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Abstract— It is a tough job for operators to make perfectly 

accurate configuration of many network elements in large 
networks.  Erroneous configurations may cause critical incidents 
in network, on which many ICT systems are running.  It may 
also result in a security hole as well as system incidents.  There 
has been much work on preventing erroneous configurations, but 
this has taken a lot of time to verify routing with large networks.  
We propose a new method of verifying network routing. It only 
focuses on verifying isolation and reachability, but it can verify 
these properties with O(R2), where R is the number of flow 
entries, while the performance of an existing method of 
verification is O(R3).  We also provide a proof of the correctness 
of our method. 
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I.  INTRODUCTION  
Networks need to be stable and reliable because they are 

the infrastructures of ICT systems.  Erroneous configurations 
may damage the stability and reliability of the network and, as 
a result, those of ICT systems running on them.    

We handle two properties to retain in networks.  The first is 
reachability where a packet with a given packet header from a 
given incoming port always reaches the correct outgoing port 
with the correct packet header.   Reachability is broken if some 
packets with a header from an incoming port does not reach at 
the outgoing port with the proper header.  It may cause a 
communication failure. 

The second property is isolation where a packet belonging 
to a network slice cannot reach another network slice.  A 
network slice is a kind of closed network, in which hosts can 
communicate with one another, but no hosts in a network slice 
can communicate with the hosts in other network slices. This is 
a security risk if the isolation is not satisfied.  Malicious user 
can illegally access a closed network slice.   

There has been much research on verifying reachability and 
isolation in the given network [1][2][4][5][6][7][8].  The 
technologies in this research read configurations, such as flow 
tables in network elements, and checks reachability, isolation 
and other properties, such as NoForwardingLoops, DirectPaths, 
StrictDirectPaths and so on[14].  However, the verification 
time takes time when a large network is verified.  For example, 
a method of header space analysis (HSA) [1] is adapted to the 
network configuration of the Stanford University campus 
network, which has 750,000 flow entries [1].  Their researchers 
reduced 750,000 flow entries to 4,200 flow entries with 
Optimal Routing Table Constructor (ORTC) method [3], and 

they used HSA to check the reachability of a flow between a 
pair of operator zones (OZs) within an average of 13 seconds.  
There were 14 OZs at Stanford University, and we estimate the 
time of verifying the whole Stanford campus network to take 13 !!( )! = 1,183 [sec].  Although the HSA is one of the 
fastest methods [9], its time to verify the flows with one 
incoming port is O(𝑑𝑅 ) [1] , where 𝑑 is the diameter of the 
network and 𝑅 is its number of the flow entries.  The 
verification time for the whole network is O(𝑡𝑑𝑅 ), where 𝑡 is 
the number of edge ports.  The number of edge ports  𝑡 is 
proportion to the number of flow entries 𝑅, and then O(𝑡𝑑𝑅 ) ∝ O(𝑑𝑅 ) .  As mentioned in [1], O(𝑑𝑅 )  is the 
worst case, and many effective techniques have been used to 
implement HSA, but more efficient verification algorithms are 
required to verify larger network, such as those for 
telecommunications.   

We propose a new method of fast verification that is called 
back-trace header space analysis (B-HSA), in this paper.  The 
method is a variation of the HSA.  Although B-HSA only 
focuses on the verification of only reachability and isolation, it 
runs faster than the HSA. 

The two main contributions of this paper are: 

l We proposed a fast method of verification running 
with O(𝑅 ) , whose performance we tested and 
confirmed by estimating and evaluating with a 
prototype verification tool. 

l We provide a proof that the proposed method can 
correctly verify reachability and isolation. 

The remainder of this paper is organized as follows. Section 
II explains our classification of the existing methods of 
verifying configurations and describes their characteristics and 
performance.  Section III explains the algorithm for the HSA, 
which is the base algorithm for the proposed method. Further, 
Section IV describes the algorithm for B-HSA.  We provide a 
proof of B-HSA in Section V and present the results we 
obtained from the evaluations in Section VI. 

II. RELATED WORK 
There are two categories for methods of verifying routing 

configurations, i.e. graph-based and logic-based approaches.  
Graph-based approaches create a graph that represents the 
flows in the target network.  The graph is checked as to 
whether it has given properties, such as reachability or the 
isolation.   HSA [1], VeriFlow [7], and NetPlumber [8] are 
graph-based approaches.  
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Logic-based approach creates Boolean expressions that 
represent the conditions of packet transfer defined in flow 
tables.  A satisfiability (SAT) solver or a satisfiability modulo 
theorem (SMT) solver checks whether there is a solution that 
satisfies the Boolean expressions.  FlowChecker [2], Anteater 
[4], Flover [5], and DNA [6] are logic-based approaches.  For 
example, FlowChecker is an extension of ConfigChecker [13] 
to OpenFlow.  It represents a packet header and the location of 
the packet as Boolean expressions, and a packet transfer as the 
relation between Boolean expressions before the transfer and 
those after the transfer.   It translates these relations of Boolean 
values into Binary Decision Tree (BDD) expressions and it 
uses symbolic model checking with an SMT solver in order to 
detect a violation of properties given in Computation Tree 
Logic (CTL) expression. 

Graph-based approaches are generally faster than those that 
logic-based approach [9].  The most well-known graph-based 
approach is HSA, but it still has problems with scalability, as 
was explained in Section I.   

Some differential methods of verification have been 
proposed, such as VeriFlow [7] and NetPlumber [8], that are 
faster than HSA.  They monitor update operations of 
configurations, and check whether these operations violate 
properties or not.  Although differential verifications can verify 
configurations in real time, they have to assume that the 
configurations are correct at the initial time, and they are 
gradually updated like those in the OpenFlow network.  They 
cannot effectively work in networks that have conventional 
network elements.  This is because the configurations for 
conventional network elements are initially set once, and they 
are seldom changed. 

III. ALGORITHM FOR HSA 
In this paper, we use mathematical variables in TABLE 1. 

HSA considers the attributes of a packet header as a 
sequence of bits.  It uses a ternary logic, in which a bit can be 
zero, one, or 𝐓.  𝐓 can take a value of either zero or one.  This 
bit sequence is called a header space ℎ ∈ H.  We use ⊥ if the 
calculation of header spaces results in an empty set.  This 
means that a packet does not reach any place if we encounter⊥ 
in the process of calculating the header space.   

HSA represents a set of the flow tables in the target 
network as a transfer function ϕ : 𝐻→ 𝐻.  Transfer function ϕ  returns a header space of the output packet from the given 
header space of packet matched with Flow Entry 𝑒.  . 

In order to define properties to be kept in this paper, we 
first define that a terminal point, 𝑡∈ (𝐻× 𝑃), is a pair of the 
port of the edge switch in the network and the header space of a 
flow at the port.  We define a network slice as being a group of 
terminal points that can communicate with one another but not 
with terminal points in different network slices.   

We define an isolation property as being satisfied if and 
only if terminal points in different network slices cannot 
communicate with one another.  We expect that the verification 
of isolation shall judge whether isolation holds or not and that, 
in case of the violation, it shall show all header spaces violating 
the isolation. 

We define a reachability property as being satisfied if and 
only if all terminal points in the same network slice can 
communicate with one another.   

We show these properties with an example in Fig. 1.  
Terminal Point 𝑡 and 𝑡 belong to the same Slice  𝑆 and packets between 𝑡 and 𝑡 should be reachable.  On the 
other hand, Terminal Point 𝑡 and Terminal Point 𝑡′ in another 
Slice 𝑆′ should not communicate.  If it could, this is isolation 
violation.   

Fig. 2 indicates how HSA verifies the network has been 
isolated.  Firstly, HSA calculates an outgoing header space ℎ @  at Port 𝑝 when a flow starting at Port 𝑝 in Slice 𝑆 is 
applied to sequence of Flow Entries 𝑒, 𝑒, and 𝑒 as Eq. (1).  ℎ @ = ϕ ∘ ϕ ∘ ϕ ℎＴ , (1)   
where all bits in Packet Header ℎＴ are 𝐓s. This is the forward 
phase in Fig. 2. 

In backward phase in Fig. 2, Header Space ℎ @  at Port 𝑝 
can be calculated with Eq. (2) by using the calculation result ℎ @  of Eq. (1).   ℎ @ = ϕ ∘ ϕ ∘ ϕ ℎ @ , (2)   
where ϕ : 𝐻→ 𝐻 is the inverse function of ϕ . In other word, ϕ  is defined as: ϕ ℎ ≝ {ℎ |ϕ(ℎ ) = ℎ}.    

Assume that an operator defines that Terminal Port 𝑡 = ℎ @ , 𝑝  and Terminal Port 𝑡 = ℎ @ , 𝑝  are in 
Slice 𝑆.  HSA detects the isolation violation in 𝑆 if Header 
Space ℎ  does not include Header Space ϕ ∘ ϕ ∘ϕ ℎ @ . In short, ℎ @ ⊅ ϕ ∘ ϕ ∘ ϕ ℎ @ .   

Consider the case of the isolation violation, ℎ @ ⊅ ϕ ∘ϕ ∘ ϕ ℎ @ .  Here, ℎ @ − ϕ ∘ ϕ ∘ ϕ ℎ @  is 
not an empty set.  We define this header space as ℎ @ ≝̅ℎ @ − ϕ ∘ ϕ ∘ ϕ ℎ @ .  In short, Header Space ℎ @  ̅is the remaining set of the possible header space at Port 𝑝 of the flow initiating from Port 𝑝 with Header Space ℎ  in 
Network Slice S.  We then calculate the header space, at Port 𝑝, of the flow terminating with ℎ @  ̅at Port 𝑝. We define 
this header space as ℎ @ ,̅  and calculate it with Eq. (3).  ℎ @ =̅ ϕ ∘ ϕ ∘ ϕ _ ∘ ϕ ℎ @ ,̅ (3)   

Notice that HSA can detect isolation violation in the 
forward phase, but it needs the backward phase if the header 
space with which a packet violates the isolation. 

HSA has two main advantages.  First, it can calculate all 
the header space ℎ @  ̅that violates isolation.  A ping test, 
which is usually used in network test, cannot check all the 
header space because it can only carry out the tests by using 
sample data.  Second, HSA can be used in networks with many 
kinds of network elements (e.g. switches, routers, and 
firewalls).  This is because the routing configurations of many 
kinds of network elements can be modeled as a flow table.    



TABLE I.  VARIABLES 

Variable explanation 𝑝∈ 𝑃 Physical port of switches.  It is identical in the 
network. 𝑆 Network Slice  ℎ @ ∈ 𝐻 ℎ @ ∈ 𝐻 

Header space of an incoming packet ℎ @  in 
Slice 𝑆 at Port 𝑝 and that of outgoing packet 
(ℎ @ ). ϕ : 𝑃→ 𝑃 HSA transfer function which calculates the 
output header space when the input header 
space is given and is applied to Flow Entry 𝑒. ϕ : 𝐻→ 𝐻 Inverse function of ϕ .  It calculates a header 
space at an input port 𝑒. 𝑝  when the header 
space of the output packet is given, and it is 
the applied result of Flow Entry 𝑒. 𝜁: 𝐻→ 𝐻 B-HSA backward transfer function which 
calculates a header space at Input Port 𝑒. 𝑝  
when the header space of the output packet is 
given, and it is the applied result of Flow 
Entry 𝑒. 

 

However, HSA has one major disadvantage in that it lacks 
scalability as was mentioned in Section I.    

 
Fig. 1. Isolation Property and Rechability Property 

 
Fig. 2. Header Space calculation with HSA 

 
Fig. 3. Header Space calculation with B-HAS 

IV. BACK-TRACE HEADER SPACE ANALYSIS 

A. Overview 
We propose a back-trace header space analysis (B-HSA), 

which can be applied to large scale networks.    Fig. 3 has an 
overview of B-HSA.  Consider that Flow 𝑓 is being initiated 
from Port 𝑝.  B-HSA traces a path for Flow 𝑓 from Port 𝑝, in 
the forward phase, by referring to the incoming port and the 
outgoing port of flow entries.   For example, the thin blue lines 
in Fig. 2 indicates a path (SW1→SW2→SW3), and Flow 𝑓finally reaches Port 𝑝. B-HSA remembers the sequence of 
Flow Entries 𝑒, 𝑒, and 𝑒 that are used in Flow 𝑓.  Notice that 
B-HSA only refers to the incoming port and the outgoing port 
of the flow entries in this phase, but it does not perceive the 
matching rule or actions of the flow entries.  While HSA 
calculates a header space in this forward phase, B-HSA does 
not.  

Second, in the backward phase, B-HSA backwardly traces 
the path that is found in the forward phase.  B-HSA in Fig. 3 
calculates header spaces by referring to flow entries in order of 𝑒, 𝑒, and 𝑒.  Assume that an operator defines that Terminal 
Port 𝑡 = ℎ @ , 𝑝  and Terminal Port 𝑡 = ℎ @ , 𝑝  
are in Slice 𝑆.  B-HSA uses a back-trace function 𝜁: 𝐻→ 𝐻, in 
this calculation, which is defined in Subsection IV.D, and it 
calculates header space ℎ′ @  at Port 𝑝 of Slice 𝑆 with Eq. 
(4).   ℎ′ @ = 𝜁 ∘ 𝜁 ∘ 𝜁 ℎ @  (4)   

B-HSA can detect an isolation violation if ℎ @  calculated 
from ℎ @  has an intersection of the complement set of ℎ @ .  
In another word B-HSA checks if ℎ′ @ − ℎ @ ≠ 𝜙.   An 
incoming packet from Port 𝑝 with a header in Header Space ℎ′ @ − ℎ @  violates the isolation of Slice 𝑆. 

B. Differences between HSA and B-HSA 
HSA mainly calculates header spaces in the forward phase, 

but B-HSA only calculates them in the backward phase.  This 
is why B-HSA is faster than HSA.  B-HSA can re-use the 
calculated results that have been calculated along the way of 
other back-trace paths.  See Fig. 4.  Consider that B-HSA 
calculates Header Space ℎ @  in Flow 𝑓 initiating from Port 𝑝 with Eq. (5).   ℎ @ = 𝜁 → ∘ 𝜁 ∘∙∙ ℎ @  (5)   
where ℎ @  is the outgoing header space at the terminal port 𝑝 of Flow 𝑓 in  Fig. 4.  In other word, B-HSA also calculates 
Header Space ℎ @  Flow 𝑓 initiating from Port 𝑝 with Eq. 
(6).   ℎ @ = 𝜁 → ∘ 𝜁 ∘∙∙ ℎ @  (6)   

In this case, B-HSA can re-use the calculated results 𝜁 ∘∙∙ ℎ @  in Eq. (5) for the calculation of ℎ @  in Eq. (6).    

HSA cannot re-use the calculated results in the backward 
phase.  See Fig. 5.  HSA calculates the header space Port 𝑝 of 
Flow 𝑓 with Eq. (7). 
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 ℎ → = ϕ → ∘ ϕ ∘∙∙∘ ϕ → ∘∙∙ (ℎ ) (7)   
It calculates the header space at Port 𝑝 of Flow 𝑓 with Eq. (8).  ℎ @ = ϕ → ∘ ϕ ∘∙∙∘ ϕ → ∘∙∙∙ (ℎ ) (8)   

Notice that Sub-equation ϕ ∘∙∙∘ ϕ → ∘∙∙ (ℎ ) in Eq. (7) 
and ϕ ∘∙∙∘ ϕ → ∘∙∙∙ (ℎ ) in Eq. (8) are not the same. This is 
the reason why HSA cannot reuse the calculation results in 
backward phase while B-HSA can.   

HSA has a similar technique of optimization, called 
“Bookmarking Applied Transfer Function Rules” [1].  It 
memorizes a transfer function used in a process of the forward 
phase, and refers to it in the corresponding process in the 
backward phase.  However, it only skips the recalculation of a 
transfer function, which is used in calculating its inverse 
function.  B-HSA can re-use the result values calculated with 
the back-trace functions. 

However, B-HSA has disadvantages: It cannot detect a loop 
route, which is a critical failure in the network.  This is because  

a loop route defined in packet forwarding with flow entries, 
and the backward trace cannot detect it.  

 
Fig. 4. B-HSA can re-use 𝜁 ∘∙∙ ℎ @  

 
Fig. 5. HSA cannot reuse the calculation result in another flow. 

Another disadvantage is that B-HSA does not calculate the 
header space at outgoing ports, while HSA does.  Some 
operators want to know the header space at the outgoing port.  
In that case, he/she has to apply the HSA transfer function after 
the B-HAS calculates the header space at the incoming port. 

The operator should choose HSA or B-HSA properly 
depending on the situation.  

C. Detailed algorithm: assumption 
We will first describe assumptions before providing details 

on the algorithm for B-HSA.   

We assume a packet has 𝑘 attributes. An attribute value is a 
direct value (e.g. an integer value, an IP address, …).   A flow 
table installed in a network element has flow entries.  We 
assume that a flow entry is a form of OpenFlow v1.0 because it 
is a general form of a flow entry in many kinds of network 
elements.  Flow Entry 𝑒 consists of a quadruplet, i.e. incoming 
port 𝑒. 𝑝 ∈ 𝑃, outgoing port 𝑒. 𝑝 ∈ 𝑃, matching rule 𝑒. m ∈ 𝑀, and action 𝑒. a ∈ 𝐴.   

A matching rule has 𝑘 attributes that correspond to the 
attributes of a packet.  An attribute value is a direct value, a 
value space (e.g.  an IP subnet address, a differential set value 
defined after, …), or 𝐓, which is matched with any attribute 
value in a packet.   

An action has also 𝑘 attributes. An attribute value in an 
action is a direct value, or 𝐓.   

A direct value v′ of a packet is matched with a direct value v of a matching rule if v′ = v  A direct value v′ of a packet is 
matched with a value space p if v′ ∈ p.   

A packet coming from Incoming Port 𝑒. 𝑝  of a network 
element is checked whether it is matched with Flow Entry 𝑒 in 
the flow table installed in the network element.  The packet is 
matched with a flow entry if every attribute of the packet is 
matched with the corresponding attribute of Flow Entry 𝑒.   

If the network element finds Flow Entry 𝑒 with which the 
incoming packet is match, the matched packet is applied to the 
action 𝑒. a of the flow entry.   If an attribute value of the action 
is 𝐓, the corresponding attribute value of the packet is not 
changed.  If an attribute value of the action is a direct value v",  
the corresponding attribute of the packet is changed to v". 

After that, the packet leaves Outgoing Port 𝑒. 𝑝 ∈ 𝑃 of 
the network element. 

Notice that a packet and a matching rule have 𝑘 attributes, 
and a network element independently matches each attribute of 
the packet and that of the matching rule.  We can therefore 
consider an application of a matching rule or an action to a 
packet header as being as independent application of an 
attribute of the matching rule or the action to the corresponding 
attribute of the packet, without loss of generality.   

A flow table in a network element has plural flow entries 
matched with Incoming Port 𝑝 .  We assume each entry has a 
totally ordered priority.  A packet coming from Incoming Port 𝑝  is matched with the flow entry with the highest priority in 
flow entries that can be matched with the packet.     

 

 



Consider that a packet coming from Incoming Port 𝑝  and 
several flow entries 𝑒 (𝑖= 0, … , 𝑔− 1) where 𝑒. 𝑝 = 𝑝 , 
they are in descending order of priority, and they are not 
matched with the packet.  Consider also that Flow Entry 𝑒 in 
which 𝑒. 𝑝 = 𝑝  is matched with the packet.   In this case, 
we can regard 𝑒 as 𝑒 − ⋃ 𝑒,.., .  For every attribute in 
Flow Entry 𝑒, we can obtain “ v − ⋃ {𝑣},.., ”.   It is 
called a differential set value, which was referred to previously.  
If v − ⋃ {𝑣},.., = ∅, then the network element gives 
up the transfer of the packet.   The value is represented as ⊥ in 
this case. 

D. Detailed algorithm 
We define Function 𝑏(𝑒, ⋯ , 𝑒 , ℎ )  as the header 

space at Incoming Port 𝑒. 𝑝  of the flow leaving Port 𝑒 . 𝑝  with Header Space ℎ  by it being applied with a 
sequence of Flow Entries 𝑒, ⋯ , 𝑒 .   It is defined in Eq. (9).  𝑏(𝑒, ⋯ , 𝑒 , ℎ )  ≝ ζ ∘ … ∘ ζ (ℎ ) (9)   

Then, using 𝑏(𝑒, ⋯ , 𝑒 , ℎ ) , we define 𝑏 (𝑝 , 𝑝 , ℎ ), which calculates the header space at Port 𝑝  of the flows to Port 𝑝  with Header Space ℎ .  This is 
defined as:  𝑏 (𝑝 , 𝑝 , ℎ )

≝   𝑏(𝑒, ⋯ , 𝑒 , ℎ ) 𝑒, ⋯ , 𝑒  are matced  entries in a flow from 𝑝  to 𝑝 .  (10)   
Equation (10) means the union of the header spaces of 𝑏(𝑒, ⋯ , 𝑒 , ℎ ) of all paths from Ports 𝑝  to 𝑝 . 

We define 𝜁(ℎ) as the composition of two functions: m# 
and a#:  𝜁(ℎ) ≝ m#(𝑒. m) ∘ a#(𝑒. a)(ℎ) (11)   

First, we define m#: 𝑀 → (𝐻→ 𝐻). Function m#(𝑒. m)(ℎ) 
calculates a header space that is applied to Matching Rule 𝑒. m ∈ 𝑀 and results in Header Space ℎ. 

TABLE II. summarizes attributes of the header space of 
packets that are the calculated results of m#(𝑒. m)(ℎ).  Line 1 
in the table indicates an attribute of the header space ℎ of a 
given incoming packet.  Column 1 in the table indicates an 
attribute of the matching rule of Flow Entry 𝑒.   

Second, we define a#: 𝐴→ (𝐻→ 𝐻).  Function a#(𝑒. a)(ℎ) 
calculates the header space that is applied to Action 𝑒. a ∈ 𝐴 
and results in Header Space ℎ.   

TABLE III. summarizes the attributes of the header space 
of incoming packets that are the calculated results of a#(𝑒. a)(ℎ) . Column 1 in the table shows an attribute of the 
action of Flow Entry 𝑒.  An attribute of the action is a direct 
value (i.e. v), or 𝐓, and it does not take a value space, while 
that of the matching rule in TABLE II.  takes a value space as 
well as a direct value and 𝐓.   

Notice that the return values of 𝜁(ℎ) in B-HSA are the 
same with the return values of ϕ (ℎ) if ℎ is in the domain of 
Function ϕ .  However, the domain of Function 𝜁 is wider 

than that of Function  ϕ .  For example, consider that the 
value of an attribute in the matching fields in Flow Entry 𝑒 is 𝑒. m = v and the value of the attribute is 𝑒. a = 𝐓.  Function ϕ (𝐓) =⊥ while 𝜁(𝐓) = m#(𝑒. m) ∘ a#(𝑒. a)(𝐓) = v.  Then, ϕ (𝐓) ≠ 𝜁(𝐓). 

We will explain how isolation and reachability are verified 
by using these functions.    

A network operator assumes that Slice S has both Terminal 
Point 𝑡 @  with Header Space ℎ @  at Port p  and 
Terminal Point 𝑡 @  with Header Space ℎ @  at Port 𝑝 .   

Isolation is satisfied if ℎ @ ⊇  𝑏 𝑝 , 𝑝 , ℎ @ .  
This is because all flows arriving at Terminal Point t @  
leaves from Terminal Point 𝑡 @ , and all flows from terminal 
points other than 𝑡 @  do not arrive at Terminal Point 𝑡 @ .   

Reachability is satisfied if ℎ @ ⊆  𝑏 𝑝 , 𝑝 , ℎ @ .  This is because all flows 
from Terminal Point 𝑡 @  arrive at Terminal Point 𝑡 @ .   

TABLE II.  DEFINITION OF MATCHING RULE OF BACK-TRACE FUNCTION: 𝐦# 𝐦#(𝒆. 𝐦)(𝒉) 𝒉= 𝐯′  𝒉= 𝐩′ 𝒉= 𝐓 𝒆. 𝐦 = 𝐯  v if v=v’, ⊥ if v ≠ v′ v if v ∈ p′, ⊥ if v ∉ p′ V 𝒆. 𝐦 = 𝐩 v′ if v′ ∈ p, ⊥ if v′ ∉ p 
p' if p′ ⊂ p, 
p if p ⊂ p′, ⊥ if p ∩ p = ∅  

P 

𝒆. 𝐦 = 𝐓  v' p' T 

TABLE III.  DEFINITION OF ACTION PART OF BACK-TRACE FUNCTION: 𝐚# 𝐚#(𝒆. 𝐚)(𝒉) h=v’ h=p’ h=T 𝒆. 𝐦 = 𝐯  T if v=v’, ⊥ if v ≠ v′ T if v ∈ p′, ⊥ if v ∉ p′ T 𝒆. 𝐦 = 𝐩 v' p' T 

E. Estimation of Performance 
B-HSA can re-use the calculated results that were 

calculated on the way of other back-trace paths.  Therefore, 𝜁(ℎ) is calculated once for every port.   We can estimate that 
the verification time for the whole network is O(𝑝𝑅) .  The 
number of edge ports 𝑝 is proportional to the number of flow 
entries 𝑅, and then O(𝑝𝑅) = O(𝑅 ).  This means that B-HSA 
is more scalable than HSA, in which the verification time is O(𝑑𝑅 ) as was explained in Section I.  We will confirm this 
estimation through the evaluation in Section VI. 

V. PROOF OF THE PROPOSED ALGORITHM 

A. Propositions to be proved 
We will describe the propositions to be proved before we 

give the proof of the correctness of the verification in B-HSA.   
We define 𝑓(𝑝 , 𝑝 , ℎ ), which returns the header space at 
Port 𝑝  of the flow that leaves Port 𝑝  with Header Space  



ℎ .   Function f (𝑝 , 𝑝 , ℎ ) is defined, similarly to Eq. 
(12). 

 𝑓(𝑝 , 𝑝 , ℎ )
≝   𝑓(𝑒, ⋯ , 𝑒 , ℎ ) 𝑒, ⋯ , 𝑒  are matced  entries in a flow from 𝑝  to 𝑝 .  (12)   

where 𝑓(𝑒, ⋯ , 𝑒 , ℎ ) ≝ ϕ ∘ … ∘ ϕ (ℎ ). 

TABLE IV summarizes the attributes of header space of 
outgoing packets that are the calculation result of ϕ (ℎ).  Line 
1 in the table indicates an attribute of header space ℎ of a given 
incoming packet.  Column 1 in the table indicates an attribute 
of the action of Flow Entry 𝑒, and Column 2 indicates an 
attribute of the matching rule.   Variables v , v , and  v" 
represent direct values. Variables p  and p  represent value 
spaces. Value ⊥ means that not answer has been derived, and 
we cannot longer continue calculation if one of the attributes 
results in ⊥.   

By using 𝑓(𝑝 , 𝑝 , ℎ ), we define a proposition for 
isolation and that for reachability. 

l (Proposition 1: isolation): A flow with Header Space 𝑏 (𝑝 , 𝑝 , ℎ ) at Port 𝑝  goes to Port 𝑝 , and 
the header space of the flow at Port 𝑝  includes ℎ .   
In short, 𝑓 𝑝 , 𝑝 ,  𝑏 (𝑝 , 𝑝 , ℎ ) ⊇ ℎ  

Isolation is proved with Proposition 1 if  𝑓 𝑝 , 𝑝 ,  𝑏 (𝑝 , 𝑝 , ℎ ) ⊇ ℎ .  That means that 
the flow that does not belong to ℎ  does not belong to 𝑏 (𝑝 , 𝑝 , ℎ ), neither.  Therefore, we can prove isolation 
if we can prove Proposition 1.  

l (Proposition 2: reachability): A flow with Header 
Space 𝑏 (𝑝 , 𝑝 , ℎ )  at Port 𝑝  goes to Port  𝑝 , and the header space of the flow at Port 𝑝  
included in ℎ .  In short, 𝑓 𝑝 , 𝑝 ,  𝑏 (𝑝 , 𝑝 , ℎ ) ⊆ ℎ . 

Reachability is proved with Proposition 2 if  𝑓 𝑝 , 𝑝 ,  𝑏 (𝑝 , 𝑝 , ℎ ) ⊆ ℎ  .  It means that a 
flow with Header Space ℎ  at Port 𝑝  always arrives at Port 𝑝  with ℎ .  We can therefor prove the reachability if we 
can prove Proposition 2.   

To prove both Proposition 1 and 2, we will just prove 𝑓 𝑝 , 𝑝 ,  𝑏 (𝑝 , 𝑝 , ℎ ) = ℎ . 

Function 𝜁(ℎ) , which is a component of  𝑏 (𝑝 , 𝑝 , ℎ ) , is defined as 𝜁(ℎ) = m#(𝑒. m) ∘a#(𝑒. a)(ℎ) .  We can therefore calculate 𝜁(ℎ)  by using 
TABLE II. for Functionm# and TABLE III for Function a# .   
TABLE V. summarizes the results of  𝜁(ℎ) calculated from 
TABLE II and TABLE III.. 

Similarly with  𝑏 (𝑝 , 𝑝 , ℎ ) , Function 𝑓(𝑝 , 𝑝 , h ) consists of ϕ .  Function ϕ  is defined in 
TABLE IV.  We can prove 𝑓 𝑝 , 𝑝 ,  𝑏 (𝑝 , 𝑝 , ℎ ) = ℎ  if the results from 
applying TABLE IV to TABLE V are identical to the input 
header spaces in TABLE IV.    

TABLE IV.  PACKET MATCHING RULE WITH FLOW ENTRY: 𝜙  

entry packet 𝐯𝟎 𝐩𝟎 𝐓 
Action Matching 
e.a=v” e.m=v v’’ if v = v , ⊥ if v ≠ v  

v’’ if v’’ ∈ p , ⊥ if v′′ ∉ p  
v’’ 

e.m=p v’’ if v ∈ p, ⊥ if v ∉ p 
v’’ if p ∈ p ⊥ if p ∉ p 

v’’ 
e.m=T v'’ v'’ v’’ 

e.a=T e.m=v v if v = v , ⊥ if v ≠ v  
v if v ∈ p , ⊥ if v ∉ p  

v 

e.m=p v  if v ∈ p, ⊥ if v ≠ v  
p  if p ⊂ p, 
p if p ⊂ p , ⊥ if p ∩ p = ∅ 

p 

e.m=T v  p  𝐓 

TABLE V.  DEFINITION OF BACK-TRACE FUNCTION 𝜁 

Entry Packet 𝐯′ 𝐩 T 
Action               Matching 

e.a=v” e.m=v v if v’’=v’, ⊥ if v′′ ≠ v′ v if v ∈ p , ⊥ if v′′ ∉ p′ T 

e.m=p p if v’’=v’, ⊥ if v′′ ≠ v′ p if v′′ ∈ p′, ⊥ if v′′ ∉ p′ T 

e.m=T v'’ if v’’=v’, ⊥ if v′′ ≠ v′ v'’ if v′′ ∈ p′, ⊥ if v′′ ∉ p′ T 

e.a=T e.m=v v if v=v’, ⊥ if v ≠ v′ v if v ∈ p′, ⊥ if v ∉ p′ v 

e.m=p v′ if v′ ∈ p, ⊥ if v′ ∉ p 
p' if p′ ⊂ p, 
p if p ⊂ p′, ⊥ if p ∩ p = ∅ 

p 

e.m=T v' p' T 

B. Proof 
We present the calculated results, in TABLE VI, from 

applying TABLE IV to TABLE V, which mean f 𝑝 , 𝑝 ,  𝑏 (𝑝 , 𝑝 , ℎ ) .  Column 1 in TABLE IV, 
indicates an attribute of the action of given Flow Entry 𝑒.  
Column 2 indicates that of the matching rule.   Column 3 
indicates the header space at Outgoing Port 𝑒. p .   Column 4 
is the condition under which the calculation of each line in 
TABLE IV is executed.  Column 5 has the calculated results, 
which are the header spaces at the incoming port, for Back-
trace Function 𝜁(ℎ).  The last column is the header space at 
the outgoing port.  This is calculated with Transfer function ϕ  
applied to the header space at the incoming port.  The header 
spaces in Column 6 is ⊥, or is equals to the header space  in 
Column 3.  We can ignore the case of ⊥, because there are no 
flows in this case.  Therefore, ϕ 𝜁(ℎ) = ℎ  holds.  It is 
obvious that f 𝑝 , 𝑝 ,  𝑏 (𝑝 , 𝑝 , ℎ ) = ℎ  holds 
because ϕ 𝜁(ℎ) = ℎ  and the definitions of f  and  𝑏 .      
■ 

 

 



TABLE VI.  PROOF OF CORRECTNESS 

Entry packet 𝐜𝒐𝒖𝒕Cond. 𝜻𝒆(𝒉) 𝛗𝒆 𝜻𝒆(𝒉)  
Action Matching 
e.a=v” e.m=v v′ if v′ = v" v v′ 

if v′ ≠ v" ⊥ ⊥ 
e.m=p v′ if v′ = v" p v′ 

if v′ ≠ v" ⊥ ⊥ 
e.m=T v′ if v′ = v" v" v" 

if v′ ≠ v" ⊥ ⊥ 
e.a=T e.m=v v′ if v′ = v v v′ 

if v′ ≠ v ⊥ ⊥ 
e.m=p v′ if v′ ∈ p v′ v′ 

if v′ ∉ p ⊥ ⊥ 
e.m=T v′  v′ v′ 

VI. EVALUATIONS WITH PROTOTYPE 
We implemented a prototype of the B-HSA algorithm, 

which calculates all the pairs of the header space at incoming 
ports and that at outgoing ports.  The B-HSA algorithm is 
written in Java, and peripheral modules to network elements 
are written in Ruby.   We used the SMT solver Simple 
Theorem Prover (STP) [10], which checks whether the 
differential set value explained in Section IV is empty or not.   
We also implemented the HSA algorithm discussed in Section 
III in Java, to compare these two algorithms.   The Hassel [1] is 
an implementation of the HSA algorithm and it is optimized 
with the implementation techniques mentioned in [1].  Hassel 
is, therefore, expected to be faster than our HSA 
implementation.   We implemented the HSA algorithm by 
modifying the B-HSA prototype instead of Hassel because we 
only wanted to compare purely the algorithms:  We exclude the 
differences caused in the implementation techniques: We just 
replaced the back-trace function 𝜁 in our B-HSA prototype 
with the transfer function ϕ and its inverse function ϕ , and 
implemented a prototype of the HSA algorithm.   

A. Feasibility test 
We intentionally created an erroneous configuration in the 

sample network and checked whether the prototype tool could 
detect it.  Fig. 6 outlines the sample network we developed 
with OpenFlow controller Trema [12] and Open vSwitches.  It 
is a two-layered network having a root L3 switch and two L2 
switches under the L3 switch.  We created a configuration of 
two VLANs, which were separated from each other.  Each 
edge port of the L2 switches was assigned a VLAN ID, and, in 
short, each port belonged to a VLAN.   

First, we set flow entries in the L2 switches such that these 
two VLANs are separated.  The B-HSA prototype in this 
normal case calculated the header spaces at incoming ports for 
the given outgoing ports.  We used Weka [11] to display the 
calculation results in Fig. 6.   The x-axis shows VLAN IDs and 
the y-axis shows the outgoing ports.   Fig. 7 shows that the 
flows with different VLAN IDs are clearly separated. 

Second, we intentionally created an erroneous 
configuration in the sample network.  We removed the 
matching rule for VLAN IDs from some flow tables.   Fig. 8 
presents the results obtained from verifying the network with 

the erroneous configuration.  It demonstrates that the flow with 
any VLAN ID can enter any network slices.   This means that 
isolation is violated.   We found through this evaluation that the 
prototype tool could correctly detect violations. 

 
Fig. 6. Feasibility evaluation environment 

B. Evaluation of Performance  
We evaluated the performances of the B-HSA and HSA 

algorithms on the machine (Xeon X5690 3.46GHz 2CPUs, 
90GB).  Fig. 10 outlines the evaluation environment.  We have 𝑁 L3 switches, in the top level, which make a loop path.   We 
have 𝑀 L2 switches in the second level under each L3 switch.  
We have 𝑃 L2 switches in the third level under each L2 switch 
in the second level.  Each port of the L2 switch in the third 
level is assigned to a VLAN and it is connected to a host.  We 
have 𝐿 VLANs in the network, and, therefore, each L2 switch 
in the third level has (𝐾𝐿+ 1) ports including an uplink port.   

Network slices are defined in the L2 switches in the second 
level in this environment.  In other words, we have (𝑁𝑀) L2 
switches in the second level, where each port of the L2 
switches in the second level is assigned to 𝐿 VLANs, and, 
therefore, we have totally (𝑁𝑀𝐿) VLANs (i.e. (𝑁𝑀𝐿) network 
slices) in this network.   

We measured the time to verify isolation under the 
environment while changing the values of 𝑁, 𝑀, 𝐾, 𝐿, and 𝑃.  
For the verification, the prototype tool reads the flow tables 
stored in the L3 switches in the first level and those in the L2 
switches in the second level. 

Fig. 11 plots the results obtained from the evaluations.  The 
x-axis plots the total number of flow entries in the network, and 
the y-axis plots the verification time in seconds. B-HSA is 
much faster than HSA.  There is an O(𝑅 ) approximate curve 
of HSA. The R squared value (R  in the graph) is about 0.95.  
That is very similar to the estimation of HSA in Subsection 
IV.E.    

B-HSA can verify the network with more than 10,000 flow 
entries. Fig. 11 plots the verification time of B-HSA including 
the area more than 10,000 flow entries.  It plots an O(𝑅 ) 

 



approximate curve.  The R square value is about 0.97.  That is 
very similar to the estimation of B-HSA in Subsection IV.E.    

 
Fig. 7. Verification Result (normal case)  

 
Fig. 8. Verification Result (isolation violation) 

 
Fig. 9. Performance evaluation environment 

 
Fig. 10. Performance of verifications of B-HSA and HSA 

 
Fig. 11. Performance of verifications of B-HSA 

VII. CONCLUSION 
We proposed a new verification algorithm that was an 

extension of well-known HSA.  It only focused on the isolation 
and reachability properties of network, but it was much faster 
than HSA.  We provided a proof of the correctness of the 
proposed method, and we confirmed its performance through 
the prototypes.   

Future work is as follows: 

l We assumed that the routing configuration of most 
network elements could be modeled with a flow table, 
but some of these had very complex structure, such as 
the flow table pipeline in OpenFlow v1.1.  As some 
work [5] has been able to handle the pipeline, we have 
to consider it. 

l HSA has some optimization techniques [1], and some 
of them can also be used in B-HSA.  For example, we 
expect that we can use the “IP-able Compression [3]”, 
“Lookup based Search”, in B-HSA.  We intended to 
try them and will evaluate the performance. 
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