF, as shown in Table
II. For retrieval operations, NETCONF was the interface that
consumed less CPU. Regarding memory consumption, the
SNMPv2c, SNMPv3, and NETCONF interfaces had much
lower memory consumption than the RWS interface. Table
III shows that, with respect to average memory consumption,
the SNMPv2c interface was slightly better than SNMPv3,
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Fig. 10. Network usage of the management interfaces

followed by NETCONF.

TABLE II. MAXIMUM CPU TIME OF MANAGEMENT INTERFACES

Interfaces VR Creation [ms] VR Retrieval [ms] VR Removal [ms]

SNMPv2c 7.7 9.3 8.3
SNMPv3 8.7 7.3 9.3
NETCONF 8.0 2.0 8.3
RWS 13.0 14.0 11.0

TABLE III. AVERAGE MEMORY CONSUMPTION OF MANAGEMENT
INTERFACES

Interfaces VR Creation [MB] VR Retrieval [MB] VR Removal [MB]

SNMPv2c 3.2 3.2 3.2
SNMPv3 3.5 3.5 3.5
NETCONF 3.9 3.8 3.8
RWS 73.1 73.2 73.1

The experiments related to network usage showed that
the SNMPv2c management interface generated less traffic
compared to the others. For retrieval operations, NETCONF
resulted in a higher network usage than the other interfaces,
which had similar results. For configuration operations, NET-
CONF started with a high network usage, but outperformed
both RWS and SNMPv3 as the number of managed VRs
increased. Table IV classifies the management interfaces in
a descending order according to the achieved results for each
evaluated metric.

TABLE IV. CLASSIFICATION OF MANAGEMENT INTERFACES
ACCORDING TO THE EVALUATED METRICS

Metrics VR Creation VR Retrieval VR Removal

Response
time

SNMPv2c
RWS

NETCONF
SNMPv3

SNMPv2c
NETCONF
SNMPv3

RWS

SNMPv2c
RWS≡NETCONF

SNMPv3

CPU time SNMPv2c
NETCONF
SNMPv3

RWS

NETCONF
SNMPv3
SNMPv2

RWS

SNMPv2c≡NETCONF
SNMPv3

RWS

Memory
consumption

SNMPv2c
SNMPv3

NETCONF
RWS

SNMPv2c
SNMPv3

NETCONF
RWS

SNMPv2c
SNMPv3

NETCONF
RWS

Network
usage

SNMPv2c
NETCONF
SNMPv3

RWS
(#VR >22)

SNMPv2c
SNMPv3

RWS
NETCONF

SNMPv2c
NETCONF
SNMPv3

RWS
(#VR >30)

V. CONCLUSION

In this article, we investigated management interfaces based
on SNMPv2c, SNMPv3, NETCONF, and RWS for managing
physical routers supporting virtualization. We compared the in-
terfaces by evaluating the performance of each one in terms of
response time, CPU time, memory consumption, and network
usage for three basic VR management operations: creation,
retrieval, and removal.

Comparing the management interfaces, it is possible to
observe that the SNMPv2c presented the best results for most
evaluated metrics. The second best one was the NETCONF
interface, which achieved results quite close to the SNMPv2c
interface. Although NETCONF has presented higher network
usage for few managed VRs, it demonstrated to be more
scalable than SNMPv3 and RWS solutions. In addition, unlike
SNMPv2c, NETCONF provides security since it uses SSH as
the transport mechanism. Therefore, the SNMPv2c interface
is appropriate for managing small NVEs without strict secu-
rity requirements, while NETCONF appears as a promising
alternative to compose a management interface to be deployed
in more realistic scenarios, i.e., large-scale NVEs with many
VRs, where security and scalability are important concerns.

As future work, we intend to evaluate a management
interface based on SOAP Web services. We also plan to
investigate NETCONF combined with compression support
(zlib) and RWS running over HTTPS. Furthermore, we look for
an alternative implementation for the RWS interface, because
using Java/Tomcat resulted in high resource consumption.
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