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Abstract—Cloud providers should be able to attend to different 
types of requests from their users. Generally, requests are 
composed of virtual machine and virtual link restrictions. When 
users request only virtual machines, the Cloud provider should 
interconnect them – by creating a virtual network - in order to 
allow the communication. In this paper, we propose a strategy to 
create virtual links between virtual machines, aiming for load 
balancing, and at same time, link consolidation in order to 
optimize resource utilization in Distributed Clouds. The results 
show that our algorithm usually hits the optimum solution for 
small requests for virtual machines.  

Index Terms— Distributed Clouds, virtual link allocation, load 
balancing, link consolidation.  

I. INTRODUCTION 
Current Cloud Computing setups involve a huge amount of 

investment in the datacenter, which is the common underlying 
infrastructure of Clouds. This centralized infrastructure brings 
many well-known challenges such as the need for resource 
over-provisioning and the high cost of heat dissipation and 
temperature control. Considering well-known challenges in 
centralized infrastructure, industry and academic researchers 
have presented indications that small datacenters can be 
sometimes more attractive since they offer a cheaper and 
lower-power consumption alternative while also reducing the 
infrastructure costs of centralized Clouds [2]. These small 
datacenters can be built in different geographical regions and 
connected by dedicated or public (provided by Internet Service 
Providers) networks, configuring a new type of Cloud, referred 
as Distributed Clouds [3], or just D-Clouds. Such D-Clouds 
can exploit the possibility of virtual link creation and the 
potential of sharing resources across geographic boundaries to 
provide latency-based allocation of resources to fully utilize 
this emerging distributed computing power.  

When clients make a request for virtual machines, it is 
expected that virtual machines are able to communicate with 
each other, composing something like a virtual local network. 
Then, the D-Cloud provider could apply some optimization 
strategy to create a virtual network for intercommunication 
between the virtual machines in order to obtain better usage of 
its network resources.  

Working with this scenario, this paper investigates the 
problem of creating a virtual network when a request for virtual 
machines is submitted without any link constraints, and also 
proposes a strategy to solve it in D-Clouds. Regarding virtual 
link creation, the algorithm focuses on minimizing the 
maximum number of virtual paths allocated over a physical 
link while performing load balancing. We assume that the 
virtual machines were already allocated in a given region, due 
to geographical restrictions, for example. Then, analyzing the 
graph of the physical network infrastructure, our strategy will 
calculate the need for creation of one or more virtual hubs in 
order to concentrate virtual links. The virtual hubs positioning 
is similar to the well-known Replica Placement (RP) problem. 

To the best of our knowledge, there is no other similar work 
that optimizes the utilization of physical links trying to 
minimize the energy consumption and, at the same time, 
perform link load balancing.  It is an interesting question that 
will be discussed in Section VI. 

The rest of the paper is organized as follow: The related 
works are described in Section II. The problem and our 
solution proposal are defined in Section III. Section IV shows 
the simulation methodology. Section V shows evaluations and 
results. Section VI discusses results and applications of the 
proposed algorithm. Finally, conclusions and future works are 
delineated in Section VII. 

II. RELATED WORK   
The main objective of the Replica Placement (RP) 

problem is to decide where, when, and by whom servers or 
their content should be positioned in order to improve 
performance. The correspondent existing solutions to these 
problems are generally known as Replica Placement 
Algorithms (RPA) [8]. 

The general RP problem is modeled as a physical topology 
(represented by a graph), a set of clients requesting services, 
and some servers to place on the graph (costs per server can be 
considered instead). As pointed out by [8], an RPA groups 
these aspects into two different components: the problem 
definition, which consists of a cost function to be minimized 
under some constraints, and a heuristic, which is used to search 
for near-optimal solutions in a feasible time frame, since the 
defined problems are usually NP-complete. Different versions 
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of this problem can be mapped onto res
problems in D-Clouds. A very simple mappin
considering an IaaS service where virtual m
allocated in a geo-distributed infrastructure. 

Presti et al. [9] treat an RP variant consid
between the load of requests per content an
replica additions and removals. Their solutio
each server in the physical topology decide
based on thresholds, when to clone overloade
remove the underutilized ones. Such decisions
the minimization of the distance between 
respective accessed replica. A similar problem
in [10], but considering constraints on the Q
the client. The authors propose a math
formulation and an online version that uses a 
The results show that the heuristic presents g
minor computational time. 

Qiu et al. [11] propose three different alg
the K-median problem in a CDN (Content D
scenario: a Tree-based algorithm, a Greedy 
Hot Spot algorithm. The Tree-based solution 
underlying graph is a tree that is divided in
trees, placing each server in each small tr
algorithm places servers one at a time in order 
solution in each step until all servers are alloc
Hot Spot solution attempts to place servers i
clients with the greatest demand. The results 
Greedy Algorithm for replica placement coul
with performance that is close to optimal. 

Zhu and Ammar [12] propose a set of four
the goal of balancing the load on the physical
but their algorithms do not consider capacit
algorithms perform the initial allocation and
optimizations to obtain better allocations. The
algorithms is to allocate virtual nodes consid
the node and the load of the neighbor links of
one can say that they perform the allocation 
way. For virtual link allocation, the algorith
paths with few stressed links in the network.  

In our work, the difference is the consum
there is no specification of link, only v
Furthermore, our solution executes load balan
links together with link aggregation, decreasin
of bottlenecks and simultaneously using a sm
physical links in a D-Cloud scenario. Finally,
is solved by a Greedy algorithm, reducing t
Steiner Tree.  

III. PROBLEM DEFINITION AND A
Usually, links between virtual machines a

virtual network request. For this case, there 
allocation algorithms (such as [1], [4], [5], a
other hand, it is possible that a client m
specifying only virtual machines with hardw
location constraints. In this case, a D-Cloud p
allocate links between all virtual machines wi
and make them accessible for each other. W
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ware features and 
provider is free to 
ithout restrictions 

Working with this 

scenario, this section investigates 
virtual network when a request is s
machine restrictions (e.g. memory, C

For us, the problem consists o
network that connects a subset of 
objective of balancing the load 
secondly, minimizing the energ
consolidation of virtual links over ph
the problem considers that virtual 
allocated by any allocation algorithm

This problem can be formul
interconnection with minimum leng
subset of nodes such that the maxi
minimal. Weight corresponds to the
i.e., the number of virtual links a
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The binary search provides the load balance searching by 
minimal maximum link weight, while the Steiner tree 
approximation gives the minimum length virtual network that 
minimizes energy.  

Next, the algorithms used to solve the minimum length 
Steiner tree problem in a graph are shown. The first algorithm 
(named STA) is a well-known approximation based on the 
minimum spanning tree in the distance graph [1]. The second 
(called GHS) and third (called OA) algorithms are proposed by 
this paper: one uses a greedy heuristic that searches for the 
better hubs in the network in order to minimize the path 
lengths, and the other is an exponential algorithm that finds the 
minimum Steiner tree through successive tries of link removal. 

A. Steiner Tree Approximation (STA) 
Basically, the STA algorithm consists of transforming a 

general Steiner tree problem into a metric Steiner tree problem, 
which is a variant of the general problem where the graph is 
complete and the links satisfy the triangle inequality 

. The transformation is 
made by calculating the all-pairs shortest path in the original 
graph G and generating a new connected graph G', whose 
nodes are the nodes of the original graph and the links are the 
cost of the shortest path between the nodes in the original 
graph. 

In G’ one can find a minimum spanning tree T’ that is a 2-
approximation of the minimum Steiner tree in this distance 
graph. Given this tree, one can replace their links by the 
original paths to obtain a subgraph in G. If this subgraph 
contains cycles, removing links will generate a 2-
approximation of the minimum Steiner tree in the general 
graph. More details and proofs of this process can be found in 
[1]. The complexity of the STA algorithm is O(N3), where N is 
the number of physical nodes. 

B. Greedy Hub Selection (GHS) 
The solution of the Steiner tree contains a subset of nodes 

of the graph that acts like a group of hubs interconnecting two 
or more nodes of the Steiner tree (the nodes C and F in Figure 
1(b)). Thus, given a graph and a subset of physical nodes 
containing the requested virtual nodes, the objective of our 
GHS algorithm is to find the hubs of the minimum length 
Steiner tree interconnecting the virtual nodes.  

The GHS algorithm initiates with a tree formed by the 
physical nodes where a virtual node was allocated. One of 
these nodes is chosen as the root of the tree and as the first hub. 
The procedure for selecting the root node tries to select the 
virtual node that minimizes the summing of the distances 
between all the allocated virtual nodes, where the links’ 
weights are all equal to one and the summation is made only in 
a subset of nodes. Note that this problem is equivalent to 
solving the 1-median problem, which is seen as a very simple 
form of the replica problems. This problem can be solved 
calculating the all-pairs shortest path in a weighted graph 
which can be obtained with the Floyd-Warshall algorithm 
whose complexity is O(N3)[7], where N is the number of nodes. 
Using the distance from each node to each other, the sum of the 
distances can be calculated for each node in the graph that is a 

candidate for positioning the root. The node that has the 
minimum sum of distances is the solution to the root.  

Following an iterative approach, a new hub node is placed 
at the best location in the network, defined as the one which 
achieves the minimal number of used links (the cost) among all 
the possible positions. This location is then fixed (Search 
Procedure). The new hub is connected to other nodes in the 
tree through the shortest path, but a heuristic is used to 
maintain the tree (Placement Procedure). The 
positioning of a new hub and the immediate link rewiring 
reduces the cost and these processes follow while the 
positioning of a new hub reduces the cost. 

The selection characterizes GHS as greedy: it selects the 
best configuration possible for the current iteration. Thus, GHS 
searches for a solution with a relevant degree of optimality, 
calculating the new value of the cost for each selected 
candidate physical node, and selecting the one that achieves the 
best cost. The complexity of GHS is O(N3). 

Algorithm 1: Search Procedure 
1 Inputs: nodeList; 
2 Outputs: selectedNode, best; 
3 best = infinite; 
4 for each node in nodeList(available) do 
5    cost = placementProcedure(node); 
6    if(cost < best) 
7       selectedNode = node; 
8       best = cost; 
9    end 
10    undoInsertion(node); 
11 end 

Figure 2. Search procedure used by the GHS algorithm 

The pseudo-code of this search procedure is presented in 
Figure 2. Such procedure simply selects any available physical 
node as a candidate. The variable nodeList can be indexed 
with available, hub, root, or requested in order to return 
respectively: the available nodes; the hub nodes other than the 
root; the root node; or the other requested nodes. Thus, 
nodeList(available) returns the nodes of the physical 
network that are not already a hub, the root, or a requested 
node. After that, the algorithm calls the Placement 
Procedure (Figure 3) adding a new hub in this candidate and 
rewiring the virtual links (line 5). The cost achieved by placing 
this new hub is calculated and if better than others it is selected 
as the best candidate node (lines 7 and 8). Line 10 returns the 
network to the state before the hub insertion in order to prepare 
the network for the next candidate hub. 

The placement strategy (Figure 3) is a heuristic approach 
that links a candidate hub to a parent and children maintaining 
the tree structure and guaranteeing optimality. The parent is 
selected firstly as the nearest hub considering the shortest path 
length (line 3), but if the virtual link from the current parent of 
this nearest hub crosses the candidate (line 4) the parent of the 
candidate will be the parent of the nearest hub, and the 
candidate will be the new parent of this hub. After that, the 
children of the new hub are selected amongst the other hub and 
requested nodes (line 10). A node is chosen as a child if the 
new hub is a better parent (nearer) than the current parent and if 
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the node is not an ancestor of the new hub. A
new hub, the new number of used links is retur
Algorithm 2: Placement Procedure 
1 Inputs: candidateNode 
2 Outputs: newCost 
3 nearest = nearestHub(candidate); 
4 if(path(nearest,parent(nearest)).co

ate)) 
5 parent(candidate) = parent(neares
6 parent(nearest) = candidate; 
7 else 
8 parent(candidate) = nearest; 
9 end 
10 for each node in nodeList(hub or re
11 if(distance(node, parent(node)) >

distance(node, candidate) and not
isAncestor(node, candidate)) 

12 parent(node) = candidate; 
13 end 
14 end 
15 newCost = calculateNewCost(); 

Figure 3. Placement procedure used by the GH

In order to clarify the proposed heuristic, l
current virtual tree in Figure 4(a), which is for
nodes, with the R node representing the select
H node as a hub selected in a previous iterati
lines indicating the path of the current virtual 
nodes are available for adding new hubs. 
current candidate as the node A, one must selec
as node H, since it is the nearest hub to A. How
that goes from H to its parent R passes through
A is set as R and H as a child of A. Finally, on
other children of A, as any node that is not a
new hub (as the parent of A was already set, it
defined as the node R) which has a distance to 
distance to its own parent. Notice that the nod
children are 1, 2, and 3. For such nodes, only
to node A than to its own parent; the others ar
H. So, the new children of A are 1 and H. Fig
the new configuration. The cost function shou
now and compared to other candidate results. 

(a) 
Figure 4. Example of the placement procedure: (a) 
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IV. EVALUATION
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positioned in a different physical node in a random way, with 
every subset of the physical nodes equally likely to be selected 
without repetitions. For each sample, the relative error between 
the costs of the GHS and STA algorithms was calculated 
against the optimal cost. All the results showed use a 
confidence level of 95%, which are showed in the graphs. 

V. RESULTS 
This section evaluates the minimum length Steiner tree 

algorithms discussed in Section IV. We do not evaluate the 
overall solution for the creation of the virtual network, which 
has the binary search as the outer procedure, but we evaluate 
only the inner Steiner tree procedure, i.e., this evaluation only 
covers the energy reduction objective. 

As shown in Figure 6, the GHS algorithm achieves the 
optimum cost in 100% of the samples for virtual networks with 
3 nodes and 95% to 99% of the samples for virtual networks of 
4, 5, 6 and 7 nodes. However, the performance of GHS tends to 
decrease when the number of requested nodes increases. In the 
worst case, about 53% of the samples of GHS reach the 

optimum. In the cases from 16 to 26 requested nodes the GHS 
achieves the lowest percentage to optimum from 53% to 69%.  

Moreover, for small virtual networks up to 11 nodes, GHS 
statistically outperforms STA, with the best cases occurring 
with 6 and 7 nodes where the difference is about 12%. The 
performance of STA is high for few requested nodes, decreases 
in the middle of the range of virtual network size, and reaches 
the optimum when 27 nodes are requested. 

As the number of nodes in the virtual network tends to the 
total number of nodes, the performance of STA is improved 
and outperforms GHS since the problem tends to compute the 
minimum spanning tree in the physical network. On the other 
hand, GHS is better for small networks because the placement 
strategy is designed to find the hubs in the physical network 
whereas the STA strategy is to find the common links in the 
shortest paths between the requested nodes; if there are no 
common links in these shortest paths, STA cannot find the hubs 
minimizing the cost. Looking only for the samples that reached 
the optimum, one can conclude that the GHS algorithm is not 
adequate for bigger virtual networks.  

 
Figure 6. Percentage of optimal samples for GHS and STA

 
Figure 7. Percentage of samples reaching relative error <= 5

However, Figure 7 shows the performance of each 
algorithm considering the samples that reached a relative cost 
error less than 5% in relation to the optimum. In this case, the 
performance of GHS has significantly improved for virtual 
networks greater than or equal to 16 nodes. For example, in the 
scenario with 19 nodes the optimality of the GHS algorithm 
increased from 53% (considering only optimum samples) to 
86%. Furthermore, the STA algorithm has improved for virtual 
networks but remains below the GHS for requests for up to 11 
VMs. This shows that, considering all virtual networks’ sizes, 
the GHS algorithm reached better optimality in requests with 
few virtual machines, whereas STA reached better optimality 

in bigger requests. Moreover, the worst case for GHS was for 
53.7% of the samples with 19 nodes. For STA, the worst case 
was 73% with 17 virtual nodes.  

Figure 8 shows the relationship of the optimal cost to 
experiments with STA and GHS algorithms. Note that 
regardless of the number of virtual nodes required, in both 
cases the cost focuses on values greater than 15. This behavior 
is explained by the randomness where the nodes were placed in 
the topology of RNP. Thus, for example, if 3 VMs are 
requested and their positions are distant from each other, the 
number the physical links used will be increased so that there is 
a connection between each VM requested. 
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Another important aspect to be noted in Fig
small costs, the GHS algorithm adheres bette
than the STA. Moreover, even in high costs
experiments the GHS reaches optimum values.

Figure 8. Optimum cost of STA and 

VI. DISCUSSIONS 
The allocation of several virtual link

minimizing the number of virtual links on eac
an NP-hard optimization problem (see [12
aspect); this is the reason why the solution pr
greedy approach based on some heuristics. 
problem was to build a virtual network for a gi
nodes in order to minimize the energy con
balancing the load of physical links. Such a p
that the developer requests only virtual node
links, and thus, the problem tries to captur
requirements on load balancing and energy con

It is an interesting scenario, due to the ant
two objectives. In general cases, when one
energy, the strategy is to consolidate resources
allocate requests in a minimal number of a
Then, resources not used can be turned of
energy saving goal. In a contrary way, whe
balance the load, the strategy distributes the re

 

 

gure 8 is that, for 
er to the optimal 
s, in most of the 
. 

 

 
GHS 

ks focusing on 
h physical link is 

2] to verify this 
resented here is a 
Another studied 

iven set of virtual 
nsumption while 
roblem considers 
s with no virtual 
re the provider’s 
nsumption.  
tagonism of these 
e wants to save 
s, for example, to 
available servers. 
ff, aiming at the 
en the goal is to 
equests across the 

available servers, and the idleness
ensuring the load balancing.  

Our proposal tries to obtain 
objectives, since we focus on load 
virtual links to connect virtual 
number of virtual links already alloc
and focus on energy reduction w
aggregate virtual links. However, 
should be better analyzed. We pr
create virtual links; one an optimu
other one based on heuristics (GH
was compared with a known appro
Steiner tree problem (STA), and t
proposed heuristic is better suite
networks whereas the traditional a
better for bigger virtual networks. O
of this algorithm in a production
alternating between these algorithm
the virtual network in order to obta
case. 

The optimum algorithm was us
baseline that references the pe
algorithms. Observe that the optimu
the physical network used in the tes
links). In this case the optimum al
virtual network creation since 
combinations is low, lowering the co

Finally, it is noteworthy that the
entwined with a specific technology
network it is possible to use MPL
forwarding rules. 

VII. CONCLUSIONS AND F
This paper presented the proble

virtual links for connecting nodes, 
contain any link requirements. The 
objective, with the energy reduction 

A two-step algorithm was desig
an outer loop responsible for load b
for energy reduction. The inner loop
a minimum length Steiner tree prob
proposed for this step. One uses 
placement and the other uses a com
the optimum. The heuristic-based
against a Steiner tree approxim
optimum algorithm as the baseline.  

The results showed that the h
better suited for small virtual ne
approximation has better results in s
networks. Overall, in the experime
the optimum in most cases, having t
requests with 19 VMs; however, 8
optimum assuming a 5% error. 

Future work to follow this propo
implementation of the proposed
measuring, for example, the variatio
turning off the network devices that 

s of resources is reduced, 

the better of these two 
balancing when we create 

machines considering the 
cated over the physical link, 
when we choose hubs to 

the impact of this blend 
roposed two algorithms to 

um algorithm (OA) and the 
HS). The heuristic approach 
oximation algorithm for the 
the results showed that the 
ed for small size virtual 
approximation algorithm is 

One possible implementation 
n scenario could consider 

ms according to the size of 
ain the best solution in each 

sed in the experiments as a 
erformance of the other 
um algorithm is adapted for 
st scenario (28 nodes and 33 
lgorithm could be used for 
the number of possible 

omputing time required. 
e algorithm proposed is not 
y. For example, in the core 
LS or OpenFlow to define 

FUTURE WORKS 
em of allocating tree-based 
when the request does not 
load balancing is the main 
as a secondary objective.  

gned for this problem, with 
balancing and an inner loop 
p problem can be reduced to 
lem and two algorithms are 
a greedy strategy for hub 

mbinatorial approach to find 
d algorithm is compared 

mation algorithm with the 

hub placement heuristic is 
etworks, while the Steiner 
scenarios with larger virtual 
ents, our algorithm reached 
the worst case of 53.7% for 

86% of cases were close to 

osal includes considering an 
d solution in a testbed, 
on of power consumption by 

are not being used.  
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