
Scheduling Heterogeneous MapReduce Jobs for
Efficiency Improvement in Enterprise Clusters

Yi Yao
Northeastern University

Email: yyao@ece.neu.edu

Jianzhe Tai
Northeastern University

Email: jtai@ece.neu.edu

Bo Sheng
University of Massachusetts Boston

Email: shengbo@cs.umb.edu

Ningfang Mi
Northeastern University

Email: ningfang@ece.neu.edu

Abstract—The MapReduce paradigm and its open source
implementation Hadoop are emerging as an important standard
for large-scale data-intensive processing in both industry and
academia. A MapReduce cluster is typically shared among mul-
tiple users with different types of workloads. When a flock of jobs
are concurrently submitted to a MapReduce cluster, they compete
for the shared resources and the overall system performance
might be seriously degraded. Therefore, one challenging issue is
to efficiently schedule all the jobs in such a shared MapReduce
environment. However, we find that prior scheduling algorithms
supported by Hadoop cannot guarantee good performance under
different workloads. In this paper, we propose a new Hadoop
scheduler, which leverages the knowledge of workload patterns
to improve the system performance by dynamically tuning the
resource shares among users and the scheduling algorithms for
each user. Experimental results from Amazon EC2 cluster show
that our scheduler reduces the average MapReduce job response
times under a variety of workloads compared to the existing
FIFO and Fair schedulers.

I. INTRODUCTION

Nowadays MapReduce [1] has become an important
paradigm for parallel data-intensive cluster programming due
to its simplicity and flexibility. Essentially, it is a software
framework that allows a cluster of computers to process a
large set of data in parallel. MapReduce, namely, consists of
two main steps, “map” and “reduce”, where the “map” step
dispatches the huge data set to individual computers in the
cluster for processing and “reduce” combines the intermediate
data from “map” and derives the final output.

In a MapReduce system such as Hadoop, scheduling policy
is a critical factor for the performance. There are two tiers of
scheduling in a Hadoop system which is shared by multiple
users: Tier 1 scheduling is to assign free slots (resources)
to active users; and Tier 2 scheduling is to arrange jobs for
each individual user. By default, Hadoop uses a FIFO (First-
In-First-Out) scheduler which ignores the tier 1 scheduling
and does not perform well in practice. A small job submitted
after a large job will get stuck for a long period and the
system performance might be seriously degraded. The Fair
scheduler [2] solved this problem by sharing cluster slots fairly
among users (i.e., tier 1) as well as among jobs from a single
user (i.e., tier 2). Consequently, each job has an equal chance
to get slots and small jobs will not be stuck behind large
ones. However, we observe that when job sizes of various
users are not uniform, the Fair policy becomes inefficient. We

This work was partially supported by the National Science Foundation
(NSF) grant CNS-1251129, an IBM Faculty Award and an AWS in Education
Research Grant.

thus argue that a good scheduler should discriminately assign
slots to users in tier 1 according to their average job sizes,
aiming to improve the overall performance in terms of job
execution times. We also find that, in tier 2 scheduling, the
Fair scheduler outperforms FIFO when high variance exists
in job sizes of a user; otherwise, Fair loses its advantages.

To address the above issues, we develop a novel Hadoop
scheduler, called LsPS, which aims to improve overall per-
formance by leveraging the present job size patterns to tune
its scheduling schemes among multiple users and for a single
user. Specifically, we first develop a lightweight information
collector that tracks important statistic information of the
recently finished jobs for each user. We then propose a self-
tuning scheduling policy which consists of the scheduling
at two levels: the resource shares across multiple users are
assigned based on the estimated job size of each user; and the
job scheduling for each individual user is further adjusted to
accommodate to that user’s job size distribution. Experimental
results in a real-world Hadoop cluster environment confirm the
effectiveness and the robustness of our solution. We show that
our scheduler improves the performance in terms of average
job execution times under a variety of system workloads. The
reminder of this paper presents our results in detail.

II. ALGORITHM DESCRIPTION

Considering the dependency between map and reduce tasks,
the Hadoop scheduling can be formulated as a two-stage multi-
processor flow-shop problem. However, finding the optimal
solution with the minimum execution times is NP-hard [3].
Therefore, we propose LsPS, an adaptive scheduling algorithm
which leverages the knowledge of workload characteristics to
dynamically adjust the scheduling schemes with the goal of
improving efficiency in terms of job response times in systems,
especially under heavy-tailed workloads [4].

The overview of LsPS is presented in Algorithm 1. Briefly,
LsPS consists of the following three components:

• Workload information collection: monitor the execution
of each job, and gather the workload information.

• Scheduling among multiple users: allocate slots (both
map and reduce slots) for users according to their work-
load characteristics, i.e., scheduling at Tier 1.

• Scheduling for a single user: tune the scheduling schemes
for jobs from each user based on that user’s job size
distribution, i.e., scheduling at Tier 2.

In this section, we present the detailed implementation of
the above three components. Table I lists some notations used

872978-3-901882-50-0 c©2013 IFIP

in the rest of this paper.
U / ui number of users / i-th user, i ∈ [1, U]
Ji / jobi,j set of all user i’s jobs / j-th job of user i. jobi,j ∈ Ji.
t
m
i,j / tri,j average map/reduce task execution time of jobi,j
t
m
i / tri average map/reduce task execution time of jobs from ui

nm
i,j

/ nr
i,j

number of map/reduce tasks in jobi,j

S
∗

i average map/reduce phase size of current jobs from ui

si,j size of jobi,j , i.e., total exe. time of map and reduce tasks
Si average size of completed jobs from ui

CVi/CV ′

i
coefficient of variation of completed/current job sizes of ui

SUi / SJi,j the slot share of ui / the slot share of jobi,j
ASi the slot share that ui actually received

TABLE I
NOTATIONS USED IN THE ALGORITHM.

Algorithm 1 Overview of the LsPS scheduler
1. When a new job from user i is submitted

a. Estimate avg. phase size S
∗

i of user i using Eq. 7;
b. Adjust slot shares among all active users, see Section II-B;
c. Tune the job scheduling scheme for user i, see Section II-C;

2. When a task of job j from user i is finished
a. Update the estimated average task execution time t

∗

i,j ;
3. When the j-th job from user i is finished

a. Measure avg. map/reduce task execution time tmi,j / tri,j and
map/reduce task number nm

i,j / nr
i,j ;

b. Update history info. of user i, i.e., t̄i, S̄i, CVi, using Eq.(1-6);
4. When a free slot is available

a. Sort users in a non-increasing order of deficits ASi − SUi;
b. Assign the slot to the first user ui∗ in the sorted list;
c. Increase num. of actual received slots ASi∗ by 1;
d. Choose a job from user ui∗ to get service based on the

current scheduling scheme.

A. Workload Information Collection

In this subsection, we first introduce a light-weighted his-
tory information collector in LsPS that gathers the important
statistical information of jobs and users. Basically, we collect
and update the information of each job’s map and reduce tasks
separately by the same means. To avoid redundant description,
we use the general term task to represent both types of tasks
and the term phase size to represent size of either map phase
or reduce phase of each job.

In LsPS, the workload information that needs to be collected
for each user ui includes average task execution time t̄mi (or
t̄ri), average job size S̄i, and the coefficient of variation CVi

of job sizes. The Welford’s one-pass algorithm [5] is used to
on-line update these statistics.

t
m

i = t
m

i + (t
m

i,j − t
m

i)/j, (1)

t
r

i = t
r

i + (t
r

i,j − t
r

i)/j, (2)

si,j = t
m

i,j · n
m
i,j + t

r

i,j · n
r
i,j , (3)

S̄i = S̄i + (si,j − S̄i)/j, (4)

vi = vi + (si,j − S̄i)
2 · (j − 1)/j, (5)

CVi =
√

vi/j/S̄i, (6)

where t
m

i,j (resp. t
r

i,j) represents the measured average map
(resp. reduce) task execution time of jobi,j , nm

i,j (resp. nr
i,j)

indicates the number of map (resp. reduce) tasks of jobi,j , and

si,j denotes the size of the j-th completed job of user ui (i.e.,
jobi,j). The average job size S̄i (resp. map and reduce task
execution time, t

m

i and t
m

i) of user ui is set to be zero initially
and updated once a new job’s size information is collected.

Upon each job’s completion, LsPS collects its task execution
time and updates the workload statistics for the corresponding
user using the above equations, i.e., Eq.(1-6). The statistical
information will then be utilized by LsPS to tune the schemes
for scheduling the jobs arriving in the next time period.

B. Scheduling Among Multiple Users

In this subsection, we present our algorithm for scheduling
among multiple users, i.e., assigning slots to all users. Al-
though there are two types of slots, i.e., map slots and reduce
slots, in a Hadoop system, we use the same strategy to allocate
them to different users. For simplicity, we present a general
algorithm in the rest of this subsection which can be applied
to both types of slots. Note that a job could get different slot
assignments for its map and reduce tasks if they have different
workload characteristics.

Specifically, LsPS adaptively adjusts the slot shares among
all active users such that the share ratio is inversely propor-
tional to the ratio of their average job phase sizes. Conse-
quently, LsPS implicitly gives higher priority to users with
smaller jobs. We expect that LsPS can avoid small jobs waiting
behind large ones and thus improve the overall performance.

One critical issue that needs to be addressed is how to
correctly measure the phase sizes of the jobs that are currently
running or waiting for the service. In Hadoop systems, it is
not easy to obtain the exact execution times of job’s tasks
before they are finished. In this paper, we instead estimate a
job’s phase size, as the production of its task number and the
average task execution time. In particular, the total task number
of jobi,j , i.e., ni,j , can be obtained immediately when the job
is submitted, and the execution times of tasks from the same
job can be assumed to be close to each other [6]. Therefore,
if jobi,j is running, we use the average execution time of
the finished tasks of jobi,j , e.g., t

∗
i,j , to represent its overall

average task execution time ti,j . For those jobs from user ui

that are still waiting for service or currently running but have
no finished tasks, we use the average task execution times ti
of jobs from the same user to approximate their average task
execution times ti,j .

Therefore, user ui’s average map/reduce phase size of jobs
is calculated as follows,

S̄∗
i =

1

|Ji|
·

|Ji|∑

j=1

ni,j · t̄i,j , (7)

where Ji represents the set of jobs from user ui that are
currently running or waiting for service.

Once a new job arrives, LsPS updates the average size of
that job’s owner (see Section II-A), and then adaptively adjusts
the map and the reduce slot shares (SUi) among all active

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper 873

users using Eq.8.

SUi = SU∗
i · (α · U ·

1

S̄∗

i∑U

i=1

1

S̄∗

i

+ 1− α), (8)

∀i, SUi > 0, (9)
U∑

i=1

SUi =

U∑

i=1

SU∗
i , (10)

where SU∗
i represents the slot shares for user ui under the

Fair scheme, i.e., equally dispatching the slots among users,
U indicates the number of active users, and α is a tuning
parameter within the range from 0 to 1. Parameter α in Eq.8
is used to control how aggressively LsPS biases towards the
users with smaller job phase sizes: when α is close to 0, our
scheduler increases the degree of fairness among all users,
performing similar as Fair; and when α is increased to 1,
LsPS gives the strong bias towards the users with small jobs in
order to improve the efficiency. In the remainder of the paper,
we set α to 1 if there is no explicit specification. We remark
that through setting parameter α, one can tune LsPS to meet
different predefined targets, e.g., fairness or efficiency. We also
remark that it is guaranteed no active users gets starved for
slots, see Eq.9, and all available slots in the system are fully
distributed to active users, see Eq.10.

The new slot shares (i.e., SUi) will then be used to deter-
mine which user can receive the slot that just became available
for redistribution. Specifically, LsPS sorts all active users in
a non-increasing order of their deficits, i.e., the gap between
the expected assigned slots (SUi) and the actual received slots
(ASi), and then dispatchs that particular slot to the user with
the largest deficit. Additionally, some users might have high
deficits but their actual demands on map/reduce slots are less
than the expected shares. In such a case, LsPS re-dispatches
the extra slots to those users who have less deficits but need
more slots for serving their jobs.

C. Scheduling for A Single User

The second design principle used in LsPS is to dynamically
tune the scheduling scheme for jobs from an individual user
by leveraging the knowledge of job size distribution.

Our algorithm considers the CV of total job sizes, i.e.,
map size plus reduce size, of each user to determine which
scheme should be used for jobs from the same user. In order
to accurately estimate CV ′ of each user’s current job sizes,
we combine the history information of recently finished jobs
and the estimated size distribution of current jobs that are
running or waiting in the system. The past CVi of user ui

can be provided by the information collector described in
Section II-A. The current CV ′

i can be calculated using Eq.(3-
6) but replacing average task execution times ti,j with average
task execution times ti of jobs from the same user as described
in Section II-B. If both CV values of a user are smaller than
1, then the LsPS scheme schedules the current jobs from that
user in the order of their submission times. Otherwise the
user level scheduler fairly assigns slots among jobs. It is also

possible that the two values are conflicting, i.e., CVi > 1 and
CV ′

i < 1 or vise versa, which means the user’s workload
pattern changes. Under such case, the fair scheme is adopted
to assign slots to that user’s jobs. Meanwhile, the history
information is reset by starting a new collection window.

III. EXPERIMENTAL RESULTS IN AMAZON EC2

We implement and evaluate the LsPS scheduler in Amazon
EC2, a cloud platform that provides pools of computing
resources to developers for flexibly configuring and scaling
their compute capacity on demand.

1) Experimental Setting: In our experiments, we lease a
m1.large instance as master node to perform heartbeat and
jobtracker routines for job scheduling. Additionally, we use
another 11 m1.large instances to launch slave nodes, each
of which is configured with two map slots and two reduce
slots. As the Hadoop project [7] provides an API to sup-
port pluggable schedulers, we implement LsPS in Hadoop
by extending the TaskScheduler interface and then change
mapred.jobtracker.taskScheduler in the Hadoop configuration
file to plug our scheduler into the Hadoop system.

Four representative MapReduce applications are used for
scheduling evaluation, i.e., WordCount, PiEstimator,
Grep and Sort. In addition, the randomtextwriter
program is used to generate random files as the input
to WordCount and Grep applications. We also run the
RandomWriter application to generate 10G random data as
the input in Sort applications. For PiEstimator applications, we
set the sample space at each map task as 100 million random
points, and the map task number is set to be 20.

2) Performance Evaluation: We conduct experiments with
the mixed MapReduce applications, aiming to evaluate LsPS
performance in a diverse environment of both CPU-bound
applications, such as PiEstimator, and IO-bound applications,
e.g., WordCount and Grep. In our experiments, there are four
different users each of which submits a set of jobs for one type
of applications above. Different distributions are introduced in
both inter-arrival times and job sizes for each user, see Table II.

The experimental results are shown in Figure 1. The relative
performance improvement against FIFO is also plotted in the
figure. We first observe that all the users experience worst
performance under FIFO when the workload is a complex
mixture of demands from multiple users. The performance
degradation comes mainly from the fact that the extremely
large jobs from user 4, i.e., Sort, take over all the resources
in the cluster and stuck all the following small jobs from other
users. We also observe that, under the FIFO policy, all the
users tend to have similar average job execution time despite of
their different job size patterns. On the other hand, Fair could
improve the performance by allowing jobs from all users to
get resource shares. Therefore, small jobs gain more benefits
under Fair policy compared with FIFO by avoiding waiting for
large ones. As a result, the average execution times of the first
three users, which in average submit small jobs, are improved
by a factor of 2.

874 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper

User Job Type Avg Input Size Input Size Pattern Job Arrival Pattern Avg Inter-arrival Submission Number
1 WordCount 100MB Exponential HeavyTail 20 sec 150
2 PiEstimator - - Uniform 30 sec 100
3 Grep 500MB HeavyTail Exponential 100 sec 30
4 Sort 2GB Exponential Exponential 600 sec 5

TABLE II
EXPERIMENTAL SETTINGS FOR FOUR USERS IN AMAZON EC2.

We further observe that better performance is achieved
under LsPS such that the overall performance is improved by
a factor of 3.5 and 1.8 over FIFO and Fair, respectively. We
interpret it as an outcome of setting suitable scheduling algo-
rithms for each user based on their corresponding workload
features. The largest performance improvements come from
the first two users. LsPS significantly reduces the average job
execution time of user 1 by assigning more resources to it.
For user 2, when LsPS detects that this user keeps submitting
jobs with similar sizes, it turns to schedule the jobs from this
user based on their submission times because Fair scheduling
now cannot achieve any benefits due to the uniform job size
distribution. Moreover, compared to FIFO, the performance of
user 4 is not sacrificed although the LsPS policy discriminately
gives it less resources due to its large jobs.

68%
50%

74%

47%

73%

52%

25%
37%

50%

71%

 0
 50

 100
 150
 200
 250
 300
 350
 400

All User1 User2 User3 User4

FIFO
Fair
LsPS

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(S
ec

)

Fig. 1. Average job execution time, i.e., the duration between job
submission and completion, for all users and schedulers. The relative
improvements over FIFO are plotted on the bars of Fair and LsPS.

IV. RELATED WORKS

Scheduling in Hadoop systems has already received a lot of
attention recently. An early work of Matei Zaharia et al. [2]
proposed the Fair scheduler which fairly assigns resources to
each user and provides performance isolation among users.
However, the objective of this scheduler is not to optimize
system performance. In [8], a delay scheduler was proposed
to improve the performance of Fair scheduler by increasing
data locality. It simply delays the task assignment for a
while if the task’s data is not local. This improvement is
achieved at task level, and can be combined with our proposed
job scheduling policy. Considering the similar direction, the
quincy scheduler [9] addressed the problem of scheduling
with fairness and data locality by formulating and solving
a minimum flow network problem. However, computation
complexity of this scheduler is high. In [10], Sandholm et.
al. considered the profit of the service provider and proposed
a scheduler that splits slots to users according to the bids they
pay instead of fair share. The efficiency of scheduler is not
considered in their work.

Another major direction of improving the Hadoop schedul-
ing policy is considering the deadline or SLA of jobs. A
deadline based scheduler was proposed in [11], which utilizes
earliest deadline first policy to sort jobs and the lagrange
optimization method to find out the minimum number of map
and reduce slots aiming to meet the predefined deadline. This
solution required a detailed profile for each job to provide
execution times of map and reduce tasks. Jorda Polo et al. [6]
estimated task execution times based on the average execution
times of already finished tasks, and calculated the number of
slots that a job needs to meet its deadline. In this paper, we
partly adopt the method to aid in estimating each user’s job
size.

V. CONCLUSION

In this paper, we have proposed LsPS, an adaptive schedul-
ing technique for improving the efficiency of Hadoop sys-
tems that process heterogeneous MapReduce jobs. MapReduce
workloads of contemporary enterprise clients have revealed
the diversity of job sizes, ranging from seconds to hours and
having varying distributions as well. Our new LsPS policy
online captures the present job size patterns of each user
and leverages this knowledge to dynamically adjust the slot
shares among all active users and to further on-the-fly tune the
scheme for scheduling jobs for a single user. Experiments in
Amazon EC2 have shown that LsPS consistently improves the
performance in terms of job execution times under a variety
of system workloads. In the future, we will extend our policy
to schedule Hadoop jobs from users by taking account of the
factor of priority into the share assignment.

REFERENCES

[1] J. Dean, S. Ghemawat, and G. Inc, “Mapreduce: simplified data pro-
cessing on large clusters,” in OSDI’04, 2004.

[2] M. Zaharia, D. Borthakur, J. S. Sarma et al., “Job scheduling for multi-
user mapreduce clusters,” Univ. of California, Berkeley, Tech. Rep.,
2009.

[3] B. Moseley, A. Dasgupta, R. Kumar et al., “On scheduling in map-
reduce and flow-shops,” in SPAA’11, 2011.

[4] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces
from a production mapreduce cluster,” in CCGRID’10, 2010.

[5] B. P. Welford, “Note on a method for calculating corrected sums of
squares and products,” in Technometrics, 1962, pp. 419–420.

[6] J. Polo, D. Carrera, Y. Becerra et al., “Performance-driven task co-
scheduling for mapreduce environments,” in NOMS’10, 2010.

[7] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/
[8] M. Zaharia, D. Borthakur, J. S. Sarma et al., “Delay scheduling: A sim-

ple technique for achieving locality and fairness in cluster scheduling,”
in EuroSys’10, 2010.

[9] M. Isard, Vijayan Prabhakaran, J. Currey et al., “Quincy: fair scheduling
for distributed computing clusters,” in SOSP’09, 2009.

[10] Thomas Sandholm and K. Lai, “Mapreduce optimization using regulated
dynamic prioritization,” in SIGMETRICS ’09, 2009, pp. 299–310.

[11] A. Verma, Ludmila Cherkasova, and R. H. Campbell, “Aria: Automatic
resource inference and allocation for mapreduce environments,” in
ICAC’11, 2011, pp. 235–244.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Short Paper 875

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

