
HELM: Conflict-Free Active Measurement
Scheduling

for Shared Network Resource Management
Miao Zhang, Martin Swany, Adithya Yavanamanda, and Ezra Kissel

School of Informatics and Computing
Indiana University, Bloomington, IN 47405

Email: {miaozhang, swany, adiyavan, ezkissel}@indiana.edu

Abstract—Network resource measurement is a key func-
tionality for large scale network management. Intelligent,
network-aware applications may benefit from access to
detailed representations of network resources, including
multi-layer topologies and real-time traffic measurement,
and shared resources may obtain better overall utilization
by identifying performance bottlenecks. In this study,
we describe a network measurement framework, which
includes a network topology analysis mechanism as well
as agent tools for running active probes and collecting
data from end hosts. The system includes a centralized
coordinator, which abstracts network elements into anno-
tated network graphs and applies scheduling algorithms
to calculate conflict free measurement probes over shared
links. Our evaluation integrated perfSONAR services into
our framework and included deployment scenarios on
research and education networks such as Internet2 and
ESnet. The data presented in this study offers compelling
evidence that supports a method by which to measure the
performance of real world networks.

I. INTRODUCTION

Network performance is critical to the overall perfor-
mance of cloud computing and service-oriented systems,
and to the quality of experience of users accessing
content. Monitoring and measurement are infrastructure
services that quantify the operational status and per-
formance of networks. Building and maintaining large
scale networks, in conjunction with provisioning services
that provide QoS or bandwidth services to users [11],
requires accurate topology and performance metrics that
are necessary to represent the current state of available
resources. In recent years, projects like StarBED [24],
GENI [3], together with other high performance research
and education (R&E) networks, allow research projects
to reserve their resources, configure network topologies
as they wish and bring up and down services dynami-
cally. At the same time, the physical hardware supporting
these rapidly changing environments is finite, shared,
and often multi-tenant through the utilization of vir-
tualization technologies. Consequently, active resource

monitoring is necessary for managing fair resource use
across different user projects, and to ensure consistent
user experiences.

This paper describes a network scheduling system
called HELM, which is targeted at scheduling active net-
work measurements. We focus on a particular monitoring
task, namely the scheduling and execution of active
measurement probes without conflict on the measured re-
sources. In network measurements, probes have very dif-
ferent tolerances on resource contention. A user may not
be concerned about the average latency of “ping” probes
meant to simply verify connectivity, while other types of
measurement may be very sensitive to interference [7].
For example, one-way delay measurement probes [30]
can be affected by high-throughput performance probes
running concurrently on the same network interface card.
This problem of interference necessitates the need for
scheduled probes that can reduce or eliminate conflicting
resource usage. In general, scheduling problems are well-
known as a computationally intensive task [19]. Studies
have been done with various constraints on different
types of shared resources, including CPU time allocation,
register assignment [26], and processor scheduling [4].
However, the identification and resolution of conflicts
in a multi-layer, complex network with virtualized and
multi-tenant resources remains a unique and difficult
challenge. Our approach must model the network topol-
ogy in as much detail as possible and use this represen-
tation as a basis to reason about the problem.

In “The Sciences of the Artificial”, Herbert Simon de-
scribes problem solving in design as transformation [32].
He observes that solving a problem can often be couched
as transforming the problem representation so as to make
the solution transparent. Even if this view is exaggerated,
he suggests that we must consider how the problem
representation contributes to a solution. In this work,
we leverage our representation of the network topology,

UNIS (described in Section III-A), to unambiguously de-
scribe the relevant topology. Then, based on our knowl-
edge of the semantics of the network graph, we transform
this representation so as to apply well-understood graph
solutions. While we are not breaking new ground in
graph processing, we note that our approach is based on a
realistic, detailed model, and thus our solution is solving
the “real” problem, rather than a simplified version.

In this article, we describe our approach for probe
scheduling, examine the correctness and scalability of
our approach, and perform some experiments on real
network topologies. The main contribution of this study
includes analyzing and constructing a topology across
different traditional network layers to reveal the resource
conflicts in the network; an algorithm mapping such a
multi-layer, heterogeneous topology into an intersection
graph and resolving the measurement schedule. Finally,
we explore experiments on some real example networks.
The remainder of the paper is organized as follows:
Sections II and III describe some background and discuss
the tools and techniques used in this study. Section IV
is dedicated to the design and implementation of the
HELM framework. The experimental data is presented
in Section V and Section VI compares several related
efforts and concludes.

II. BACKGROUND

Depending on the technique, monitoring can be cat-
egorized in different ways. Here we focus on active
monitoring [25], [2] in which traffic is generated to probe
network behavior, as opposed to passive observations of
network metrics. Active monitoring can monitor particu-
lar aspects within networks such as link performance or
reachability of a specific device [35], [5]. Simple moni-
toring of a single network device is relatively straightfor-
ward, but the design and implementation of a complete
network monitoring framework involves a number of
design considerations and deployment challenges. The
forwarding behavior, correctness, and expected perfor-
mance of a network is a function of the interaction of
many interconnected components, involving various site-
specific policies and configurations, and many real-time
network conditions that can affect overall operation.

Metcalfe’s Law describes the “network effect” of
increasing value as more devices or users become con-
nected to a network [31]. A natural consequence of
the network effect is an increase in the complexity and
difficulty of monitoring and managing networks. The
network effect applies to network monitoring systems
as well. The more measurement vantage points that
exist, the greater the value of the information. At the
same time, more measurement points introduces more
complexity in scheduling active measurements.

The situation for conflict-free measurement is be-
coming more complicated with the widespread use of
dynamic virtual resource allocation. Cloud computing
environments allow users to dynamically instantiate vir-
tual machines across geographically diverse locations.
With uncoordinated measurements between resources in
these environments, it is possible that measurements
conflict. For example, virtual machines measuring across
the same physical interfaces concurrently and thus skew-
ing the results. A similar situation arises within evolv-
ing Software Defined Networking (SDN) environments
where multiple “flowspaces” are created and destroyed
on-demand. Seemingly independent virtual links may
traverse the same physical paths.

In the Global Environment for Network Innova-
tions (GENI), and in similar experimental infrastructures
worldwide, this problem is quite obvious. For empirical
computer science research activities, users must be able
to measure the infrastructure aggressively, but as many
resources are virtualized and shared, the potential for
perturbation of resources is extremely high. Our ap-
proach is largely motivated by these experimental use
cases. In addition, large-scale R&E networks provide
WAN connectivity for testbeds like GENI, and offer
interfaces for customers to use dedicated bandwidth ser-
vices directly. In our evaluation, we consider the Energy
Sciences Network1 (ESnet) and the Internet2 Network2,
the latter of which provides WAN connectivity for GENI.
Our approach thus takes into account the use of such
networks that “stitch” together resources within testbed
experiments while also considering the scheduling of
measurements over those same multi-layer networks as
a common problem.

In the environments described above, the topology and
connectivity of the networks being measured is known to
a relatively high degree. The GENI, Internet2, and ESnet
networks all advertise topology and resource information
via global services within their communities. We note
that this is an important distinction from commodity
networks, or the general Internet, where detailed net-
work connectivity is protected information and not often
publicized. In either case, the network operators would
have access to their own network topologies. Given
the topology of the network, and the state of provi-
sioned resources, our approach gives experimenters and
operators the ability to understand the performance of
the substrate and collect measurements for their virtual
networks within a common framework.

1ESnet:http://www.es.net
2Internet2: http://www.internet2.edu

III. PERISCOPE

Periscope is our implementation of the perf-
SONAR [14] network monitoring architecture. It is
semantically compatible with the perfSONAR proto-
cols and schemata, and backward compatible with
the perfSONAR-PS implementation, while implementing
additional functionality. The perfSONAR architecture
implements components common to many measurement
systems, including Measurement Points (MPs) and Mea-
surement Archives (MAs) and a Lookup Service (LS).
The perfSONAR data model includes a representation
of the network topology [6] and this is stored in the
Topology Service (TS).

A. UNIS

The UNIS component of Periscope is the Unified
Network Information Service [12]. UNIS is a combina-
tion of the LS and TS functionality in perfSONAR and
stores service information and configuration for discov-
ery, measurement metadata that describes available mea-
surement data and network topology. The perfSONAR
topology information was initially used to describe the
measured network entities, but was extended to support
path finding for dynamic network systems like ESnet
OSCARS [11]. In UNIS, everything is related to a
common network topology graph, from services to the
paths that flows take through the network.

1) UNIS Abstraction: As described in [12], [36], [6],
a key aspect of UNIS is the use of the same basic
abstract elements for network resources including Node,
Port, Link, Path, and Service. These elements
are “subclassed” with layer or domain specific attributes.
These entities at different layers of the network stack are
described along with their relationships both horizontally
— L2 Port connected to L2 Port via L2 Link,
and vertically — L3 Port atop L2 Port, forming a
multigraph [27]. UNIS can then describe the different
network elements traversed as data flows through a
network with all potential points of conflict, and of
observation, represented. This path through the topology
graph can be referred to directly via another UNIS
element, Path, abstracting the details when appropriate.

Via various encoders, UNIS is able to take other
standard network configurations and parameters as in-
puts, e.g., GENI resource specification (RSpec) files and
router configuration files from Internet2 Network.

In other cases, little or no network configuration is
known. In these cases we can derive network topology
from traceroute, using expiring time-to-live coun-
ters to enumerate IP hops, and from this infer the L3
Node, Port, Link and Path elements.

2) Representation of Multi-layer Network Resource
Conflicts: In the vast majority of deployments, networks

vlan - Network Diagram

 VLAN 1

 VLAN 2

10.0.10.12

10.0.20.22
5

10.0.20.7

10.0.10.22

Fig. 1: Layer 2 Conflicts

are shared resources, and shared resources are subject to
competing use. In the case of measurements, concurrent
use over time may cause conflicts, and several technolo-
gies manipulating the state of the network configuration
across layers may easily give rise to previously unfore-
seen issues.

With virtualization at many levels, this problem is
even more significant. On edge hosts and routers alike,
multiple IP layer Port may utilize the same Ethernet
layer Port. Multiple VLAN Port endpoints may use
the same physical Port and a virtual machine Ethernet
may be bridged onto a shared physical Port. Virtual
Link elements may share bandwidth in a single physical
Link as well.

Taking the VLAN configuration in Figure 1 as an
example, either via the results of traceroute or
querying it from perfSONAR, we observe the IP hops
10.0.10.22 and 10.0.20.7. They show no conflicts at the
IP layer; however, a common link lies underneath at
Layer 2, and in fact the path is realized by a dedicated
VLAN. If the active probes running over these resources
attempt to measure the bandwidth, they should be sched-
uled independently.

The UNIS approach to deal with such situation is to
represent these layered relationships insofar as they are
known. UNIS is meant to be a “library” or a “record
keeper”. It should unveil multi-layer conflicts via its
structured data. In other words, relations of network
elements are implied by UNIS internal data entries. To
discover the aforementioned conflicts, the computation
tasks are assigned to the HELM subsystem. UNIS is a
neutral platform that keeps network abstractions sepa-
rated and additional functionalities, like HELM can be
plugged in to minimize data redundancy.

B. BLiPP

The Periscope MP component is called BLiPP (Ba-
sic Lightweight Periscope Probe.) As suggested by the
name, BLiPP acts as a collector agent, running arbitrary
probes and storing their results in the measurement
store. BLiPP also assumes its role as a scheduled agent,
running local commands and formatting their results
based on the associated measurement schema and regular
expressions. BLiPP is configured with directives from

the Periscope Lookup/Topology Service, UNIS. This
configuration provides a measurement metadata descrip-
tion, and BLiPP in turn produces sets of measurement
data and metadata.

HELM, described in more detail in Section IV acts
as a coordinator. It controls monitoring tasks by coordi-
nating BLiPP probes with a schedule generated based
on an aggregate measurement configuration from the
user. BLiPP and HELM cooperate and exchange data via
UNIS. They both solely extend the Periscope framework,
yet taken together, they form a feedback loop carrying
out the active probe scheduling and executing task.

IV. HELM: SCHEDULING ACTIVE NETWORK
MEASUREMENTS

This chapter discusses the design and implementation
of HELM. In our framework, HELM takes an “ag-
gregate” measurement specification from a Periscope
user. These specifications include a set of hosts and a
set of measurements, along with characteristics of each
measurement, including parameters and periodicity. The
goal of HELM is to construct a conflict-free schedule for
these measurements and configure the BLiPP instances
appropriately. HELM has access to UNIS, in which
other measurement activities’ configuration is stored.
Note this scenario also allows HELM to elide duplicate
measurements and reuse exiting measurement activities.

Many of the active network measurements we employ
in Periscope and perfSONAR are parameterized by a
duration. For purposes of this work, we assume that
we know the measurement duration for each schedulable
entity. Due to the nature of scheduling and the sensitivity
of some types of measurements, timelines on probe hosts
and on HELM need to be synchronized. HELM (and
BLiPP) can either work in pulling mode or subscribe
a listener at certain UNIS element(s). It uses RESTful
APIs to pull and its publish-subscribe mechanism is
implemented via WebSocket channels. We enable the
Network Time Protocol (NTP) [23] on all participants.
Normally, NTP is supposed to keep the hosts within a
few milliseconds away from each other, and we con-
sider it sufficient for current scheduling purposes. When
subscribed to UNIS, HELM and BLiPP will always get
notified instantaneously on event updates. This can help
eliminate possible missing or redundant data transfers.

Elements in a network form a graph, and in our model
this is a multigraph representing entities at different
layers. We refer to this graph as the resource topology
in order to distinguish from the graph we construct
for scheduling. This resource topology represents the
network in our UNIS model, with which we can pro-
grammatically identify paths between sources and sinks
of network flows, discover related resources residing at

different network layers and contract or expand repre-
sentations to leverage the best position in the network
hierarchy.

As described in Section III-A, this resource repre-
sentation is a cross-layer topology. This implies that
adjacent nodes in this topology may belong to different
network layers. The connection between nodes reflects
a relationship rather than a necessarily physical con-
nection. Network monitoring systems have employed
various strategies to approximate topology when the
details are not known [10]. Our layered topology model
can always be correct, even if it is less than complete. For
instance, a TCP connection is simply modeled as a Layer
4 link regardless of the availability of transport-specific
knowledge. We may be able to expand downward with
information about lower layers, but we can always use
high-level information to construct a overall resource
topology.

Discovering the underlying topology is a key problem
in general network measurement. Note however that in
our two main areas of emphasis, R&E networks and
experimental distributed and cloud computing testbeds,
the details of the topology are often discoverable. In the
case of Internet2, we get the published router configu-
rations and use those to create a detailed UNIS model.
ESnet publishes its topology in a perfSONAR Topology
Service, which is an ancestor of the UNIS model and
which we can import directly. In GENI, the resource
specification descriptions (RSpecs) are advertised; we
encode the underlying resource description and the dy-
namic “slice” of resources created by a user into the
UNIS model.

After describing the cross-layer topological nature of
these networks, we determine what resources cause con-
tentions. For measurement tasks that conflict with each
other on common resources, they form an intersection
graph. We map the scheduling problem onto a graph
coloring algorithm to utilize well-studied solutions. The
graph coloring problem, e.g. discovering the optimal
number of colors such that no two adjacent vertices have
the same color, is an NP-complete problem for general
graphs. We not only want to populate the schedule, but
also want to reduce the total amount of waiting time for
each probe test by using the minimal number of colors.

In essence, HELM needs to construct a given topol-
ogy, analyze the tasks assigned to this topology to iden-
tify paths based on the measurement tasks and construct
the intersection graph out of these conflict paths.

A. Constructing Topologies and Paths

After we get the topology information from Internet2,
ESnet and GENI and encode them into the UNIS model
(or simply reference previously encoded information),

we can construct the resource topology.
Getting the Path information is a bit more involved.

HELM needs to know the network elements a particular
measurement will use. In some cases, that Path will
be explicitly configured by the user with SDN. In other
cases, we need to learn the end-to-end paths from an
already configured network. HELM can directly assign
tests to BLiPP agents running at the end hosts, and
request them to launch traceroute and discover the
IP hops. After this data is collected and uploaded to
UNIS, HELM will store it. Alternatively, HELM can
query it from other information sources like perfSONAR
or Periscope measurement archives with the client API.
The latter case can be useful when access to the end
hosts is not possible. Both mechanisms can provide the
hop information.

Our end-to-end path starts from extending a pure
Layer 3 path. HELM is able to map an IP hop to a
port located at Layer 2. To achieve this, static routing
configuration files may be uploaded and parsed into
UNIS, forwarding table discovery services (a looking
glass) for public R&E networks backbone routers may
also be used. HELM can identify such mappings and
resolve the Layer 3 address to a unique lower layer
address in its cross-layer topology.

To fill the single or multiple missing links between
two newly mapped ports, we make use of our knowledge
about this Layer 2 network segment. HELM will calcu-
late the path based on a standard algorithm, Dijkstra’s
Single-Source Shortest Path in the link layer to determine
a Layer 2 path through that segment.

Another example is to calculate VM related resources,
especially in our GENI experiments. In the case of
GENI, users allocate compute resources in the form
of virtual machines on demand as Figure 2. Network
measurements on such resources need to be aware of the
underlying hardware layer in order to schedule conflict-
free measurements. As shown in Figure 3, contentions
can arise if the measurement service is not aware of
the underlying host resource distribution. The GENI
manifest RSpec, which describes the hardware details of
the allocated resources, e.g. raw host IDs, NIC’s UUIDs
is updated to UNIS, and helps in detecting hardware
conflicts during measurement scheduling.

The eventual working topology is the result of many
inputs: traceroute, topology archives, configuration
data and path calculations. By consulting it, HELM
attempts to resolve any shared resource conflicts with the
observable knowledge about a given network. A func-
tional implementation of the HELM system is a corner-
stone of this study. By tolerating incomplete knowledge
of layers, which is common in heterogeneous networks,
our solution maximizes the benefits while remaining

Node

IP:Port

Eth:Port

Node

IP:Port

Eth:Port

Node

IP:Port

Eth:Port

VM:Node VM:Node

IP:Port IP:Port

Eth:Port Eth:Port

Fig. 2: Virtual Tenants

���������	
�����
���	

����

����

������

���
���

����

����

Fig. 3: GENI VM

practical over a wider set of deployment scenarios. We
note that the constructive appraoch taken with HELM
differentiates this work from a purely theoretical emula-
tion.

B. Constructing the Intersection Graph

There are numerous approaches possible for construct-
ing the intersection graph that allows HELM to compute
a schedule of measurements free of shared resource con-
tention. In this study, we reduce our scheduling task to
a graph coloring problem. It is a canonical methodology
for computing scheduling problems and we investigated
classes of Perfect Graphs such as Chordal [13] and
Trapezoid [9] Graphs to find an appropriate model that
fit our particular scheduling problem. In the end, we
concluded that our approach required a more general rep-
resentation, due in part because any two measurements
can conflict in complex ways. A Trapezoid Graph, for
example, has constraints requiring its trapezoids to be
placed between two parallel lines, which rules out many
cases that require a general intersection graph [22]. This
fact makes the elimination-order optimization [29] not
possible. Instead, we chose a heuristic, namely smallest-
last ordering [21], combined with the greedy coloring
algorithm as our approach.

The maximum outdegree of a node in the graph is
an upper bound on k for a k-coloring approach. We
construct our graph for the coloring phase so that the
edges reflect conflicts, and thus the number of conflicts
(i.e., colors) correspond to the maximum number of non-
contending measurement slots.

Our problem can be considered as:

GUNIS = V,E |= Node, Port, Link ∈ V (1)

HELM is given a measurement specification at a
particular network layer (e.g., TCP throughput tests),
which is reified into a set of endpoints, Vmeas. From
Vmeas we construct a set of paths,

Pathmeas = (Pmeas1...PmeasN) (2)

Pmeas1 = V1...VM (3)

For each P ∈ Paths we walk the path, copying the
traversed vertices from GUNIS into Gmeas, including
a reference count for each node in Gmeas, which is
incremented when referenced, and storing a reference
to each Path P that traverses it.

We elide any nodes from Gmeas that have only one
reference. We create a distinct vertex in the intersection
graph for each time a node in Gmeas with a reference
to the Path P that created it. The resultant Gmeas is the
intersection graph that represents the conflicts.

The graph coloring problem is closely related with
the notion of a clique. For example, for all the Chordal
Graphs, the largest clique determines the chromatic
number. In general, a full mesh test running on a set of
network resources will not necessarily form a Chordal
Graph; however, we can make use of a heuristic approach
to transform the graph into a form that has the desired
property.

Note that, typical graph coloring problems take
G(E, V) as an input, which does not include the
clique information about the graph unless additional
computations are done. The complexity of discovering
clique information from a graph is as computationally
difficult as many other problems, e.g., the minimum
coloring problem since the approach essentially groups
vertices into smaller sets of unique cliques. Thus a
“pre-processing” step is required that makes use of the
smallest-last ordering heuristic to prevent the greedy
coloring algorithm from using a poor ordering. A key
advantage of HELM is that we are not given a graph
directly, but rather we form our graph based on the
known relationships between topology and measurement
path objects. Therefore, we may compute and transform
the graph as necessary during the contruction of the
intersection graph.

C. Scheduling Policy

We note that the algorithm as presented realizes a strict
conflict-free policy. That is certainly the desired situation
for certain cases, but not all. A large router or switch
would certainly be able to handle multiple measurement
flows in many situations.

Our algorithm generalizes to deal with any of these
cases. If administrative policy is that a resource can
manage a certain number of concurrent measurement
flows, we can effectively clone that resource in the
topology, creating N clones provides N concurrent slots.
Even if a device should take an arbitrary number of mea-
surement flows, we can elide it from the consideration
of intersection graph. In measurements that are sensitive
to queuing, we might not constrain the node itself but
only the egress interface.

V. EXPERIMENTS

In this section, we list some experimental results from
running HELM and discuss two major factors: 1) the cor-
rectness of HELM measurement schedules in real-world
use cases, 2) the scalability of our scheduling algorithm.
We perform an empirical analysis that demonstrates how
HELM works in a realistic scenario.

As the basis of our experimental environment, we
made use of both the Internet2 and ESnet backbone
networks. These two networks cover a significant portion
of the available R&E networks deployed within the
US. Their topologies are stored in the UNIS topology
service and converted into in-memory local objects for
HELM to manipulate. We randomly select 300 pair-
wise measurement points in this mixed topology, and
configure them as iperf network bandwidth tests. If
deployed, each iperf measurement should be scheduled
at a different time slot than any other measurement that
traverse common resources. We ran HELM on a low end
commodity device, with 2.6GHz Intel dual core CPUs
and 4GB of RAM to demonstrate that HELM can operate
with modest computational resources.

Note that both the communication to a remote UNIS
service and local calculation contribute to the total
processing time. The network communication to UNIS
services is a typical RESTful service invocation, and the
communication time is highly dependent the latency to
the UNIS server. An evaluation of UNIS query response
time has been presented in our previous work [12] and
does not factor into our current evaluation of HELM.
Therefore, we only present the actually scheduled calcu-
lation time cost in the charts. The HELM implementation
makes use of the graph coloring algorithms in the Boost
Graph Library 3.

3http://www.boost.org/doc/libs/1 49 0/libs/graph/doc/index.html

Fig. 4: Internet2 and ESnet end hosts measurements

Figure 4 shows the actual cross-layer connectiv-
ity HELM discovered about all the requested end
hosts. Their paths are discovered by proactively running
traceroute between sources and destinations. By
querying the forwarding information stored in HELM,
IP addresses are translated into topology resource iden-
tifiers. All of the resolved resources form an intersection
graph where each edge denotes a resource conflict at
each network layer. This solution is computed over less
than 300ms in repeated experiments in the aforemen-
tioned testbed setup. As described below, a relatively
large number of available network paths reduced the
routing conflicts, and fewer overall conflicts were identi-
fied. For example, in Internet2, end hosts located in New
York city area may take a route through Chicago to LA,
whereas the opposite route may choose a southern path
through the Atlanta area. This fact dramatically reduces
the density of the generated graph and thus reduces the
amount of necessary computation. The routing diversity
in the use case allows concurrent traffics, and HELM
shows that it can produce the schedule for this real world
scenario.

Next, we evaluate how HELM scales with increasing
measurement demands, where we expect the computa-
tion time to follow the complexity of the smallest-last
ordering heuristic and the greedy coloring algorithm.

We vary our end host number from 10 up to 40
composing of up to 40 × 39 full mesh measurement
pairs. Further, we assume the worst case, in which
each single measurement pair will conflict with other

Fig. 5: construction time compare to O(n2)

sibling measurements. This generates on the order of n2

edges in the resulting intersection graph. In the following
figures, the x axes show the size of the problem set, and
the y axes show the processing time. We averaged the
execution time over 10 runs for each case. A smooth
line connecting the data points is used as the expected
processing time curve. We measured three time sections,
namely the time used to construct an intersection graph
for the problem set, the time used to re -order the vertices
as a heuristic input to coloring algorithm and the actual
coloring time. Note that, the construction and ordering
step do not need to be re-executed multiple times.
Once the topology is inputed and initial measurement
requests are submitted to HELM, HELM should build its
intersection graph and order them in the graph according
to their degree. From then on, new requests can be
inserted additively.

The construction phase is O(n2), n denotes the number
of the total amount of measurements. Figure 5 plots a
line to show the expected quadratic curve with a constant
factor.

Similarly, in figure 6 the quadratic curve is the upper
bound of the increasing of ordering time consumption. It
is consistent with the complexity claimed [21]. Note that,
we have set up the scenarios such that all measurement
events conflict with each other, so the number of edges
are on the same order as the square of the number of
vertices. O(|V |+|E|) is effectively O(n2), where n = V .

Figure 7 shows the coloring time complexity with the
ordered vertex input. Again, the computation time did
not exceed the expected upper bound.

As experiments show, the complexity is as predicted.
In terms of scalability, the discussion can be subjective,
depending on how much computational power one may
have, how diverse (for a given network size) the net-

Fig. 6: ordering time compare to O(n2)

Fig. 7: coloring time compare to O(n2)

work paths are etc. Our experiment is conducted on a
modestly equipped Linux host, with representative real-
world networks as input, and yielded results suitable for
a centralized deployment scenario.

VI. RELATED WORK AND CONCLUSIONS

We refer to and contrast with several previous ac-
tive measurement scheduling studies. A number of ap-
proaches have been proposed for mitigating scheduling
computation overhead. Some try to balance the intrusive
nature of active probing [20] while others, including this
study, look for a way to find non-conflicting schedules.
For example, in Daniel et al [17], active probe timing is
focused on traffic peak hour avoidance. In contrast to our
work, it is a macro scheduling approach, as a specific
probe conflict is not under consideration. Instead, the
strategy focuses on deriving an optimal schedule for

long period runs. Some approaches lean toward reserving
resources rather than schedule them [33]. Not only may
the methodologies vary, but scheduling may also target
specific shared resource types. For instance, [15] lever-
ages the property of optical network environments. Even
on a similar test environment such as ESnet, scheduling
may show different perspectives, like in [16], instead of
maximizing a single test probe, their study focuses on
adopting multiple circuits at the same time as long as
the infrastructure has adequate capacity. For HELM, we
are interested in a solution that uses a generalized model
to accommodate the varieties of networks, in our case
supported by UNIS.

The second half of our solution is related to the
large body of work in graph algorithms. Indeed, graph
algorithms have been applied in a lot of research about
resource scheduling [28] [1], as they share common com-
binatorial principles. Related with Qin’s study, Network
Weather Service [34] also scheduled with a token passed
around a user-defined clique, where shared network
resources form cliques in their equivalent intersection
graphs. A heavily shared single point resource causes a
large clique in the graph. While connecting with other
resource nodes, the group of shared points effectively
generate smaller cliques nested within the large “parent”
clique.

Since the family of general scheduling optimization
problems is NP-complete [18], some heuristic methods
have been used [8]. In these studies, heuristics can
help guide solution finding. However, a concern about
these methods is that they may introduce dependences
on external information sources, e.g. Earliest Deadline
First (EDF) heuristics are applied to deadline constrained
problems. Periodical tasks have deadlines commonly, but
not for all cases. On-demand tasks are handled by a
separated scheduling schema in Calyam’s work, etc. In
contrast, our Smallest Last Ordering heuristic [21] is for
pure graph algorithms as all it needs is vertices and their
connectivities. Its graph abstraction makes it fit broader
use cases. Also, it gives a definitive time complexity.

To conclude, HELM is an integrated tool that col-
lects and analyzes network topology information and
transforms it into graph representations and calculates
solutions for schedule optimization via graph heuristics
and algorithms. A key question we could further in-
vestigate as future work is the possibility to better use
the knowledge we have already collected from certain
networks. The resource topology should contain more
information than what we used to transform our problem.
Such information might inspire the development of new
heuristics leading to an improved algorithm.

REFERENCES

[1] Amotz Bar-Noy, Mihir Bellare, Hadas Shachnai, Tami Tamir, and
et al. On chromatic sums and distributed resource allocation, Feb
1998.

[2] P. Barford, N. Duffield, A. Ron, and J. Sommers. Network
performance anomaly detection and localization. In INFOCOM
2009, IEEE, pages 1377–1385, April 2009.

[3] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro
Nakao, Max Ott, Dipankar Raychaudhuri, Robert Ricci, and
Ivan Seskar. Geni: A federated testbed for innovative network
experiments. Computer Networks, 61(0):5 – 23, 2014. Special
issue on Future Internet Testbeds Part I.

[4] J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling multi-
processor tasks to minimize schedule length. Computers, IEEE
Transactions on, C-35(5):389–393, May 1986.

[5] K.A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R.A.
Olsson. Detecting disruptive routers: a distributed network
monitoring approach. Network, IEEE, 12(5):50–60, Sep 1998.

[6] A Brown, M Swany, and J Zurawski. A general encoding
framework for representing network measurement and topology
data. Concurrency and Computation: Practice and Experience,
21(8):1069–1086, June 2009.

[7] Mathijs Den Burger, Thilo Kielmann, and Henri E. Bal.
Topomon: A monitoring tool for grid network topology. In In
International Conference on Computational Science (2, pages
558–567. Springer, 2002.

[8] P. Calyam, Chang-Gun Lee, Phani Kumar Arava, and D. Krym-
skiy. Enhanced edf scheduling algorithms for orchestrating
network-wide active measurements. In Real-Time Systems Sym-
posium, 2005. RTSS 2005. 26th IEEE International, pages 10
pp.–132, Dec 2005.

[9] F. Cheah and D.G. Corneil. On the structure of trapezoid graphs.
Discrete Applied Mathematics, 66(2):109 – 133, 1996.

[10] Yan Chen, David Bindel, Hanhee Song, and Randy H. Katz.
An algebraic approach to practical and scalable overlay network
monitoring. SIGCOMM Comput. Commun. Rev., 34(4):55–66,
August 2004.

[11] ESnet On-demand Secure Circuits. Advance reservation system
(oscars), 2007.

[12] A. El-Hassany, E. Kissel, D. Gunter, and M. Swany. Design
and implementation of a unified network information service.
In 10th IEEE International Conference on Services Computing
(SCC 2013), June 2013.

[13] Fnic Gavril. The intersection graphs of subtrees in trees are
exactly the chordal graphs. Journal of Combinatorial Theory,
Series B, 16(1):47 – 56, 1974.

[14] A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti,
R. Lapacz, M. Swany, S. Trocha, and J. Zurawski. PerfSONAR:
A service oriented architecture for multi-domain network moni-
toring. In In Proceedings of ICSOC 2005, December 2005.

[15] Yaohui Jin, Yan Wang, Wei Guo, Weiqiang Sun, and Weisheng
Hu. Joint scheduling of computation and network resource in
optical grid. In Information, Communications Signal Processing,
2007 6th International Conference on, pages 1–5, Dec 2007.

[16] Dimitrios Katramatos, Xin Liu, Kunal Shroff, Dantong Yu,
Shawn McKee, and Thomas Robertazzi. TeraPaths: End-to-
End Network Resource Scheduling in High-Impact Network
Domains. International Journal On Advances in Internet Tech-
nology, 3(1 and 2):104–117, sep 2010.

[17] N. Daniel Kumar, Fabian Monrose, and Michael K. Reiter.
Towards optimized probe scheduling for active measurement
studies. pages 26–31, March 2011.

[18] Frank Thomson Leighton. A graph coloring algorithm for large
scheduling problems. Journal of research of the national bureau
of standards, 84(6):489–506, 1979.

[19] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity
of Machine Scheduling Problems, volume 1 of Annals of Discrete
Mathematics, pages 343–362. Elsevier, 1977.

[20] Bruce B. Lowekamp. Combining active and passive network
measurements to build scalable monitoring systems on the grid.
SIGMETRICS Perform. Eval. Rev., 30(4):19–26, March 2003.

[21] David W. Matula and Leland L. Beck. Smallest-last ordering and
clustering and graph coloring algorithms. J. ACM, 30(3):417–
427, July 1983.

[22] Terry A McKee and Fred R McMorris. Topics in intersection
graph theory, volume 2. Siam, 1999.

[23] D. Mills. Network time protocol (version 3) specification,
implementation, 1992.

[24] Toshiyuki Miyachi, Ken-ichi Chinen, and Yoichi Shinoda.
Starbed and springos: Large-scale general purpose network
testbed and supporting software. In Proceedings of the 1st In-
ternational Conference on Performance Evaluation Methodolgies
and Tools, valuetools ’06, New York, NY, USA, 2006. ACM.

[25] Jeffrey C. Mogul. Efficient use of workstations for passive
monitoring of local area networks. In In Proceedings of ACM
SIGCOMM 90, pages 253–263, 1990.

[26] Jens Palsberg. Register allocation via coloring of chordal graphs.
In Proceedings of the Thirteenth Australasian Symposium on
Theory of Computing - Volume 65, CATS ’07, pages 3–3,
Darlinghurst, Australia, Australia, 2007. Australian Computer
Society, Inc.

[27] Sriram Pemmaraju and Steven Skiena. Computational Discrete
Mathematics: Combinatorics and Graph Theory with Mathemat-
ica, page 89. Addison-Wesley, 1990.

[28] Zhen Qin, Roberto Rojas-Cessa, and Nirwan Ansari. Task-
execution scheduling schemes for network measurement and
monitoring. Computer Communications, 33(2):124–135, Febru-
ary 2010.

[29] Donald J Rose, R Endre Tarjan, and George S Lueker. Algorith-
mic aspects of vertex elimination on graphs. SIAM Journal on
computing, 5(2):266–283, 1976.

[30] S Shanlunov, B Teitelbaum, A Karp, JW Boote, and
M Zekauskas. A one-way delay measurement protocol (owamp).
Technical report, Internet Draft, May, 2003.

[31] C. Shapiro and H.R. Varian. Information rules: a strategic guide
to the network economy. Strategy/Technology / Harvard Business
School Press. Harvard Business School Publishing, 1999.

[32] Herbert A. Simon. The sciences of the artificial, September 1996.
[33] B. Urgaonkar and P. Shenoy. Sharc: managing cpu and network

bandwidth in shared clusters. Parallel and Distributed Systems,
IEEE Transactions on, 15(1):2–17, Jan 2004.

[34] Rich Wolski. Dynamically forecasting network performance
using the network weather service. Cluster Computing, 1(1):119–
132, 1998.

[35] Rich Wolski, Neil T. Spring, and Jim Hayes. The network
weather service: A distributed resource performance forecasting
service for metacomputing. Journal of Future Generation Com-
puting Systems, 15:757–768, 1999.

[36] J. Zurawski, M. Swany, and D. Gunter. A scalable framework
for representation and exchange of network measurements. In
TRIDENTCOM, 2006.

