
A fast method of verifying network routing
with back-trace header space analysis
Toshio Tonouchi Satoshi Yamazaki Yutaka Yakuwa Nobuyuki Tomizawa†

Knowledge Discovery Laboratories, NEC
Kanagawa, Japan

Abstract— It is a tough job for operators to make perfectly

accurate configuration of many network elements in large
networks. Erroneous configurations may cause critical incidents
in network, on which many ICT systems are running. It may
also result in a security hole as well as system incidents. There
has been much work on preventing erroneous configurations, but
this has taken a lot of time to verify routing with large networks.
We propose a new method of verifying network routing. It only
focuses on verifying isolation and reachability, but it can verify
these properties with O(R2), where R is the number of flow
entries, while the performance of an existing method of
verification is O(R3). We also provide a proof of the correctness
of our method.

Keywords— network configuration, verification, isolation,
reachability, flow table, routing

I. INTRODUCTION
Networks need to be stable and reliable because they are

the infrastructures of ICT systems. Erroneous configurations
may damage the stability and reliability of the network and, as
a result, those of ICT systems running on them.

We handle two properties to retain in networks. The first is
reachability where a packet with a given packet header from a
given incoming port always reaches the correct outgoing port
with the correct packet header. Reachability is broken if some
packets with a header from an incoming port does not reach at
the outgoing port with the proper header. It may cause a
communication failure.

The second property is isolation where a packet belonging
to a network slice cannot reach another network slice. A
network slice is a kind of closed network, in which hosts can
communicate with one another, but no hosts in a network slice
can communicate with the hosts in other network slices. This is
a security risk if the isolation is not satisfied. Malicious user
can illegally access a closed network slice.

There has been much research on verifying reachability and
isolation in the given network [1][2][4][5][6][7][8]. The
technologies in this research read configurations, such as flow
tables in network elements, and checks reachability, isolation
and other properties, such as NoForwardingLoops, DirectPaths,
StrictDirectPaths and so on[14]. However, the verification
time takes time when a large network is verified. For example,
a method of header space analysis (HSA) [1] is adapted to the
network configuration of the Stanford University campus
network, which has 750,000 flow entries [1]. Their researchers
reduced 750,000 flow entries to 4,200 flow entries with
Optimal Routing Table Constructor (ORTC) method [3], and

they used HSA to check the reachability of a flow between a
pair of operator zones (OZs) within an average of 13 seconds.
There were 14 OZs at Stanford University, and we estimate the
time of verifying the whole Stanford campus network to take 13 !!()! = 1,183 [sec]. Although the HSA is one of the
fastest methods [9], its time to verify the flows with one
incoming port is O(𝑑𝑅) [1] , where 𝑑 is the diameter of the
network and 𝑅 is its number of the flow entries. The
verification time for the whole network is O(𝑡𝑑𝑅), where 𝑡 is
the number of edge ports. The number of edge ports 𝑡 is
proportion to the number of flow entries 𝑅, and then O(𝑡𝑑𝑅) ∝ O(𝑑𝑅) . As mentioned in [1], O(𝑑𝑅) is the
worst case, and many effective techniques have been used to
implement HSA, but more efficient verification algorithms are
required to verify larger network, such as those for
telecommunications.

We propose a new method of fast verification that is called
back-trace header space analysis (B-HSA), in this paper. The
method is a variation of the HSA. Although B-HSA only
focuses on the verification of only reachability and isolation, it
runs faster than the HSA.

The two main contributions of this paper are:

l We proposed a fast method of verification running
with O(𝑅) , whose performance we tested and
confirmed by estimating and evaluating with a
prototype verification tool.

l We provide a proof that the proposed method can
correctly verify reachability and isolation.

The remainder of this paper is organized as follows. Section
II explains our classification of the existing methods of
verifying configurations and describes their characteristics and
performance. Section III explains the algorithm for the HSA,
which is the base algorithm for the proposed method. Further,
Section IV describes the algorithm for B-HSA. We provide a
proof of B-HSA in Section V and present the results we
obtained from the evaluations in Section VI.

II. RELATED WORK
There are two categories for methods of verifying routing

configurations, i.e. graph-based and logic-based approaches.
Graph-based approaches create a graph that represents the
flows in the target network. The graph is checked as to
whether it has given properties, such as reachability or the
isolation. HSA [1], VeriFlow [7], and NetPlumber [8] are
graph-based approaches.

†Nobuyuki Tomizawa resigned from NEC.

Logic-based approach creates Boolean expressions that
represent the conditions of packet transfer defined in flow
tables. A satisfiability (SAT) solver or a satisfiability modulo
theorem (SMT) solver checks whether there is a solution that
satisfies the Boolean expressions. FlowChecker [2], Anteater
[4], Flover [5], and DNA [6] are logic-based approaches. For
example, FlowChecker is an extension of ConfigChecker [13]
to OpenFlow. It represents a packet header and the location of
the packet as Boolean expressions, and a packet transfer as the
relation between Boolean expressions before the transfer and
those after the transfer. It translates these relations of Boolean
values into Binary Decision Tree (BDD) expressions and it
uses symbolic model checking with an SMT solver in order to
detect a violation of properties given in Computation Tree
Logic (CTL) expression.

Graph-based approaches are generally faster than those that
logic-based approach [9]. The most well-known graph-based
approach is HSA, but it still has problems with scalability, as
was explained in Section I.

Some differential methods of verification have been
proposed, such as VeriFlow [7] and NetPlumber [8], that are
faster than HSA. They monitor update operations of
configurations, and check whether these operations violate
properties or not. Although differential verifications can verify
configurations in real time, they have to assume that the
configurations are correct at the initial time, and they are
gradually updated like those in the OpenFlow network. They
cannot effectively work in networks that have conventional
network elements. This is because the configurations for
conventional network elements are initially set once, and they
are seldom changed.

III. ALGORITHM FOR HSA
In this paper, we use mathematical variables in TABLE 1.

HSA considers the attributes of a packet header as a
sequence of bits. It uses a ternary logic, in which a bit can be
zero, one, or 𝐓. 𝐓 can take a value of either zero or one. This
bit sequence is called a header space ℎ ∈ H. We use ⊥ if the
calculation of header spaces results in an empty set. This
means that a packet does not reach any place if we encounter⊥
in the process of calculating the header space.

HSA represents a set of the flow tables in the target
network as a transfer function ϕ : 𝐻→ 𝐻. Transfer function ϕ returns a header space of the output packet from the given
header space of packet matched with Flow Entry 𝑒. .

In order to define properties to be kept in this paper, we
first define that a terminal point, 𝑡∈ (𝐻× 𝑃), is a pair of the
port of the edge switch in the network and the header space of a
flow at the port. We define a network slice as being a group of
terminal points that can communicate with one another but not
with terminal points in different network slices.

We define an isolation property as being satisfied if and
only if terminal points in different network slices cannot
communicate with one another. We expect that the verification
of isolation shall judge whether isolation holds or not and that,
in case of the violation, it shall show all header spaces violating
the isolation.

We define a reachability property as being satisfied if and
only if all terminal points in the same network slice can
communicate with one another.

We show these properties with an example in Fig. 1.
Terminal Point 𝑡 and 𝑡 belong to the same Slice 𝑆 and packets between 𝑡 and 𝑡 should be reachable. On the
other hand, Terminal Point 𝑡 and Terminal Point 𝑡′ in another
Slice 𝑆′ should not communicate. If it could, this is isolation
violation.

Fig. 2 indicates how HSA verifies the network has been
isolated. Firstly, HSA calculates an outgoing header space ℎ @ at Port 𝑝 when a flow starting at Port 𝑝 in Slice 𝑆 is
applied to sequence of Flow Entries 𝑒, 𝑒, and 𝑒 as Eq. (1). ℎ @ = ϕ ∘ ϕ ∘ ϕ ℎＴ , (1)
where all bits in Packet Header ℎＴ are 𝐓s. This is the forward
phase in Fig. 2.

In backward phase in Fig. 2, Header Space ℎ @ at Port 𝑝
can be calculated with Eq. (2) by using the calculation result ℎ @ of Eq. (1). ℎ @ = ϕ ∘ ϕ ∘ ϕ ℎ @ , (2)
where ϕ : 𝐻→ 𝐻 is the inverse function of ϕ . In other word, ϕ is defined as: ϕ ℎ ≝ {ℎ |ϕ(ℎ) = ℎ}.

Assume that an operator defines that Terminal Port 𝑡 = ℎ @ , 𝑝 and Terminal Port 𝑡 = ℎ @ , 𝑝 are in
Slice 𝑆. HSA detects the isolation violation in 𝑆 if Header
Space ℎ does not include Header Space ϕ ∘ ϕ ∘ϕ ℎ @ . In short, ℎ @ ⊅ ϕ ∘ ϕ ∘ ϕ ℎ @ .

Consider the case of the isolation violation, ℎ @ ⊅ ϕ ∘ϕ ∘ ϕ ℎ @ . Here, ℎ @ − ϕ ∘ ϕ ∘ ϕ ℎ @ is
not an empty set. We define this header space as ℎ @ ≝̅ℎ @ − ϕ ∘ ϕ ∘ ϕ ℎ @ . In short, Header Space ℎ @ ̅is the remaining set of the possible header space at Port 𝑝 of the flow initiating from Port 𝑝 with Header Space ℎ in
Network Slice S. We then calculate the header space, at Port 𝑝, of the flow terminating with ℎ @ ̅at Port 𝑝. We define
this header space as ℎ @ ,̅ and calculate it with Eq. (3). ℎ @ =̅ ϕ ∘ ϕ ∘ ϕ _ ∘ ϕ ℎ @ ,̅ (3)

Notice that HSA can detect isolation violation in the
forward phase, but it needs the backward phase if the header
space with which a packet violates the isolation.

HSA has two main advantages. First, it can calculate all
the header space ℎ @ ̅that violates isolation. A ping test,
which is usually used in network test, cannot check all the
header space because it can only carry out the tests by using
sample data. Second, HSA can be used in networks with many
kinds of network elements (e.g. switches, routers, and
firewalls). This is because the routing configurations of many
kinds of network elements can be modeled as a flow table.

TABLE I. VARIABLES

Variable explanation 𝑝∈ 𝑃 Physical port of switches. It is identical in the
network. 𝑆 Network Slice ℎ @ ∈ 𝐻 ℎ @ ∈ 𝐻

Header space of an incoming packet ℎ @ in
Slice 𝑆 at Port 𝑝 and that of outgoing packet
(ℎ @). ϕ : 𝑃→ 𝑃 HSA transfer function which calculates the
output header space when the input header
space is given and is applied to Flow Entry 𝑒. ϕ : 𝐻→ 𝐻 Inverse function of ϕ . It calculates a header
space at an input port 𝑒. 𝑝 when the header
space of the output packet is given, and it is
the applied result of Flow Entry 𝑒. 𝜁: 𝐻→ 𝐻 B-HSA backward transfer function which
calculates a header space at Input Port 𝑒. 𝑝
when the header space of the output packet is
given, and it is the applied result of Flow
Entry 𝑒.

However, HSA has one major disadvantage in that it lacks
scalability as was mentioned in Section I.

Fig. 1. Isolation Property and Rechability Property

Fig. 2. Header Space calculation with HSA

Fig. 3. Header Space calculation with B-HAS

IV. BACK-TRACE HEADER SPACE ANALYSIS

A. Overview
We propose a back-trace header space analysis (B-HSA),

which can be applied to large scale networks. Fig. 3 has an
overview of B-HSA. Consider that Flow 𝑓 is being initiated
from Port 𝑝. B-HSA traces a path for Flow 𝑓 from Port 𝑝, in
the forward phase, by referring to the incoming port and the
outgoing port of flow entries. For example, the thin blue lines
in Fig. 2 indicates a path (SW1→SW2→SW3), and Flow 𝑓finally reaches Port 𝑝. B-HSA remembers the sequence of
Flow Entries 𝑒, 𝑒, and 𝑒 that are used in Flow 𝑓. Notice that
B-HSA only refers to the incoming port and the outgoing port
of the flow entries in this phase, but it does not perceive the
matching rule or actions of the flow entries. While HSA
calculates a header space in this forward phase, B-HSA does
not.

Second, in the backward phase, B-HSA backwardly traces
the path that is found in the forward phase. B-HSA in Fig. 3
calculates header spaces by referring to flow entries in order of 𝑒, 𝑒, and 𝑒. Assume that an operator defines that Terminal
Port 𝑡 = ℎ @ , 𝑝 and Terminal Port 𝑡 = ℎ @ , 𝑝
are in Slice 𝑆. B-HSA uses a back-trace function 𝜁: 𝐻→ 𝐻, in
this calculation, which is defined in Subsection IV.D, and it
calculates header space ℎ′ @ at Port 𝑝 of Slice 𝑆 with Eq.
(4). ℎ′ @ = 𝜁 ∘ 𝜁 ∘ 𝜁 ℎ @ (4)

B-HSA can detect an isolation violation if ℎ @ calculated
from ℎ @ has an intersection of the complement set of ℎ @ .
In another word B-HSA checks if ℎ′ @ − ℎ @ ≠ 𝜙. An
incoming packet from Port 𝑝 with a header in Header Space ℎ′ @ − ℎ @ violates the isolation of Slice 𝑆.

B. Differences between HSA and B-HSA
HSA mainly calculates header spaces in the forward phase,

but B-HSA only calculates them in the backward phase. This
is why B-HSA is faster than HSA. B-HSA can re-use the
calculated results that have been calculated along the way of
other back-trace paths. See Fig. 4. Consider that B-HSA
calculates Header Space ℎ @ in Flow 𝑓 initiating from Port 𝑝 with Eq. (5). ℎ @ = 𝜁 → ∘ 𝜁 ∘∙∙ ℎ @ (5)
where ℎ @ is the outgoing header space at the terminal port 𝑝 of Flow 𝑓 in Fig. 4. In other word, B-HSA also calculates
Header Space ℎ @ Flow 𝑓 initiating from Port 𝑝 with Eq.
(6). ℎ @ = 𝜁 → ∘ 𝜁 ∘∙∙ ℎ @ (6)

In this case, B-HSA can re-use the calculated results 𝜁 ∘∙∙ ℎ @ in Eq. (5) for the calculation of ℎ @ in Eq. (6).

HSA cannot re-use the calculated results in the backward
phase. See Fig. 5. HSA calculates the header space Port 𝑝 of
Flow 𝑓 with Eq. (7).

SW
2

SW
1

SW
3

p0 p1 p2 p3 p4 p5

to =(VID:3, p5)ti =(VID:2, p0)

t'I =(VID:4, p0) t'o =(VID:4, p5)

Physical network

Slice S

Slice S’

e2

Isolation violation

e1 e3

e'2e'1 e'3
reachable

reachable

 ℎ → = ϕ → ∘ ϕ ∘∙∙∘ ϕ → ∘∙∙ (ℎ) (7)
It calculates the header space at Port 𝑝 of Flow 𝑓 with Eq. (8). ℎ @ = ϕ → ∘ ϕ ∘∙∙∘ ϕ → ∘∙∙∙ (ℎ) (8)

Notice that Sub-equation ϕ ∘∙∙∘ ϕ → ∘∙∙ (ℎ) in Eq. (7)
and ϕ ∘∙∙∘ ϕ → ∘∙∙∙ (ℎ) in Eq. (8) are not the same. This is
the reason why HSA cannot reuse the calculation results in
backward phase while B-HSA can.

HSA has a similar technique of optimization, called
“Bookmarking Applied Transfer Function Rules” [1]. It
memorizes a transfer function used in a process of the forward
phase, and refers to it in the corresponding process in the
backward phase. However, it only skips the recalculation of a
transfer function, which is used in calculating its inverse
function. B-HSA can re-use the result values calculated with
the back-trace functions.

However, B-HSA has disadvantages: It cannot detect a loop
route, which is a critical failure in the network. This is because

a loop route defined in packet forwarding with flow entries,
and the backward trace cannot detect it.

Fig. 4. B-HSA can re-use 𝜁 ∘∙∙ ℎ @

Fig. 5. HSA cannot reuse the calculation result in another flow.

Another disadvantage is that B-HSA does not calculate the
header space at outgoing ports, while HSA does. Some
operators want to know the header space at the outgoing port.
In that case, he/she has to apply the HSA transfer function after
the B-HAS calculates the header space at the incoming port.

The operator should choose HSA or B-HSA properly
depending on the situation.

C. Detailed algorithm: assumption
We will first describe assumptions before providing details

on the algorithm for B-HSA.

We assume a packet has 𝑘 attributes. An attribute value is a
direct value (e.g. an integer value, an IP address, …). A flow
table installed in a network element has flow entries. We
assume that a flow entry is a form of OpenFlow v1.0 because it
is a general form of a flow entry in many kinds of network
elements. Flow Entry 𝑒 consists of a quadruplet, i.e. incoming
port 𝑒. 𝑝 ∈ 𝑃, outgoing port 𝑒. 𝑝 ∈ 𝑃, matching rule 𝑒. m ∈ 𝑀, and action 𝑒. a ∈ 𝐴.

A matching rule has 𝑘 attributes that correspond to the
attributes of a packet. An attribute value is a direct value, a
value space (e.g. an IP subnet address, a differential set value
defined after, …), or 𝐓, which is matched with any attribute
value in a packet.

An action has also 𝑘 attributes. An attribute value in an
action is a direct value, or 𝐓.

A direct value v′ of a packet is matched with a direct value v of a matching rule if v′ = v A direct value v′ of a packet is
matched with a value space p if v′ ∈ p.

A packet coming from Incoming Port 𝑒. 𝑝 of a network
element is checked whether it is matched with Flow Entry 𝑒 in
the flow table installed in the network element. The packet is
matched with a flow entry if every attribute of the packet is
matched with the corresponding attribute of Flow Entry 𝑒.

If the network element finds Flow Entry 𝑒 with which the
incoming packet is match, the matched packet is applied to the
action 𝑒. a of the flow entry. If an attribute value of the action
is 𝐓, the corresponding attribute value of the packet is not
changed. If an attribute value of the action is a direct value v",
the corresponding attribute of the packet is changed to v".

After that, the packet leaves Outgoing Port 𝑒. 𝑝 ∈ 𝑃 of
the network element.

Notice that a packet and a matching rule have 𝑘 attributes,
and a network element independently matches each attribute of
the packet and that of the matching rule. We can therefore
consider an application of a matching rule or an action to a
packet header as being as independent application of an
attribute of the matching rule or the action to the corresponding
attribute of the packet, without loss of generality.

A flow table in a network element has plural flow entries
matched with Incoming Port 𝑝 . We assume each entry has a
totally ordered priority. A packet coming from Incoming Port 𝑝 is matched with the flow entry with the highest priority in
flow entries that can be matched with the packet.

Consider that a packet coming from Incoming Port 𝑝 and
several flow entries 𝑒 (𝑖= 0, … , 𝑔− 1) where 𝑒. 𝑝 = 𝑝 ,
they are in descending order of priority, and they are not
matched with the packet. Consider also that Flow Entry 𝑒 in
which 𝑒. 𝑝 = 𝑝 is matched with the packet. In this case,
we can regard 𝑒 as 𝑒 − ⋃ 𝑒,.., . For every attribute in
Flow Entry 𝑒, we can obtain “ v − ⋃ {𝑣},.., ”. It is
called a differential set value, which was referred to previously.
If v − ⋃ {𝑣},.., = ∅, then the network element gives
up the transfer of the packet. The value is represented as ⊥ in
this case.

D. Detailed algorithm
We define Function 𝑏(𝑒, ⋯ , 𝑒 , ℎ) as the header

space at Incoming Port 𝑒. 𝑝 of the flow leaving Port 𝑒 . 𝑝 with Header Space ℎ by it being applied with a
sequence of Flow Entries 𝑒, ⋯ , 𝑒 . It is defined in Eq. (9). 𝑏(𝑒, ⋯ , 𝑒 , ℎ) ≝ ζ ∘ … ∘ ζ (ℎ) (9)

Then, using 𝑏(𝑒, ⋯ , 𝑒 , ℎ) , we define 𝑏 (𝑝 , 𝑝 , ℎ), which calculates the header space at Port 𝑝 of the flows to Port 𝑝 with Header Space ℎ . This is
defined as: 𝑏 (𝑝 , 𝑝 , ℎ)

≝ 𝑏(𝑒, ⋯ , 𝑒 , ℎ) 𝑒, ⋯ , 𝑒 are matced entries in a flow from 𝑝 to 𝑝 . (10)
Equation (10) means the union of the header spaces of 𝑏(𝑒, ⋯ , 𝑒 , ℎ) of all paths from Ports 𝑝 to 𝑝 .

We define 𝜁(ℎ) as the composition of two functions: m#
and a#: 𝜁(ℎ) ≝ m#(𝑒. m) ∘ a#(𝑒. a)(ℎ) (11)

First, we define m#: 𝑀 → (𝐻→ 𝐻). Function m#(𝑒. m)(ℎ)
calculates a header space that is applied to Matching Rule 𝑒. m ∈ 𝑀 and results in Header Space ℎ.

TABLE II. summarizes attributes of the header space of
packets that are the calculated results of m#(𝑒. m)(ℎ). Line 1
in the table indicates an attribute of the header space ℎ of a
given incoming packet. Column 1 in the table indicates an
attribute of the matching rule of Flow Entry 𝑒.

Second, we define a#: 𝐴→ (𝐻→ 𝐻). Function a#(𝑒. a)(ℎ)
calculates the header space that is applied to Action 𝑒. a ∈ 𝐴
and results in Header Space ℎ.

TABLE III. summarizes the attributes of the header space
of incoming packets that are the calculated results of a#(𝑒. a)(ℎ) . Column 1 in the table shows an attribute of the
action of Flow Entry 𝑒. An attribute of the action is a direct
value (i.e. v), or 𝐓, and it does not take a value space, while
that of the matching rule in TABLE II. takes a value space as
well as a direct value and 𝐓.

Notice that the return values of 𝜁(ℎ) in B-HSA are the
same with the return values of ϕ (ℎ) if ℎ is in the domain of
Function ϕ . However, the domain of Function 𝜁 is wider

than that of Function ϕ . For example, consider that the
value of an attribute in the matching fields in Flow Entry 𝑒 is 𝑒. m = v and the value of the attribute is 𝑒. a = 𝐓. Function ϕ (𝐓) =⊥ while 𝜁(𝐓) = m#(𝑒. m) ∘ a#(𝑒. a)(𝐓) = v. Then, ϕ (𝐓) ≠ 𝜁(𝐓).

We will explain how isolation and reachability are verified
by using these functions.

A network operator assumes that Slice S has both Terminal
Point 𝑡 @ with Header Space ℎ @ at Port p and
Terminal Point 𝑡 @ with Header Space ℎ @ at Port 𝑝 .

Isolation is satisfied if ℎ @ ⊇ 𝑏 𝑝 , 𝑝 , ℎ @ .
This is because all flows arriving at Terminal Point t @
leaves from Terminal Point 𝑡 @ , and all flows from terminal
points other than 𝑡 @ do not arrive at Terminal Point 𝑡 @ .

Reachability is satisfied if ℎ @ ⊆ 𝑏 𝑝 , 𝑝 , ℎ @ . This is because all flows
from Terminal Point 𝑡 @ arrive at Terminal Point 𝑡 @ .

TABLE II. DEFINITION OF MATCHING RULE OF BACK-TRACE FUNCTION: 𝐦# 𝐦#(𝒆. 𝐦)(𝒉) 𝒉= 𝐯′ 𝒉= 𝐩′ 𝒉= 𝐓 𝒆. 𝐦 = 𝐯 v if v=v’, ⊥ if v ≠ v′ v if v ∈ p′, ⊥ if v ∉ p′ V 𝒆. 𝐦 = 𝐩 v′ if v′ ∈ p, ⊥ if v′ ∉ p
p' if p′ ⊂ p,
p if p ⊂ p′, ⊥ if p ∩ p = ∅

P

𝒆. 𝐦 = 𝐓 v' p' T

TABLE III. DEFINITION OF ACTION PART OF BACK-TRACE FUNCTION: 𝐚# 𝐚#(𝒆. 𝐚)(𝒉) h=v’ h=p’ h=T 𝒆. 𝐦 = 𝐯 T if v=v’, ⊥ if v ≠ v′ T if v ∈ p′, ⊥ if v ∉ p′ T 𝒆. 𝐦 = 𝐩 v' p' T

E. Estimation of Performance
B-HSA can re-use the calculated results that were

calculated on the way of other back-trace paths. Therefore, 𝜁(ℎ) is calculated once for every port. We can estimate that
the verification time for the whole network is O(𝑝𝑅) . The
number of edge ports 𝑝 is proportional to the number of flow
entries 𝑅, and then O(𝑝𝑅) = O(𝑅). This means that B-HSA
is more scalable than HSA, in which the verification time is O(𝑑𝑅) as was explained in Section I. We will confirm this
estimation through the evaluation in Section VI.

V. PROOF OF THE PROPOSED ALGORITHM

A. Propositions to be proved
We will describe the propositions to be proved before we

give the proof of the correctness of the verification in B-HSA.
We define 𝑓(𝑝 , 𝑝 , ℎ), which returns the header space at
Port 𝑝 of the flow that leaves Port 𝑝 with Header Space

ℎ . Function f (𝑝 , 𝑝 , ℎ) is defined, similarly to Eq.
(12).

 𝑓(𝑝 , 𝑝 , ℎ)
≝ 𝑓(𝑒, ⋯ , 𝑒 , ℎ) 𝑒, ⋯ , 𝑒 are matced entries in a flow from 𝑝 to 𝑝 . (12)

where 𝑓(𝑒, ⋯ , 𝑒 , ℎ) ≝ ϕ ∘ … ∘ ϕ (ℎ).

TABLE IV summarizes the attributes of header space of
outgoing packets that are the calculation result of ϕ (ℎ). Line
1 in the table indicates an attribute of header space ℎ of a given
incoming packet. Column 1 in the table indicates an attribute
of the action of Flow Entry 𝑒, and Column 2 indicates an
attribute of the matching rule. Variables v , v , and v"
represent direct values. Variables p and p represent value
spaces. Value ⊥ means that not answer has been derived, and
we cannot longer continue calculation if one of the attributes
results in ⊥.

By using 𝑓(𝑝 , 𝑝 , ℎ), we define a proposition for
isolation and that for reachability.

l (Proposition 1: isolation): A flow with Header Space 𝑏 (𝑝 , 𝑝 , ℎ) at Port 𝑝 goes to Port 𝑝 , and
the header space of the flow at Port 𝑝 includes ℎ .
In short, 𝑓 𝑝 , 𝑝 , 𝑏 (𝑝 , 𝑝 , ℎ) ⊇ ℎ

Isolation is proved with Proposition 1 if 𝑓 𝑝 , 𝑝 , 𝑏 (𝑝 , 𝑝 , ℎ) ⊇ ℎ . That means that
the flow that does not belong to ℎ does not belong to 𝑏 (𝑝 , 𝑝 , ℎ), neither. Therefore, we can prove isolation
if we can prove Proposition 1.

l (Proposition 2: reachability): A flow with Header
Space 𝑏 (𝑝 , 𝑝 , ℎ) at Port 𝑝 goes to Port 𝑝 , and the header space of the flow at Port 𝑝
included in ℎ . In short, 𝑓 𝑝 , 𝑝 , 𝑏 (𝑝 , 𝑝 , ℎ) ⊆ ℎ .

Reachability is proved with Proposition 2 if 𝑓 𝑝 , 𝑝 , 𝑏 (𝑝 , 𝑝 , ℎ) ⊆ ℎ . It means that a
flow with Header Space ℎ at Port 𝑝 always arrives at Port 𝑝 with ℎ . We can therefor prove the reachability if we
can prove Proposition 2.

To prove both Proposition 1 and 2, we will just prove 𝑓 𝑝 , 𝑝 , 𝑏 (𝑝 , 𝑝 , ℎ) = ℎ .

Function 𝜁(ℎ) , which is a component of 𝑏 (𝑝 , 𝑝 , ℎ) , is defined as 𝜁(ℎ) = m#(𝑒. m) ∘a#(𝑒. a)(ℎ) . We can therefore calculate 𝜁(ℎ) by using
TABLE II. for Functionm# and TABLE III for Function a# .
TABLE V. summarizes the results of 𝜁(ℎ) calculated from
TABLE II and TABLE III..

Similarly with 𝑏 (𝑝 , 𝑝 , ℎ) , Function 𝑓(𝑝 , 𝑝 , h) consists of ϕ . Function ϕ is defined in
TABLE IV. We can prove 𝑓 𝑝 , 𝑝 , 𝑏 (𝑝 , 𝑝 , ℎ) = ℎ if the results from
applying TABLE IV to TABLE V are identical to the input
header spaces in TABLE IV.

TABLE IV. PACKET MATCHING RULE WITH FLOW ENTRY: 𝜙

entry packet 𝐯𝟎 𝐩𝟎 𝐓
Action Matching
e.a=v” e.m=v v’’ if v = v , ⊥ if v ≠ v

v’’ if v’’ ∈ p , ⊥ if v′′ ∉ p
v’’

e.m=p v’’ if v ∈ p, ⊥ if v ∉ p
v’’ if p ∈ p ⊥ if p ∉ p

v’’
e.m=T v'’ v'’ v’’

e.a=T e.m=v v if v = v , ⊥ if v ≠ v
v if v ∈ p , ⊥ if v ∉ p

v

e.m=p v if v ∈ p, ⊥ if v ≠ v
p if p ⊂ p,
p if p ⊂ p , ⊥ if p ∩ p = ∅

p

e.m=T v p 𝐓

TABLE V. DEFINITION OF BACK-TRACE FUNCTION 𝜁

Entry Packet 𝐯′ 𝐩 T
Action Matching

e.a=v” e.m=v v if v’’=v’, ⊥ if v′′ ≠ v′ v if v ∈ p , ⊥ if v′′ ∉ p′ T

e.m=p p if v’’=v’, ⊥ if v′′ ≠ v′ p if v′′ ∈ p′, ⊥ if v′′ ∉ p′ T

e.m=T v'’ if v’’=v’, ⊥ if v′′ ≠ v′ v'’ if v′′ ∈ p′, ⊥ if v′′ ∉ p′ T

e.a=T e.m=v v if v=v’, ⊥ if v ≠ v′ v if v ∈ p′, ⊥ if v ∉ p′ v

e.m=p v′ if v′ ∈ p, ⊥ if v′ ∉ p
p' if p′ ⊂ p,
p if p ⊂ p′, ⊥ if p ∩ p = ∅

p

e.m=T v' p' T

B. Proof
We present the calculated results, in TABLE VI, from

applying TABLE IV to TABLE V, which mean f 𝑝 , 𝑝 , 𝑏 (𝑝 , 𝑝 , ℎ) . Column 1 in TABLE IV,
indicates an attribute of the action of given Flow Entry 𝑒.
Column 2 indicates that of the matching rule. Column 3
indicates the header space at Outgoing Port 𝑒. p . Column 4
is the condition under which the calculation of each line in
TABLE IV is executed. Column 5 has the calculated results,
which are the header spaces at the incoming port, for Back-
trace Function 𝜁(ℎ). The last column is the header space at
the outgoing port. This is calculated with Transfer function ϕ
applied to the header space at the incoming port. The header
spaces in Column 6 is ⊥, or is equals to the header space in
Column 3. We can ignore the case of ⊥, because there are no
flows in this case. Therefore, ϕ 𝜁(ℎ) = ℎ holds. It is
obvious that f 𝑝 , 𝑝 , 𝑏 (𝑝 , 𝑝 , ℎ) = ℎ holds
because ϕ 𝜁(ℎ) = ℎ and the definitions of f and 𝑏 .
■

TABLE VI. PROOF OF CORRECTNESS

Entry packet 𝐜𝒐𝒖𝒕Cond. 𝜻𝒆(𝒉) 𝛗𝒆 𝜻𝒆(𝒉)
Action Matching
e.a=v” e.m=v v′ if v′ = v" v v′

if v′ ≠ v" ⊥ ⊥
e.m=p v′ if v′ = v" p v′

if v′ ≠ v" ⊥ ⊥
e.m=T v′ if v′ = v" v" v"

if v′ ≠ v" ⊥ ⊥
e.a=T e.m=v v′ if v′ = v v v′

if v′ ≠ v ⊥ ⊥
e.m=p v′ if v′ ∈ p v′ v′

if v′ ∉ p ⊥ ⊥
e.m=T v′ v′ v′

VI. EVALUATIONS WITH PROTOTYPE
We implemented a prototype of the B-HSA algorithm,

which calculates all the pairs of the header space at incoming
ports and that at outgoing ports. The B-HSA algorithm is
written in Java, and peripheral modules to network elements
are written in Ruby. We used the SMT solver Simple
Theorem Prover (STP) [10], which checks whether the
differential set value explained in Section IV is empty or not.
We also implemented the HSA algorithm discussed in Section
III in Java, to compare these two algorithms. The Hassel [1] is
an implementation of the HSA algorithm and it is optimized
with the implementation techniques mentioned in [1]. Hassel
is, therefore, expected to be faster than our HSA
implementation. We implemented the HSA algorithm by
modifying the B-HSA prototype instead of Hassel because we
only wanted to compare purely the algorithms: We exclude the
differences caused in the implementation techniques: We just
replaced the back-trace function 𝜁 in our B-HSA prototype
with the transfer function ϕ and its inverse function ϕ , and
implemented a prototype of the HSA algorithm.

A. Feasibility test
We intentionally created an erroneous configuration in the

sample network and checked whether the prototype tool could
detect it. Fig. 6 outlines the sample network we developed
with OpenFlow controller Trema [12] and Open vSwitches. It
is a two-layered network having a root L3 switch and two L2
switches under the L3 switch. We created a configuration of
two VLANs, which were separated from each other. Each
edge port of the L2 switches was assigned a VLAN ID, and, in
short, each port belonged to a VLAN.

First, we set flow entries in the L2 switches such that these
two VLANs are separated. The B-HSA prototype in this
normal case calculated the header spaces at incoming ports for
the given outgoing ports. We used Weka [11] to display the
calculation results in Fig. 6. The x-axis shows VLAN IDs and
the y-axis shows the outgoing ports. Fig. 7 shows that the
flows with different VLAN IDs are clearly separated.

Second, we intentionally created an erroneous
configuration in the sample network. We removed the
matching rule for VLAN IDs from some flow tables. Fig. 8
presents the results obtained from verifying the network with

the erroneous configuration. It demonstrates that the flow with
any VLAN ID can enter any network slices. This means that
isolation is violated. We found through this evaluation that the
prototype tool could correctly detect violations.

Fig. 6. Feasibility evaluation environment

B. Evaluation of Performance
We evaluated the performances of the B-HSA and HSA

algorithms on the machine (Xeon X5690 3.46GHz 2CPUs,
90GB). Fig. 10 outlines the evaluation environment. We have 𝑁 L3 switches, in the top level, which make a loop path. We
have 𝑀 L2 switches in the second level under each L3 switch.
We have 𝑃 L2 switches in the third level under each L2 switch
in the second level. Each port of the L2 switch in the third
level is assigned to a VLAN and it is connected to a host. We
have 𝐿 VLANs in the network, and, therefore, each L2 switch
in the third level has (𝐾𝐿+ 1) ports including an uplink port.

Network slices are defined in the L2 switches in the second
level in this environment. In other words, we have (𝑁𝑀) L2
switches in the second level, where each port of the L2
switches in the second level is assigned to 𝐿 VLANs, and,
therefore, we have totally (𝑁𝑀𝐿) VLANs (i.e. (𝑁𝑀𝐿) network
slices) in this network.

We measured the time to verify isolation under the
environment while changing the values of 𝑁, 𝑀, 𝐾, 𝐿, and 𝑃.
For the verification, the prototype tool reads the flow tables
stored in the L3 switches in the first level and those in the L2
switches in the second level.

Fig. 11 plots the results obtained from the evaluations. The
x-axis plots the total number of flow entries in the network, and
the y-axis plots the verification time in seconds. B-HSA is
much faster than HSA. There is an O(𝑅) approximate curve
of HSA. The R squared value (R in the graph) is about 0.95.
That is very similar to the estimation of HSA in Subsection
IV.E.

B-HSA can verify the network with more than 10,000 flow
entries. Fig. 11 plots the verification time of B-HSA including
the area more than 10,000 flow entries. It plots an O(𝑅)

approximate curve. The R square value is about 0.97. That is
very similar to the estimation of B-HSA in Subsection IV.E.

Fig. 7. Verification Result (normal case)

Fig. 8. Verification Result (isolation violation)

Fig. 9. Performance evaluation environment

Fig. 10. Performance of verifications of B-HSA and HSA

Fig. 11. Performance of verifications of B-HSA

VII. CONCLUSION
We proposed a new verification algorithm that was an

extension of well-known HSA. It only focused on the isolation
and reachability properties of network, but it was much faster
than HSA. We provided a proof of the correctness of the
proposed method, and we confirmed its performance through
the prototypes.

Future work is as follows:

l We assumed that the routing configuration of most
network elements could be modeled with a flow table,
but some of these had very complex structure, such as
the flow table pipeline in OpenFlow v1.1. As some
work [5] has been able to handle the pipeline, we have
to consider it.

l HSA has some optimization techniques [1], and some
of them can also be used in B-HSA. For example, we
expect that we can use the “IP-able Compression [3]”,
“Lookup based Search”, in B-HSA. We intended to
try them and will evaluate the performance.

REFERENCES
[1] Peyman Kazemian, George Varghese, and Nick McKeown. “Header

space analysis: static checking for networks”. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation
(NSDI'12). USENIX Association,

[2] E. Al-Shaer , S. Al-Haj, “FlowChecker: configuration analysis and
verification of federated openflow infrastructures,” Proceedings of the
ACM Workshop on Assurable and Usable Security configuration, 2010.

[3] Richard P. Draves, Christopher King, Srinivasan Venkatachary and
Brian N. Zill, “Constructing Optimal IP Routing Tables”, Microsoft
Technical Report (MSR-TR-98-59), 1998

[4] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P.
Brighten Godfrey, Samuel Talmadge King, “Debugging the Data Plane
with Anteater”. ACM SIGCOMM Computer Communication Review,
41(4), 290-301., Aug. 2011

[5] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Porras Phillip, Gu
Guofei. “Model checking invariant security properties in OpenFlow”.
IEEE International Conference on Communications (ICC), 2013,
(pp.1974-1979).

[6] N. Lopes, N. Bjorner, P. Godefroid, K. Jayaraman , G. Varghese, “DNA
Pairing: Using Differential Network Analysis to find Reachability Bugs,”
2014.

[7] A. Khurshid, W. Zhou, M. Caesar, P. B. Godfrey, “ VeriFlow:
Verifying Network-Wide Invariants in Real Time,” ACM SIGCOMM

Computer Communication Review, Vol. 42, No. 4, pp. 467-472, Sep.,
2012.

[8] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte,. “Real time network policy checking
using header space analysis”. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pages 99-111, 2013.

[9] N. Lopes, N. Bjorner, P. Godefroid , G. Varghese, “ Network
Verification in the Light of Program Verification,” 2013.

[10] Vijay Ganesh, et al., “STP Constraint Solver”,
https://sites.google.com/site/stpfastprover/STP-Fast-Prover

[11] G. Holmes; A. Donkin and I.H. Witten. “Weka: A machine learning
workbench”. Proc Second Australia and New Zealand Conference on
Intelligent Information Systems, Brisbane, Australia, 1994

[12] “Trema: Full-Stack OpenFlow Framework in Ruby and C”,
http://trema.github.io/trema/

[13] Ehab Al-Shaer, Will Marrero, Adel El-Atawy and Khalid ElBadawi,
“Network Configuration in A Box: Towards End-to-End Verification of
Network Reachability and Security”.

[14] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A nice
way to test openflow applications,” Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation,
NSDI’12, Berkeley, CA, USA, pp.127-140, USENIX Association, 2012.

https://sites.google.com/site/stpfastprover/STP-Fast-Prover
http://trema.github.io/trema/

