
Early Network Failure Detection System
by Analyzing Twitter Data

Kei Takeshita, Masahiro Yokota, Ken Nishimatsu

NTT Network Technology Laboratories
Midori-Cho 3-9-11, Musashino-Shi, Tokyo, Japan

Email: takeshita.kei,yokota.masahiro,nishimatsu.ken@lab.ntt.co.jp

Abstract—Mobile network failures have occurred many times
in recent years. Some network failures become ”silent” failures
that mobile carriers cannot detect because of incomplete rules
concerning failure detection by the network operating system.
However, the increasing number of services and devices, and the
increasing complexity of the network make it hard to generate
rules that cover all network failures. Therefore, monitoring
the network performance from a subscriber’s perspective is
very important. The traditional way to obtain feedback from
subscribers is to use call centers and email. However, it is
difficult to detect problems early or in their entirety through those
channels because subscribers typically do not call a call center
until they are certain the problem was caused by a network.

In this paper, we discuss a way to monitor a social networking
service (SNS) (Twitter in particular) to find out about problems
that affect subscribers. A previous study showed the possibility
of early detection of network problems by monitoring Twitter.
However, since Twitter includes many conversation topics, it is
difficult to find tweets that relate to network problems. Searching
by a particular keyword is insufficient since it produces a lot of
false positive results that contain the keyword but not the topic
of the network problem.

We solved this problem by using machine learning to suppress
the false positive results. We implemented and evaluated a system
to detect network failures from Twitter. As a result, we were able
to identify 6 out of 6 large network problems and to suppress
the number of false positives to only 6 events, whereas keyword
matching detected 94 false positive events. Some of the problems
were detected faster than through a call center. Furthermore,
we conducted research in order to determine the appropriate
machine learning algorithm, parameters, and volume of training
data. We also propose a method to estimate the location where
the tweeters were located.

I. INTRODUCTION

The current cell-phone penetration rate in Japan is over
100%. Despite the increase in the importance of the mobile
phone infrastructure, the number of mobile network failures is
increasing. In recent years, more than 4,000 mobile network
failures have been occurring per year in Japan, according to
the government, and some of these failures become critical
failures that affect 30,000+ people and continue for more than
two hours.

Network operators can monitor network equipment by
using monitoring technology such as SNMP (Simple Net-
work Management Protocol) or Ethernet-OAM (Operations,
Administration, and Management). Although they can detect
hardware failures and rule-based anomalies (e.g., when traffic
volume exceeds a certain threshold), it is hard for network
operators to detect software bugs and failures that are not in-
cluded in the rules. Consequently, some failures become silent

failures, which cannot be detected by network operators. For
example, the problem with an email service [1] was not able
to be detected since system equipment and database functions
were working normally, but the data were inconsistent. Another
difficulty for network operators is understanding how such
failures affect subscribers. For example, an equipment failure
that interrupts the use of LTE (Long Term Evolution) services
will affect 3G subscribers because of the congestion that results
from many LTE subscribers switching to 3G services.

To detect these kinds of failures early, network carriers
need to have a way to monitor network performance from
a subscriber’s perspective. The traditional way to get a sub-
scriber’s feedback is through call centers or email. However,
those channels are not effective for detecting problems early or
for understanding a problem in its entirety because subscribers
generally do not call a call center until they are certain that the
problem is due to the network, and usually only a few people
will actually call.

We have studied a way to monitor a social networking
service (SNS) (namely, Twitter) to discover problems affecting
subscribers. For example, if we see a surge in certain kinds
of tweets such as the one below, we suspect a network
failure, especially in data communication services. We call
these tweets network-failure tweets

Why cant i send text messages?

We conducted an online questionnaire with over 1,500
Twitter users in Japan asking them when and how they tweet
about network failures, and we found that over one-third of
Twitter users had tweeted about a network failure within the
past year. In addition, over half of those users tweeted about
the network failure during the failure. This is because they
wanted to know what the current situation was―whether it
was because of a network failure or was only affecting that
user. The carrier cannot announce a network failure in the early
phase of a network failure since they need to investigate the
situation and provide correct information, so Twitter becomes
the main source of information about the failure. Even though
users had no network access due to the failure, they tried to
tweet about it by changing the network, for example, changing
from 3G to Wi-Fi, or changing carriers by using a friend’s
terminal.

A previous study showed the potential effectiveness of
monitoring Twitter to discover such problems [2]. That study
revealed that there tends to be a surge in tweets that match a
certain combination of keywords related to a network failure
when a network failure occurs. However, we found in our
investigation that keyword matching, a traditional way to

search tweets, was not sufficient for automated monitoring
because it resulted in many false positives, which contained
the keywords but not the topic of the network problem. For
example, if we search using the keywords ”call” and ”drop,”
we may get the following kinds of tweets. We call these tweets
false tweets.

I dropped my phone in toilet when i called my friend.

This is because the number of tweets about network
problems is very small among all Twitter topics. Consequently,
some tweets happen to match the keywords. It is therefore
difficult to use automated monitoring or visual monitoring.

We solved this problem by using machine learning to sup-
press the number of false positives. We conducted experiments
using 10,000 tweets in order to find the appropriate machine
learning algorithm and to determine the appropriate parameters
and volume of training data. We implemented and evaluated
a network failure detection system using Twitter. As a result,
we were able to find 6 out of 6 large network problems and
to suppress the number of false positives to 6 events, whereas
keyword matching detected 94 false positive events.

Furthermore, we studied a method to extract location infor-
mation from Twitter. While location information is important
for network operation, it is rarely included in tweets. We
propose here a method to estimate the location information
and show the accuracy of the estimation method.

Our main contribution is the proposal of a framework that
extracts network failure information and its locations from
Twitter. It can detect a network failure quickly and automati-
cally. Furthermore, we investigated a method to classify tweets
into network-failure tweets and false tweets. As a result, the
tweets are simple enough to classify and linearly separable.
Therefore, we examined appropriate parameters of algorithms
and do not propose further machine learning algorithms.

II. RELATED WORKS

The study most closely related to this work is that of Qui
et al. [2]. Qui et al. compared Twitter messages with incident
reports of carriers and customer care tickets. They extracted
network-performance related tweets by searching keywords
related to mobile carriers and performance. They found that
the correlation between tweets and incidents was low but
that tweets were faster than customer care tickets for finding
out about incidents when such incidents were mentioned in
both. Although Qui’s research showed the possibility of using
Twitter to monitor network performance, they also found that
only 1% of tweets searched by keywords were related to actual
network performance.

We discuss some other studies that are not specifically
related to networking but that nevertheless show the value of
social network content where each Twitter user is considered
as a ”sensor.” To the best of our knowledge, the first such study
is that of Sakaki et al. [3]. Sakaki et al. extracted information
on a typhoon and an earthquake from Twitter by searching
for keywords such as ”typhoon,” ”shake,” and ”earthquake”.
They visualized maps by finding location-related tweets that
were among the tweets mentioning those words. They also
used machine learning to classify the current or past event.

Michael et al. extracted certain public health topics (e.g.,
cancer, flu) by using a topic model, which is a method of
clustering for documents [4]. They showed that the curves
of the time series of tweets about the flu and reports to the

government were quite similar. However, these studies did not
conduct quantitative evaluations from the view of the whole
system of event detection.

There are also many commercial services that monitor
Twitter to see whether the number of tweets that are matched
to keywords exceeds a certain threshold. We have omitted a
lot of studies about Twitter itself, such as those concerning
information propagation or community evolution.

We explain another challenge to mining the information
about the location from twitter. To the best of our knowledge,
the first research to attempt this is that of Cheng et al. [5].
The problem setting involved calculating the likelihood of each
location lj ∈ L for a given tweet set Ti, where L is a location
set and i is a user. We found that most of these kinds of
studies use supervised learning, in which the distribution of
each word for each location is learned from the tweet data of
tweeters whose locations are known. This research shows that
the accuracy of location estimation is over 160 km at the 50th
percentile.

III. PROPOSED METHOD

A. Monitoring requirements
We tried to construct a system that automatically alerts net-

work operators about network failures by monitoring Twitter.
We explain the requirements of network monitoring and give
an example of how our system might be utilized before we go
on to the details.

We set two requirements for our system to use network
monitoring. First, the system should reduce the number of false
positives (alerted but nothing happened) as much as possible.
Second, the system must add the information about what and
where the incident happens. While ”what” is written in each
tweet, ”where” is rarely included. Third, the system should
process the tweets in real time to detect the problem as soon
as possible.

One example of how our system could be utilized is to
show the information extracted from an SNS on the video
wall at the Network Operation Center (NOC). The video
wall at the NOC mainly shows current network stats: alarms,
ongoing incidents, and network performance. Additionally,
some displays are used to show a TV news or weather channel
so that the operators can find out about current events that
may have an impact on the network. Our system can display
additional information about the current network performance
from the viewpoint of users. Therefore, the operators can learn
about a potential network failure at an early stage or can
monitor the impact of network failures on users.

B. Tweet categories
We explain the proposed method here. First, we make a

distinction between the following three types of tweets.
1) Tweets indicating that the Twitter user has a

network problem
This is the kind of tweet we want to extract from
Twitter. We note that sometimes we cannot determine
whether the problem is due to a network failure or the
subscribers’ device, but we include both of them in
this tweet category when Twitter users say that they
cannot use the network. Examples of tweets of this
type are as follows.

My [Phone Name] won’t send any of my texts
and all it says is ”message send failure.”

All Tweets

Keyword

Filter

Keyword-matched

Tweets

Feature

Extraction

Keyword-matched &

Classified as True

Tweets

ML

Filter

Unmatched Classified as False

Threshold Checking

Location Estimation

Alert

Fig. 1: Architecture of our system

My phone won’t let me make or receive calls. Is
there a [Telecom Name] outage?

We call those tweets network-failure tweets
2) Tweets that match keywords even though the

Twitter user does not have a network problem
These tweets are somehow matched to keywords,
for example, when Twitter users have a conversation
about phones, or they provide feedback on the news
of a network failure (even though they are not affected
by it), or when a random URL string contains key-
words. Examples of tweets of this type are as follows.

I dropped my [phoneName] in toilet so i cant
call or text.
RT: [Telecom Name] Reports Cellphone Outage,
Affecting NY. http://bit.ly/xxxxxxxx

We call these tweets false tweets
3) Completely unrelated tweets

These tweets are not related to a network failure and
do not match the keywords.

C. Overview of the proposed method
We show the architecture of the network failure detection in

Fig. 1. Our method consists of three phases: keyword filtering,
machine learning filtering, and alerting.

First, the keyword filter collects tweets that are possibly
associated with a network failure by using a wide range of
keywords about failures. In this part, the filtered tweets are a
mix of network failure tweets and false tweets.

Second, the machine learning filter classifies each tweet
into true (network failure tweets) and false (false tweets).

Finally, the alerting element alerts the operators that the
network may have some problems when the number of network
failure tweets exceeds a certain threshold. The operators check
the tweets and the location information for each tweet.

There are two reasons we did not classify all tweets by
using machine learning.

• An imbalance between network failure tweets and the
remaining tweets.
The ratio of network failure tweets to the remaining
tweets is more than 1:10,000. It is said to be hard
to classify unbalanced data using machine learning
approaches [6]. If 99.99% of the data are from one
class, labeling everything with the majority class,
which achieves 99.99% accuracy, is usually better than
trying to classify the data into the minority class. To

Keyword Unmatched Tweets
(almost all of tweets)

Keyword matched Tweets

i ate half of a watermelon
by myself in an hour

I'm at Paris

TRUE FALSE
EXCLUDED from Machine

Learning by keyword filtering

Tour de France 2014 im
Live-Stream: Etappe -
Fougères

Relatively Far
(in feature
Space)

Dropped phone
in toilet…

Relatively Close (in feature Space)

Why I cant call?

Reports Cell-
phone Outage

Is there a
NTT outage?

Network
Failure Tweet False Tweet

Fig. 2: Image of the distance in relationship between three
tweets

classify the minority class, it is preferable to alter
the balance of training data so that the classifier can
classify the minority class. However, such learning
increases the probability of falsely classifying data
into the minority class of a large number of false
tweets. Therefore, we block tweets that do not contain
any keywords.

• Closeness of network failure tweets and false tweets
The machine learning method for natural language
processing usually deals with the text based on a
value such as the frequency or distribution of words.
Therefore, the network failure tweets and false tweets
tend to have a similar value since they pass through
the same keyword filter. This is depicted in Fig. 2.
Therefore, if we put many completely unrelated tweets
into the false class, a lot of false tweets will be
classified as true.

D. Keyword filter
We collected the keywords to use in the keyword filter by

analyzing actual network failure tweets. We manually classified
all tweets occurring during certain network failures. We used
two network failure cases; the first case affected the use of
data communication, and the second case affected both data
and voice communication. We checked about 2500 tweets and
found there were 443 and 482 true tweets, respectively. We
double-checked these tweets, which took about two person-
days. We note that since we used 10% of the sampled tweets
due to the limits of the Twitter application programming
interface (API), the actual tweets that existed were about ten
times these figures.

We ranked the words that occurred in tweets that were
determined to be network failure tweets in Table I. The
tweets we analyzed were in Japanese, although they have
been translated into English for this paper. There is no point
in using keywords themselves in other languages; we found
that both rankings were similar. The keyword ”No service”
was especially common in failure B. This is because the ”no
service” was exclusive to failure B. However, almost all of the
keywords appearing in these failures were the same. Therefore,
we combined these keywords with the carrier keywords to
make the keyword filter.

E. Machine learning filter
In the machine learning phase, tweets are classified into

network failure tweets and false tweets. We use supervised
learning that uses the data set of training examples. Each

TABLE I: Ranking of keywords in network failure tweets

Keywords appeared in first case appeared in second case

failure 152 238
can’t connect 97 56
can’t 49 22
dead 42 10
outage 25 15
trouble 23 19
bad 19 22
something is wrong 12 11
restore 9 19
hard to 11 2
down 8 1
can’t send 6 3
slow 3 3
no service 0 44
unusual 0 2
disconnection 0 4

training example consists of a pair of a tweet text and a label
indicating whether the tweet is a network failure tweet or not.
A supervised learning algorithm analyzes the training data and
produces an inferred function, which can be used for mapping
new examples.

We explain the feature transformation first. The feature
transformation converts raw text into values so that an algo-
rithm can calculate the inferred function. We use bag-of-words,
which is commonly used in feature transformation in natural
language processing. Bag-of-words uses the occurrence of each
word in a tweet as a feature. The vector length is the number
of words used in this classification. We use the top X frequent
words appearing in the training data. In this example, each
tweet Ti is translated into a vector of (0, 1) in the dimension
of X, and the i-th vector is 1 when Ti contains the i-th word.
Additionally, we used a morphological analyzer to determine
words since the Japanese language lacks delimiters between
words.

We evaluated four learning algorithms known to be effec-
tive for binary classification: support vector machine (SVM:
w/o kernel and w/ Gaussian kernel) [7], NaiveBayes [8], and
Adaptive Regularization of Weights (AROW) [9].

F. Location Estimation Unit
We explain the location estimation method in this section.

Because we intend to use location information in the network
failure detection system, our accuracy requirement is city-level
(within 25 km). Therefore, the related studies (over 300 km) do
not meet this requirement. However, when we checked some
users’ past tweets, we found that we were able to estimate most
of the users’ locations to at least the prefecture level (within
50 km) by checking the tweets manually. We use geographical
names such as those of a station, city, or landmark as hints
to estimate the tweeter’s location. Therefore, the use of a
gazetteer to estimate the location is a very powerful method.

A gazetteer was not used in other previous studies since
it presents some problems; for example, there are multiple
locations with the same name, and it is necessary to distinguish
whether the user was actually in a certain location, or was
simply referring to the location by name. Therefore, we used a
stochastic method to resolve these problems. We superimposed
the score for each tweet matched using a gazetteer in coordi-
nate space. The maximum score in coordinate space is the
estimated tweeter’s location. We rely on this method because
of the overall trend with Twitter users to post information

TABLE II: Number of tweets for all types of failures

Dataset date failures true data false data
Failure A 2011/12 Data 443 433
Failure B 2012/08 Data and Voice 482 1209
Failure C 2012/01 Data 1257 1386
Usual1 – – 2216 3896
Total – – 4398 6924

about ”what they are doing.” Even if some information is
wrong because of the problems stated above, the superimposed
possibility will be able to estimate the area where the tweeter
lives.

Therefore, we propose a method to estimate the location
by applying kernel density estimation as follows.

Score(i, j) =
n∑

k=0

1

Dk
α exp

{
− (i− latk)

2 + (j − longk)
2

σ2

}

where (i, j) corresponds to certain coordinates and Dk is
elapsed time [day] of the kth tweet. Σn

k=0 means that this
equation uses the tweeter’s past n tweets that matches the
gazetteer’s location names. (latk, longk) indicates the coor-
dinates (latitude, longitude) of the kth tweet that matched the
gazetteer entry. 1

Dk
α is a decaying term in accordance with

the elapsed time. Since a larger α indicates a faster decay,
the newer tweets have a large effect on this estimation. The
term exp(− (i−latk)

2+(j−longk)
2

σ2) gives a score based on the
closeness to (latk, longk). Since a larger σ indicates a slower
decay, the score distribution in coordinate space becomes
smooth so that it can cancel noise because of the problems
above. However, if the score distribution becomes too smooth,
the estimation itself cannot be done. Therefore, there is an
optimal σ to estimate the tweeter’s location.

IV. EXPERIMENTS OF TWEET CLASSIFICATION

A. Datasets

We used the randomly sampled 10% of tweet data in our
experiments due to the limits of the Twitter API. The data were
collected for a period of one year beginning in November 2011.
Network failures occurred 6 times with a certain carrier. We
extracted the tweets by using the keywords in sec.III-D and
manually labeled the true (network failure tweets) and false
(false tweets) for three of the six network failures occurring
during that period. We note that there were also network failure
tweets in periods when no major incidents happened, which
were due to small network failures or network construction.
The number of all tweets is given in Table II.

There were 4398 network failure tweets and 6924 false
tweets. We note that we removed retweets when we were
labeling the data. Retweets mostly appeared in false tweets,
and the ratio of network failure tweets to false tweets was about
1:9 in the usual period and 1:3 in network failure periods when
we considered the retweets.

B. Machine learning algorithms

We used and compared four machine learning algorithms

1) SVM (w/o kernel, w/ Gaussian kernel): SVM is one of
the most effective algorithms for binary classification. SVM
constructs a hyperplane that maximizes the margin between
two classes. SVM separates the classes linearly but it is
often combined with kernel methods. Kernel methods map
the data into a high dimensional feature space so that the
data are separable linearly in high dimension; as a result,
the hyperplane is no longer linear in the original feature
dimension. In our study, we found the best Cost, γ by using
a grid search [10]. We set Cost = 0.08 for SVM (w/o kernel)
and (Cost, γ)=(1000, 0.001) for SVM (w/ Gaussian kernel)

2) NaiveBayes: NaiveBayes is a simple classifier based
on the application of Bayes’ theorem with strong (naive)
independence assumptions. Despite the fact that assumptions
are often inaccurate, the NaiveBayes classifier performs well
in many classification tasks such as spam filtering.

3) AROW: AROW is an online learning algorithm that
makes predictions based on real-time streaming data. Online
learning systems usually update the model with the data
predicted by the algorithm itself. This method is powerful
when the data change over time. We obtained weight = 0.05
by searching for the best parameter.

C. Parameter tuning of algorithms
We tuned the parameters of SVM and AROW. We de-

termined which parameters achieved the highest F-measure
by conducting a grid search using the maximum number of
training data and features.

D. Parameter setting
We evaluated the accuracy by changing the algorithm, the

number of training data, and the number of features as follows.
• Number of training data

Adding more training data means the classifier can
handle more variations of tweets, which improves the
accuracy. However, the complexity of the inferred
function increases, which results in a longer calcula-
tion time. We set the number of training data as 200,
500, 1000, 2000, 4000, 6000, 8000, and 10,000.

• Number of features
As with the training data, adding more features
(words) improves the accuracy and also adds to the
complexity. We set the number of features as 50, 100,
200, 500, 1000, 2000, and 4000.

We used 10-fold cross validation in our evaluations. We
note that the test data use 1000 tweets for each fold to avoid
having a small number of test data. We used an implementation
of SVM and NaiveBayes included in Weka [11] and AROW
included in Jubatus [12]. The central processing unit (CPU)
used for classification was an Intel(R) Xeon(R) CPU E5620
@ 2.40 GHz.

E. Metric
Here, we explain the accuracy metric of the experiment.

A single prediction has four different possible outcomes, as
indicated in Table III, because True or False was possible for
the actual data and the predicted data.

Our system should not miss any network failures (false
negatives), and it should also achieve high purity of the
classified tweets (false positives). Therefore, we use an F-
measure, which considers both falsely classified cases. We
show the average F-measure of 10-fold cross validation and
its 95% confidence interval using a t-distribution.

TABLE III: Possible outcomes

Predicted class
True False

actual True True positive False negative
class False False positive True negative

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000
F-

m
ea

su
re

of Training Data

SVM(w/ gaussian kernel)
SVM(w/o kernel)

Naive Bayes
AROW

Fig. 3: Number of training data vs. F-measure

TABLE IV: F-measure for different uses of training data

Training Data
Failure A Failure B Failure C

Test Failure A - 0.665 0.611
data Failure B 0.687 - 0.655

Failure C 0.641 0.674 -

F. Evaluation 1: Accuracy of classifying one tweet
We show the F-measure for each algorithm for varying

numbers of training data in Fig. 3. The training data were
randomly generated from the dataset described in Sec. IV-A,
and test data were generated from the remainder of the dataset.

We set the number of features as 4000. We found that the
F-measure was about 70% to 80% for each algorithm when
there were 10,000 training data. There are few differences
in the results for SVM with and without a kernel. AROW
degrades slightly with less training data. This is because online
algorithms need more data because they can use each datum
only once.

Fig. 4 plots the F-measure when the number of features
was changed. We set the number of training data at 10,000.
The F-measure starts degrading at about 200 feature data. We
can see that the F-measures plateaued at 1000 feature data.
This suggests that a training data set of only 1000 words
canclassify a network failure, which is smaller than in other
natural language processing studies.

G. Evaluation 2: Using the datasets in different periods.
We also evaluated classifications when using the three

datasets gathered in different periods. We used the datasets
described in Table II. We used SVM (w/ Gaussian kernel) as
the algorithm and 4000 features.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

F-
m

ea
su

re

of Feature Data

SVM(w/ gaussian kernel)
SVM(w/o kernel)

Naive Bayes
AROW

Fig. 4: Number of feature data vs. F-measure

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

of

 F
al

se
 P

os
iti

ve
s

Threshold [tweets/10min]

Keyword only
w/ machine learning

Fig. 6: Threshold vs. accuracy

TABLE V: Time vs. threshold

Machine learning (10) Keyword (30)
Failure 1 20 30
Failure 2 30 50
Failure 3 10 20
Failure 4 30 70
Failure 5 60 70
Failure 6 70 70

The results are listed in Table IV. The F-measure was lower
than the previous result, which is due to the small number of
training data. We found that there were few differences in the
dates of the training data. Therefore, we did not think it was
necessary to change the data according to time.

We concluded that the tweet data of network failures: 1) are
linearly separable, 2) are not very wide and can be classified
into about the top 500 words, and 3) do not change as time
passes.

H. Evaluation 3: Evaluation of network failure detection
We evaluated a network failure detection system by count-

ing the number of true tweets; we consider that we have
detected a network failure when the count exceeds a certain
threshold. Fig. 6 plots the results using a machine learning
method (lower) and a keyword-only method (upper) over the
course of a year.

The training data were used for the period from November
2011 to January 2012, which includes the first 2 failures of the
6 total failures. The number of training data was about 2500
tweets. We set the threshold as 10 [tweets/10 min]2. There
were 100 events detected by keyword only and 12 by machine
learning.

Both methods detected the 6 actual network failures. We
checked the remaining 94 events visually and confirmed that
none of those events were related to the network failure. There-
fore, our system drastically suppressed the number of false
positive cases. The threshold is the tradeoff parameter between
the speed of detecting an event and the false positive ratio. A
smaller threshold achieves faster detection but produces more
false positive events. The relation between them is plotted in
Fig. 6. In this case, the keyword-only method with a threshold
of 30 achieved the same number of false positive cases as the
machine learning method with a threshold of 10. However, that
comes with a price of slow detection. Table V lists the speed
of detecting the 6 network failures with machine learning with
a threshold of 10 and with the keyword-only method with a
threshold of 30. The machine learning method can detect the
network failure 15 minute faster on average.

V. LOCATION ESTIMATION EXPERIMENT

A. Datasets
We used evaluation data from tweeters whose locations

were known. We collected tweets with messages such as ”come
home,” and we added location information obtained from the
Global Positioning System (GPS). We obtained 11,792 users’
past tweets from the Twitter API. We note that we conducted
our evaluation of the classification of network failure tweets
and the estimation of the user’s location separately. This is
because there were very few users who tweet about network
failure related topics and include GPS data.

We collected gazetteer data of city names and station
names from a database published by a geospatial information
authority. The number of entries was 9755. We set optimal
parameters D and σ by using a grid-search method based on
the 10-fold cross validation of the collected data.

B. Evaluation
Because (1) has to be calculated for each coordinate, we

gridiron Japan into a 2000 * 2000 lattice; each divided region
is 1 km * 1 km. We show the cumulative distribution of
error distance in Fig. 7. The error distance can be calculated
by the estimated coordinate by calculating (1) and the actual
coordinate. We used the Hubeny formula to calculate the
distance from two coordinates. We found that we were able to
estimate the location of half of the users within 20 km, and
the locations of over two-thirds of user were estimated within
50 km. This result is quite good compared to the result of a

2To avoid the case where the same events were detected more than once
because the fluctuation dipped below the threshold, we consider whole tweets
to be the same events when the count was lower than the threshold for three
hours.

 0

 10

 20

 30

 40

 50

11/11 11/12 12/01 12/02 12/03 12/04 12/05 12/06 12/07 12/08 12/09 12/10Tw
ee

t C
ou

nt
 [t

w
ee

ts
/1

0
m

in
]

Failure 1-3 Failure 4,5 Failure 6

Keyword Only

 0

 10

 20

 30

 40

 50

11/11 11/12 12/01 12/02 12/03 12/04 12/05 12/06 12/07 12/08 12/09 12/10Tw
ee

t C
ou

nt
 [t

w
ee

ts
/1

0
m

in
]

Year/Month

Failure 1-3 Failure 4,5 Failure 6

Training Data
Test Data

w/ Machine Learning

Fig. 5: Number of detected tweets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Error Distance [km]

Fig. 7: Error distance

related study in which the error distance of the 50th percentile
is 160 km or more.

VI. PROCESSING SPEED

We explain here the system’s capability to process all
tweets in real time.

A. Keyword filtering
First, we show the number of tweet data to be filtered

by keyword matching for 40 keywords consisting of network

failure words and carrier words. On Twitter, about 400 million
tweets/day are posted. The Japanese tweets account for about
15% to 20% of this total. Therefore, the average number
of Japanese tweets is determined as follows: 400 [million
tweets/day] / 86,400 [sec/day] / 5 .

= 1000 [tweets/sec]. The
variance in the tweets per minute3 is shown in Fig. 8. Since
the ratio of the maximum to the average number of tweets
is as high as 3:1, the system needs to process at least 3000
tweets/sec. We note that the spikes that occur at every 0
minute are caused by tweet bots, which are tweets that are
mechanically tweeted by a program. Our system can process
about 10,000 tweets/sec for 40 keywords, which is sufficient
performance for keyword matching.

B. Machine learning filtering
The tweets filtered by keyword matching were about 1% of

the number of raw tweets when overestimating significantly.
That means the number of tweets that need to be processed
by machine learning is about 30 tweets/second. The machine
learning method can classify 250 to 1000 tweets/second, which
is also sufficient performance.

The time required to construct an inferring function also
showed sufficient performance. Even when SVM (w/ Gaussian
kernel) and the most time-consuming parameter setting, it took

3This system counts tweets in the order of minutes. Therefore, the keyword
matching is not strictly done in real time. We plan to process the keyword
matching within 1 minute so that the variance in the order of seconds can be
ignored

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

00:00 04:00 08:00 12:00 16:00 20:00 00:00

Tw
ee

t c
ou

nt
 [t

w
ee

t/s
ec

]

Time (HH:MM JST)

Fig. 8: Variation in tweet speed throughout the day

less than 1 hour to construct a model. We consider this to be
sufficient for the system because model construction is not a
frequent task, as we found that the temporal change in tweets
was small.

C. Location estimation unit
The location estimation unit requires estimating each user

who tweets network failure tweets. Therefore, the requirement
for processing tweets by the location estimation unit is about 3
tweets/second. However, the location estimation unit requires
a heavy processing load since (1) has to be calculated for
each coordinate point for each tweet. It can process only 0.2
users/second. Therefore, we use parallel computing to calculate
this for each user.

D. System image
We show an image of our system results in Fig. 9. The

system shows timelines of tweets, raw tweets, and location
information of the network failure tweets. We show a snapshot
of the system when network failure 4 occurred. We found that
the number of network failure tweets surged, and locations
were clustered around the failure area.

VII. CONCLUSION

We proposed a method to detect network failures using
Twitter. We showed that keyword matching is not sufficient
because Twitter includes multiple topics. Therefore, we car-
ried out a study in which we combined keyword matching
with a machine learning method. Our main findings in tweet
classification of network failures are as follows. First, the
tweets are simple to separate linearly, so a many machine
learning method such as SVM (w/ or w/o kernel), NaiveBayes,
or AROW is suitable for this task. Second, the accuracy
plateaued when there were about 2000 training data and
about 500 features. Finally, the temporal change of tweets
is small, which means that frequent reconstruction of the
classification model is unnecessary. We showed the efficiency
of our system by evaluating whether actual tweets detected
network failures. Our method suppressed false positive tweets
and detected the network failures substantially faster than the
keyword matching technique. Furthermore, we proposed a
highly accurate location estimation method that involves using
gazetteer information.

In the future, we will evaluate our system to detect small
network failures to confirm the feasibility of our system. In

time-series data

score obtained

from regression

raw tweets (network failure

tweets are enhanced)

tweeted time

raw tweet (false tweet)

raw tweet (false tweet)

raw tweet (network failure tweet)

raw tweet (network failure tweet)

raw tweet (network failure tweet)

location Info (the users who tweeted

network failure tweet were cluster

around the failure area)

Tweet stats of 2012-2-7(failure 4)

Fig. 9: Image of results obtained by our system

addition, we will investigate a method to understand what is
happening without reading all classified tweets by combining
a summarizing method and location-estimation methods. We
will also try to apply this framework to messaging, game, and
video services.

REFERENCES
[1] NTT docomo, “anounce of the network outage,” available at

http://www.nttdocomo.co.jp/info/network/.
[2] T. Qiu, J. Feng, Z. Ge, J. Wang, J. Xu, and J. Yates, “Listen to me if

you can: tracking user experience of mobile network on social media,”
in Proceedings of the 10th annual conference on Internet measurement,
ser. IMC ’10, 2010, pp. 288–293.

[3] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
real-time event detection by social sensors.” in Proceedings of the 19th
international conference on World wide web, 2010, pp. 851–860.

[4] M. J. Paul and M. Dredze, “You are what you tweet: Analyzing
twitter for public health,” in Proceeding of the 5th International AAAI
Conference on Weblogs and Social Media, 2011, pp. 265–272.

[5] Z. Cheng, J. Caverlee, and K. Lee, “You are where you tweet: a
content-based approach to geo-locating twitter users,” in Proceedings of
the CIKM’10: 19th ACM international conference on Information and
knowledge management, 2010, pp. 759–768.

[6] F. Provost, “Machine learning from imbalanced data sets 101,” in In
Proceedings of the AAAIf2000 Workshop on Imbalanced Data Sets,
2000.

[7] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[8] G. H. John and P. Langley, “Estimating continuous distributions in
bayesian classifiers,” in Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, 1995, pp. 338–345.

[9] K. Crammer, A. Kulesza, and M. Dredze, “Adaptive regularization of
weight vectors,” Machine Learning, vol. 91, pp. 155–187, 2013.

[10] C. wei Hsu, C. chung Chang, and C. jen Lin, “A practical guide to
support vector classification,” available at http://www.csie.ntu.edu.tw/
∼cjlin/papers/guide/guide.pdf, 2010.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: an update,” SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, Nov. 2009.

[12] “Jubatus : Distributed online machine learning framework,” available at
http://jubat.us/.

