

Balancing the Load Across Virtual Links from Virtual
Machine Requests in Distributed Clouds

Glauco Estácio Gonçalves, André Vitor de Almeida Palhares, Marcelo Anderson Batista dos Santos, Patricia Takako
Endo, Judith Kelner, Djamel Sadok

Federal University of Pernambuco (UFPE)
Networking and Telecommunications Research Group (GPRT)

Recife, Pernambuco, Brazil
{glauco, andre.vitor, marcelo, patricia, jk, jamel}@gprt.ufpe.br

Abstract—Cloud providers should be able to attend to different
types of requests from their users. Generally, requests are
composed of virtual machine and virtual link restrictions. When
users request only virtual machines, the Cloud provider should
interconnect them – by creating a virtual network - in order to
allow the communication. In this paper, we propose a strategy to
create virtual links between virtual machines, aiming for load
balancing, and at same time, link consolidation in order to
optimize resource utilization in Distributed Clouds. The results
show that our algorithm usually hits the optimum solution for
small requests for virtual machines.

Index Terms— Distributed Clouds, virtual link allocation, load
balancing, link consolidation.

I. INTRODUCTION
Current Cloud Computing setups involve a huge amount of

investment in the datacenter, which is the common underlying
infrastructure of Clouds. This centralized infrastructure brings
many well-known challenges such as the need for resource
over-provisioning and the high cost of heat dissipation and
temperature control. Considering well-known challenges in
centralized infrastructure, industry and academic researchers
have presented indications that small datacenters can be
sometimes more attractive since they offer a cheaper and
lower-power consumption alternative while also reducing the
infrastructure costs of centralized Clouds [2]. These small
datacenters can be built in different geographical regions and
connected by dedicated or public (provided by Internet Service
Providers) networks, configuring a new type of Cloud, referred
as Distributed Clouds [3], or just D-Clouds. Such D-Clouds
can exploit the possibility of virtual link creation and the
potential of sharing resources across geographic boundaries to
provide latency-based allocation of resources to fully utilize
this emerging distributed computing power.

When clients make a request for virtual machines, it is
expected that virtual machines are able to communicate with
each other, composing something like a virtual local network.
Then, the D-Cloud provider could apply some optimization
strategy to create a virtual network for intercommunication
between the virtual machines in order to obtain better usage of
its network resources.

Working with this scenario, this paper investigates the
problem of creating a virtual network when a request for virtual
machines is submitted without any link constraints, and also
proposes a strategy to solve it in D-Clouds. Regarding virtual
link creation, the algorithm focuses on minimizing the
maximum number of virtual paths allocated over a physical
link while performing load balancing. We assume that the
virtual machines were already allocated in a given region, due
to geographical restrictions, for example. Then, analyzing the
graph of the physical network infrastructure, our strategy will
calculate the need for creation of one or more virtual hubs in
order to concentrate virtual links. The virtual hubs positioning
is similar to the well-known Replica Placement (RP) problem.

To the best of our knowledge, there is no other similar work
that optimizes the utilization of physical links trying to
minimize the energy consumption and, at the same time,
perform link load balancing. It is an interesting question that
will be discussed in Section VI.

The rest of the paper is organized as follow: The related
works are described in Section II. The problem and our
solution proposal are defined in Section III. Section IV shows
the simulation methodology. Section V shows evaluations and
results. Section VI discusses results and applications of the
proposed algorithm. Finally, conclusions and future works are
delineated in Section VII.

II. RELATED WORK
The main objective of the Replica Placement (RP)

problem is to decide where, when, and by whom servers or
their content should be positioned in order to improve
performance. The correspondent existing solutions to these
problems are generally known as Replica Placement
Algorithms (RPA) [8].

The general RP problem is modeled as a physical topology
(represented by a graph), a set of clients requesting services,
and some servers to place on the graph (costs per server can be
considered instead). As pointed out by [8], an RPA groups
these aspects into two different components: the problem
definition, which consists of a cost function to be minimized
under some constraints, and a heuristic, which is used to search
for near-optimal solutions in a feasible time frame, since the
defined problems are usually NP-complete. Different versions

506978-3-901882-50-0 c©2013 IFIP

of this problem can be mapped onto res
problems in D-Clouds. A very simple mappin
considering an IaaS service where virtual m
allocated in a geo-distributed infrastructure.

Presti et al. [9] treat an RP variant consid
between the load of requests per content an
replica additions and removals. Their solutio
each server in the physical topology decide
based on thresholds, when to clone overloade
remove the underutilized ones. Such decisions
the minimization of the distance between
respective accessed replica. A similar problem
in [10], but considering constraints on the Q
the client. The authors propose a math
formulation and an online version that uses a
The results show that the heuristic presents g
minor computational time.

Qiu et al. [11] propose three different alg
the K-median problem in a CDN (Content D
scenario: a Tree-based algorithm, a Greedy
Hot Spot algorithm. The Tree-based solution
underlying graph is a tree that is divided in
trees, placing each server in each small tr
algorithm places servers one at a time in order
solution in each step until all servers are alloc
Hot Spot solution attempts to place servers i
clients with the greatest demand. The results
Greedy Algorithm for replica placement coul
with performance that is close to optimal.

Zhu and Ammar [12] propose a set of four
the goal of balancing the load on the physical
but their algorithms do not consider capacit
algorithms perform the initial allocation and
optimizations to obtain better allocations. The
algorithms is to allocate virtual nodes consid
the node and the load of the neighbor links of
one can say that they perform the allocation
way. For virtual link allocation, the algorith
paths with few stressed links in the network.

In our work, the difference is the consum
there is no specification of link, only v
Furthermore, our solution executes load balan
links together with link aggregation, decreasin
of bottlenecks and simultaneously using a sm
physical links in a D-Cloud scenario. Finally,
is solved by a Greedy algorithm, reducing t
Steiner Tree.

III. PROBLEM DEFINITION AND A
Usually, links between virtual machines a

virtual network request. For this case, there
allocation algorithms (such as [1], [4], [5], a
other hand, it is possible that a client m
specifying only virtual machines with hardw
location constraints. In this case, a D-Cloud p
allocate links between all virtual machines wi
and make them accessible for each other. W

source allocation
ng can be defined
machines can be

dering a trade-off
nd the number of
on considers that
es autonomously,
ed contents or to
s also encompass
clients and the

m is investigated
QoS perceived by
hematical offline

greedy heuristic.
good results with

gorithms to solve
elivery Network)
algorithm, and a
assumes that the

nto several small
ree. The Greedy
to obtain a better

cated. Finally, the
in the vicinity of
 showed that the
ld provide CDNs

r algorithms with
l links and nodes,
ty aspects. Their
d make adaptive
e key idea of the
ering the load of
f that node. Thus,
in a coordinated

hm tries to select

mer request, since
virtual machines.
ncing in physical
ng the possibility
maller number of
, the RP problem
the problem to a

ALGORITHMS
are specified in a
 are well-known
and [6]). On the

makes a request
ware features and
provider is free to
ithout restrictions

Working with this

scenario, this section investigates
virtual network when a request is s
machine restrictions (e.g. memory, C

For us, the problem consists o
network that connects a subset of
objective of balancing the load
secondly, minimizing the energ
consolidation of virtual links over ph
the problem considers that virtual
allocated by any allocation algorithm

This problem can be formul
interconnection with minimum leng
subset of nodes such that the maxi
minimal. Weight corresponds to the
i.e., the number of virtual links a
physical link.

The minimum Steiner tree prob
problem by considering minimizin
links and with all link weights with
On the other hand, if the value
weight is given, the graph can be pr
reduces to finding a minimum leng
note, problems are polynomial-time

(a)
Figure 1. Example creating a virtual net

after the creat

Figure 1(a) shows an example o
where the virtual machines are al
nodes A, B, and E (black nodes)
physical link indicates the numbe
crossing this physical link. Figur
network (the black lines) created to
The created virtual network reach
balancing the load in the network a
used links, which leads to the
consumption.

The proposed problem is NP-har
solutions will be proposed to solv
problem to a Steiner tree gives a
heuristic. Such heuristic consists in e
a vector ranging from the current m
maximum link weight of the graph
weight k is selected and all links wi
removed from the graph. An app
Steiner tree algorithm [1] is execute
if there is a tree between the nodes.
this graph, the upper bound is a
Adversely, if there is no path in thi
adjusted to k. The binary search is
reduced to two elements. Thus, k i
the upper bound, and the Steiner tr
virtual network for the problem.

D

E

F

C

0

A B

1

0 0

41

2

the problem of creating a
submitted only with virtual
CPU, location and storage).
of how to create a virtual
the virtual nodes with the
across physical links and,
gy consumption through
hysical links [13]. Note that
machines were previously

m.
ated as follows: find an
gth (number of links) for a
imum weight of its links is
e stress in the physical link,
already allocated over that

blem can be reduced to our
ng the length in number of
h the same arbitrary value.
of the minimal maximum

runed, and then the problem
gth Steiner tree. As one can

equivalent.

(b)
twork: (a) before the creation; (b)
tion

of a given physical topology
llocated by unique user in
), and the number in each
er of current virtual links
re 1(b) shows the virtual
o interconnect those nodes.
hes the two objectives of
and reducing the number of

reduction of the energy

rd. Therefore, approximated
ve it. The reduction of the
an interesting idea for our
executing a binary search in

minimum link weight to the
h. During each iteration, a
th weight greater than k are

proximate minimum length
ed in this subgraph to verify
. If there is a Steiner tree in
adjusted to the current k.
s graph, the lower bound is
repeated until the vector is

is chosen as the element in
ree approximation gives the

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 507

The binary search provides the load balance searching by
minimal maximum link weight, while the Steiner tree
approximation gives the minimum length virtual network that
minimizes energy.

Next, the algorithms used to solve the minimum length
Steiner tree problem in a graph are shown. The first algorithm
(named STA) is a well-known approximation based on the
minimum spanning tree in the distance graph [1]. The second
(called GHS) and third (called OA) algorithms are proposed by
this paper: one uses a greedy heuristic that searches for the
better hubs in the network in order to minimize the path
lengths, and the other is an exponential algorithm that finds the
minimum Steiner tree through successive tries of link removal.

A. Steiner Tree Approximation (STA)
Basically, the STA algorithm consists of transforming a

general Steiner tree problem into a metric Steiner tree problem,
which is a variant of the general problem where the graph is
complete and the links satisfy the triangle inequality

. The transformation is
made by calculating the all-pairs shortest path in the original
graph G and generating a new connected graph G', whose
nodes are the nodes of the original graph and the links are the
cost of the shortest path between the nodes in the original
graph.

In G’ one can find a minimum spanning tree T’ that is a 2-
approximation of the minimum Steiner tree in this distance
graph. Given this tree, one can replace their links by the
original paths to obtain a subgraph in G. If this subgraph
contains cycles, removing links will generate a 2-
approximation of the minimum Steiner tree in the general
graph. More details and proofs of this process can be found in
[1]. The complexity of the STA algorithm is O(N3), where N is
the number of physical nodes.

B. Greedy Hub Selection (GHS)
The solution of the Steiner tree contains a subset of nodes

of the graph that acts like a group of hubs interconnecting two
or more nodes of the Steiner tree (the nodes C and F in Figure
1(b)). Thus, given a graph and a subset of physical nodes
containing the requested virtual nodes, the objective of our
GHS algorithm is to find the hubs of the minimum length
Steiner tree interconnecting the virtual nodes.

The GHS algorithm initiates with a tree formed by the
physical nodes where a virtual node was allocated. One of
these nodes is chosen as the root of the tree and as the first hub.
The procedure for selecting the root node tries to select the
virtual node that minimizes the summing of the distances
between all the allocated virtual nodes, where the links’
weights are all equal to one and the summation is made only in
a subset of nodes. Note that this problem is equivalent to
solving the 1-median problem, which is seen as a very simple
form of the replica problems. This problem can be solved
calculating the all-pairs shortest path in a weighted graph
which can be obtained with the Floyd-Warshall algorithm
whose complexity is O(N3)[7], where N is the number of nodes.
Using the distance from each node to each other, the sum of the
distances can be calculated for each node in the graph that is a

candidate for positioning the root. The node that has the
minimum sum of distances is the solution to the root.

Following an iterative approach, a new hub node is placed
at the best location in the network, defined as the one which
achieves the minimal number of used links (the cost) among all
the possible positions. This location is then fixed (Search
Procedure). The new hub is connected to other nodes in the
tree through the shortest path, but a heuristic is used to
maintain the tree (Placement Procedure). The
positioning of a new hub and the immediate link rewiring
reduces the cost and these processes follow while the
positioning of a new hub reduces the cost.

The selection characterizes GHS as greedy: it selects the
best configuration possible for the current iteration. Thus, GHS
searches for a solution with a relevant degree of optimality,
calculating the new value of the cost for each selected
candidate physical node, and selecting the one that achieves the
best cost. The complexity of GHS is O(N3).

Algorithm 1: Search Procedure
1 Inputs: nodeList;
2 Outputs: selectedNode, best;
3 best = infinite;
4 for each node in nodeList(available) do
5 cost = placementProcedure(node);
6 if(cost < best)
7 selectedNode = node;
8 best = cost;
9 end
10 undoInsertion(node);
11 end

Figure 2. Search procedure used by the GHS algorithm

The pseudo-code of this search procedure is presented in
Figure 2. Such procedure simply selects any available physical
node as a candidate. The variable nodeList can be indexed
with available, hub, root, or requested in order to return
respectively: the available nodes; the hub nodes other than the
root; the root node; or the other requested nodes. Thus,
nodeList(available) returns the nodes of the physical
network that are not already a hub, the root, or a requested
node. After that, the algorithm calls the Placement
Procedure (Figure 3) adding a new hub in this candidate and
rewiring the virtual links (line 5). The cost achieved by placing
this new hub is calculated and if better than others it is selected
as the best candidate node (lines 7 and 8). Line 10 returns the
network to the state before the hub insertion in order to prepare
the network for the next candidate hub.

The placement strategy (Figure 3) is a heuristic approach
that links a candidate hub to a parent and children maintaining
the tree structure and guaranteeing optimality. The parent is
selected firstly as the nearest hub considering the shortest path
length (line 3), but if the virtual link from the current parent of
this nearest hub crosses the candidate (line 4) the parent of the
candidate will be the parent of the nearest hub, and the
candidate will be the new parent of this hub. After that, the
children of the new hub are selected amongst the other hub and
requested nodes (line 10). A node is chosen as a child if the
new hub is a better parent (nearer) than the current parent and if

508 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

the node is not an ancestor of the new hub. A
new hub, the new number of used links is retur
Algorithm 2: Placement Procedure
1 Inputs: candidateNode
2 Outputs: newCost
3 nearest = nearestHub(candidate);
4 if(path(nearest,parent(nearest)).co

ate))
5 parent(candidate) = parent(neares
6 parent(nearest) = candidate;
7 else
8 parent(candidate) = nearest;
9 end
10 for each node in nodeList(hub or re
11 if(distance(node, parent(node)) >

distance(node, candidate) and not
isAncestor(node, candidate))

12 parent(node) = candidate;
13 end
14 end
15 newCost = calculateNewCost();

Figure 3. Placement procedure used by the GH

In order to clarify the proposed heuristic, l
current virtual tree in Figure 4(a), which is for
nodes, with the R node representing the select
H node as a hub selected in a previous iterati
lines indicating the path of the current virtual
nodes are available for adding new hubs.
current candidate as the node A, one must selec
as node H, since it is the nearest hub to A. How
that goes from H to its parent R passes through
A is set as R and H as a child of A. Finally, on
other children of A, as any node that is not a
new hub (as the parent of A was already set, it
defined as the node R) which has a distance to
distance to its own parent. Notice that the nod
children are 1, 2, and 3. For such nodes, only
to node A than to its own parent; the others ar
H. So, the new children of A are 1 and H. Fig
the new configuration. The cost function shou
now and compared to other candidate results.

(a)
Figure 4. Example of the placement procedure: (a)

placement

C. Optimal Algorithm (OA)
Because a Steiner tree never contains a

exists a subgraph of the original graph whi
contains a minimal Steiner tree for any given
Observe that, in this subgraph there is only o
any two nodes. Thus, if the graph is already a
Steiner tree between the given subset of nodes
linear time through a depth-first search.

A

B

C

R

1

2

3

H

A

B

C

R

H

After placing the
rned.

ontains(candid

st);

equested) do
>
t

HS algorithm

let’s consider the
rmed by the grey
ted root node, the
ion, and the grey
links. The white
Considering the

ct the nearest one
wever, as the path
h A, the parent of
ne must set all the
an ancestor of the
ts ancestor is well
A of less than its

des that can be its
y node 1 is nearer
re nearer to node

gure 4 (b) depicts
uld be calculated

(b)
before and (b) after

cycle, then there
ch is a tree and

n subset of nodes.
one path between
tree, the minimal

s can be found on

Considering such property, an op
minimum length Steiner tree ca
connected component of the graph i
is – which can be found by a
removing the links with weight g
minimal number of links that are
order to turn this graph into a tree. I
and L the number of links of the c
number is given by
component, for each subset of m li
the optimal Steiner tree in this subg
graph is a tree, through the depth
previously. As the algorithm trie
removing these links, one of them w
to an optimal Steiner tree. The com

.

IV. EVALUATION

The evaluation was made throug
considering a fixed physical top
positioning of the virtual nodes. In e
stress of each physical link is
distribution and the virtual nod
positioned in a uniform way. N
independent, and the physical netw
values before a new set of requested

The adopted physical network
RNP (Rede Nacional de Ensino
academic ISP, which is currently co
links as showed at Figure 5.

Figure 5. The network topologies

At each run of the simulation, e
and OA) is submitted to the same s
used physical links (the cost) in the
algorithm independently. The goal i
each algorithm achieves the optima
virtual links while minimizing the c
and performing load balancing.

Table I - Factors and levels used

Factors
Number of requested virtual

nodes

Algorithms

The factors varied in the experim
The number of requested virtual nod
though the simulations from 3 to 28
to 10.7% and 100% of the physic
each run, from a total of 1000,

H

A

1

2

3

H

ptimal algorithm to find the
an be proposed: for the
n which the subset of nodes
breadth-first search after

greater than k –, count the
needed to be removed in

If N is the number of nodes
considered component, this

 [6]. Then, in this
inks, remove them and find
graph, considering that this
h-first search, as observed
es every possible way of

will find the tree which leads
mplexity of this algorithm is

N METHODOLOGY
gh Monte Carlo simulations
pology with the random
each simulation sample, the

drawn from a uniform
des to be connected are
Note that, each sample is
work is returned to its initial
d nodes is attempted.

was the backbone of the
e Pesquisa), a Brazilian

omposed of 28 nodes and 33

of RNP used in simulations

each algorithm (STA, GHS,
scenario and the number of
e tree is measured for each
is to evaluate to what extent
al case in the allocation of
cost of using physical links

d in the GHS’s evaluation

Levels

3 to 28

Optimal Algorithm
Greedy Hub Selection

Steiner Tree Approximation

ment are showed in Table I.
des in the network is varied

8 nodes, which is equivalent
cal nodes, respectively. For

the requested nodes were

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 509

positioned in a different physical node in a random way, with
every subset of the physical nodes equally likely to be selected
without repetitions. For each sample, the relative error between
the costs of the GHS and STA algorithms was calculated
against the optimal cost. All the results showed use a
confidence level of 95%, which are showed in the graphs.

V. RESULTS
This section evaluates the minimum length Steiner tree

algorithms discussed in Section IV. We do not evaluate the
overall solution for the creation of the virtual network, which
has the binary search as the outer procedure, but we evaluate
only the inner Steiner tree procedure, i.e., this evaluation only
covers the energy reduction objective.

As shown in Figure 6, the GHS algorithm achieves the
optimum cost in 100% of the samples for virtual networks with
3 nodes and 95% to 99% of the samples for virtual networks of
4, 5, 6 and 7 nodes. However, the performance of GHS tends to
decrease when the number of requested nodes increases. In the
worst case, about 53% of the samples of GHS reach the

optimum. In the cases from 16 to 26 requested nodes the GHS
achieves the lowest percentage to optimum from 53% to 69%.

Moreover, for small virtual networks up to 11 nodes, GHS
statistically outperforms STA, with the best cases occurring
with 6 and 7 nodes where the difference is about 12%. The
performance of STA is high for few requested nodes, decreases
in the middle of the range of virtual network size, and reaches
the optimum when 27 nodes are requested.

As the number of nodes in the virtual network tends to the
total number of nodes, the performance of STA is improved
and outperforms GHS since the problem tends to compute the
minimum spanning tree in the physical network. On the other
hand, GHS is better for small networks because the placement
strategy is designed to find the hubs in the physical network
whereas the STA strategy is to find the common links in the
shortest paths between the requested nodes; if there are no
common links in these shortest paths, STA cannot find the hubs
minimizing the cost. Looking only for the samples that reached
the optimum, one can conclude that the GHS algorithm is not
adequate for bigger virtual networks.

Figure 6. Percentage of optimal samples for GHS and STA

Figure 7. Percentage of samples reaching relative error <= 5

However, Figure 7 shows the performance of each
algorithm considering the samples that reached a relative cost
error less than 5% in relation to the optimum. In this case, the
performance of GHS has significantly improved for virtual
networks greater than or equal to 16 nodes. For example, in the
scenario with 19 nodes the optimality of the GHS algorithm
increased from 53% (considering only optimum samples) to
86%. Furthermore, the STA algorithm has improved for virtual
networks but remains below the GHS for requests for up to 11
VMs. This shows that, considering all virtual networks’ sizes,
the GHS algorithm reached better optimality in requests with
few virtual machines, whereas STA reached better optimality

in bigger requests. Moreover, the worst case for GHS was for
53.7% of the samples with 19 nodes. For STA, the worst case
was 73% with 17 virtual nodes.

Figure 8 shows the relationship of the optimal cost to
experiments with STA and GHS algorithms. Note that
regardless of the number of virtual nodes required, in both
cases the cost focuses on values greater than 15. This behavior
is explained by the randomness where the nodes were placed in
the topology of RNP. Thus, for example, if 3 VMs are
requested and their positions are distant from each other, the
number the physical links used will be increased so that there is
a connection between each VM requested.

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Pe
rc

en
ta

ge
 o

f s
am

pl
es

 t
ha

t
re

ac
he

d
th

e
op

tim
um

Number of nodes of the Virtual Network to be created

Percentage of samples that reached the optimum
GHS STA

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Pe
rc

en
ta

ge
 o

f s
am

pl
es

 th
at

 re
ac

he
d

re
la

tiv
e

er
ro

r
le

ss
 th

an
 5

%

Number of nodes of the Virtual Network to be created

Percentage of samples that reached relative error less than 5%
GHS STA

510 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

Another important aspect to be noted in Fig
small costs, the GHS algorithm adheres bette
than the STA. Moreover, even in high costs
experiments the GHS reaches optimum values.

Figure 8. Optimum cost of STA and

VI. DISCUSSIONS
The allocation of several virtual link

minimizing the number of virtual links on eac
an NP-hard optimization problem (see [12
aspect); this is the reason why the solution pr
greedy approach based on some heuristics.
problem was to build a virtual network for a gi
nodes in order to minimize the energy con
balancing the load of physical links. Such a p
that the developer requests only virtual node
links, and thus, the problem tries to captur
requirements on load balancing and energy con

It is an interesting scenario, due to the ant
two objectives. In general cases, when one
energy, the strategy is to consolidate resources
allocate requests in a minimal number of a
Then, resources not used can be turned of
energy saving goal. In a contrary way, whe
balance the load, the strategy distributes the re

gure 8 is that, for
er to the optimal
s, in most of the
.

GHS

ks focusing on
h physical link is

2] to verify this
resented here is a
Another studied

iven set of virtual
nsumption while
roblem considers
s with no virtual
re the provider’s
nsumption.
tagonism of these
e wants to save
s, for example, to
available servers.
ff, aiming at the
en the goal is to
equests across the

available servers, and the idleness
ensuring the load balancing.

Our proposal tries to obtain
objectives, since we focus on load
virtual links to connect virtual
number of virtual links already alloc
and focus on energy reduction w
aggregate virtual links. However,
should be better analyzed. We pr
create virtual links; one an optimu
other one based on heuristics (GH
was compared with a known appro
Steiner tree problem (STA), and t
proposed heuristic is better suite
networks whereas the traditional a
better for bigger virtual networks. O
of this algorithm in a production
alternating between these algorithm
the virtual network in order to obta
case.

The optimum algorithm was us
baseline that references the pe
algorithms. Observe that the optimu
the physical network used in the tes
links). In this case the optimum al
virtual network creation since
combinations is low, lowering the co

Finally, it is noteworthy that the
entwined with a specific technology
network it is possible to use MPL
forwarding rules.

VII. CONCLUSIONS AND F
This paper presented the proble

virtual links for connecting nodes,
contain any link requirements. The
objective, with the energy reduction

A two-step algorithm was desig
an outer loop responsible for load b
for energy reduction. The inner loop
a minimum length Steiner tree prob
proposed for this step. One uses
placement and the other uses a com
the optimum. The heuristic-based
against a Steiner tree approxim
optimum algorithm as the baseline.

The results showed that the h
better suited for small virtual ne
approximation has better results in s
networks. Overall, in the experime
the optimum in most cases, having t
requests with 19 VMs; however, 8
optimum assuming a 5% error.

Future work to follow this propo
implementation of the proposed
measuring, for example, the variatio
turning off the network devices that

s of resources is reduced,

the better of these two
balancing when we create

machines considering the
cated over the physical link,
when we choose hubs to

the impact of this blend
roposed two algorithms to

um algorithm (OA) and the
HS). The heuristic approach
oximation algorithm for the
the results showed that the
ed for small size virtual
approximation algorithm is

One possible implementation
n scenario could consider

ms according to the size of
ain the best solution in each

sed in the experiments as a
erformance of the other
um algorithm is adapted for
st scenario (28 nodes and 33
lgorithm could be used for
the number of possible

omputing time required.
e algorithm proposed is not
y. For example, in the core
LS or OpenFlow to define

FUTURE WORKS
em of allocating tree-based
when the request does not
load balancing is the main
as a secondary objective.

gned for this problem, with
balancing and an inner loop
p problem can be reduced to
lem and two algorithms are
a greedy strategy for hub

mbinatorial approach to find
d algorithm is compared

mation algorithm with the

hub placement heuristic is
etworks, while the Steiner
scenarios with larger virtual
ents, our algorithm reached
the worst case of 53.7% for

86% of cases were close to

osal includes considering an
d solution in a testbed,
on of power consumption by

are not being used.

2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference 511

ACKOWLEDMENTS

 This work was supported by the Innovation Center, Ericsson
Telecomunicações S.A., Brazil.

REFERENCES
[1] V. V. Vazirani. Approximation Algorithms, 2nd Edition,

Springer-Verlag, 2003.
[2] K. Church, A. Greenbreg, and J. Hamilton. “On Delivering

Embarrassingly Distributed Cloud Services”, Workshop on Hot
Topics in Networks (HotNets), 2008.

[3] P. T. Endo, A. V. A. Palhares, N. N. Pereira, G. E. Gonçalves,
D. Sadok, J. Kelner, B. Melander, and J. E. Mangs. “Resource
allocation for distributed cloud: concepts and research
challenges”, IEEE Network Magazine, vol. 25, pp. 42-46, July
2011.

[4] A. Belbekkouche, M. Hasan, A. Karmouch. “Resource
Discovery and Allocation in Network Virtualization”, IEEE
Communications Surveys & Tutorials, n. 99, pp. 1-15, 2012.

[5] N. M. M. K., Chowdhury, M. R. Rahman, and R. Boutaba.
“Virtual Network Embedding with Coordinated Node and Link
Mapping”, IEEE INFOCOM, 2009.

[6] A. Razzaq and M. S. Rathore, “An approach towards resource
efficient virtual network embedding”, in Proc. HPSR, 2010.

[7] C. E. Leiserson, C. Stein, R. L. Rivest, and T. H. Cormen.
Algoritmos: Teoria e Prática. Campus, ed. 1, 2002.

[8] M. Karlsson, C. Karamanolis, and M. A. Mahalingam.
“Framework for Evaluating Replica Placement Algorithms”.
Technical Report HPL-2002, HP Laboratories, July 2002.

[9] F. L. Presti, C. Petrioli, and C. Vicari. “Distributed dynamic
replica placement and request redirection in content delivery
networks”, MASCOTS, pp. 366–373, 2007.

[10] T. A. Neves, L. M. A. Drummond, L. S. Ochi, C. Albuquerque,
and E. Uchoa. “Solving Replica Placement and Request
Distribution in Content Distribution Networks”, Electronic
Notes in Discrete Mathematics, Volume 36, pp. 89-96, ISSN
1571-0653, 2010.

[11] L. Qiu, V. Padmanabhan, and G. Voelker. “On the Placement of
Web Server Replicas”. Proceedings of IEEE INFOCOM, pages
1587–1596, April 2001

[12] Y. Zhu, and M. Ammar. “Algorithms for assigning substrate
network resources to virtual network components”, IEEE
INFOCOM, 2006.

[13] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P.
Sharma, S. Banerjee, and N. McKeown. ElasticTree: saving
energy in data center networks. In NSDI, 2010.

512 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM2013): Mini-Conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

