
PROBABILISTIC EVENT-DRIVEN FAULT DIAGNOSIS
THROUGH INCREMENTAL HYPOTHESIS UPDATING

M. Steinder and A. S. Sethi
Computer and Information Sciences Department
University of Delaware, Newark, DE
{steinder,sethi}@cis.udel.edu

Abstract: A probabilistic event-driven fault localization technique is presented, which uses a symp-
tom-fault map as a fault propagation model. The technique isolates the most probable
set of faults through incremental updating of the symptom explanation hypothesis. At any
time, it provides a set of alternative hypotheses, each of which is a complete explanation of
the set of symptoms observed thus far. The hypotheses are ranked according to a measure
of their goodness. The technique allows multiple simultaneous independent faults to be
identified and incorporates both negative and positive symptoms in the analysis. As shown
in a simulation study, the technique is resilient both to noise in the symptom data and to
the inaccuracies of the probabilistic fault propagation model.1

1. Introduction

This paper presents a non-deterministic event-driven fault localization [9, 10, 17]
technique, which uses a probabilistic symptom-fault map as a fault propagation model.
While investigating fault localization techniques suitable for bipartite fault propaga-
tion models, this paper states the following objectives:

– Usage of probabilistic reasoning, which is necessary to diagnose Byzantine prob-
lems or when relationships among system events may not be determined with
certainty, e.g., due to their dynamic nature [5, 6, 8, 10, 11].

– Ability to isolate multiple simultaneous faults even if their symptoms overlap [6,
10], which improves the technique’s applicability to large systems.

– Event-driven diagnosis, which avoids the inflexibility of window-based tools [1],
is not prone to inaccuracies resulting from an incorrect time-window specification,
and allows fault localization to be interleaved with testing.

– Resilience to lost and spurious symptoms [5, 8, 17], which may dramatically
reduce its accuracy if not taken into account by a fault localization algorithm.

– High accuracy and low-polynomial computational complexity.

In addition to providing the above features, the fault localization technique pro-
posed in this paper is incremental, i.e., the interpretation of an observed symptom is
incorporated in a solution resulting from the interpretation of the previously observed
1Prepared through collaborative participation in the Communications and Networks Consortium sponsored
by the U. S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative
Agreement DAAD19-01-2-0011. The U. S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon.
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symptoms without re-analyzing them. Thanks to this feature, the algorithm continu-
ously provides a system administrator with information about which faults are likely
to exist in the system given symptoms observed thus far. In non-incremental tech-
niques, such information is available on a periodic basis only [10, 17]. The technique
proposed here produces a set of alternative hypotheses rather than just a single ex-
planation. These hypotheses are ranked according to their measure of goodness. As
a result, the system administrator obtains a better understanding of the system state.
This feature also facilitates exchanging the hypotheses order as dictated by hypothesis
ranking schemes that are not easy to express through a goodness function, e.g., those
taking into account fault gravity, testing difficulty, or urgency of repair. Since an oc-
casional inaccuracy of the most likely hypothesis may not be avoided, the ability to
replace an incorrect hypothesis with its alternative without repeating the entire fault
localization process improves the robustness of the fault management system.

While relationships between faults and symptoms in real-life systems are usually
more complex than may be represented by a bipartite graph (in particular, they are
frequently indirect), many fault localization techniques proposed in the literature [4,
10, 16, 17] use bipartite fault propagation models. The focus on this type of a model is
justified by the following arguments: (1) Performing fault localization with more com-
plex representations is difficult. (In general, the problem is NP-hard [10].) To avoid
this complexity, more detailed models are frequently reduced to bipartite ones through
a sequence of graph reduction operations [17]. (2) Building more complex models re-
quires a profound knowledge of the underlying system, while symptom-fault maps
may be obtained through external observation. In many real-life problems, only bipar-
tite symptom-fault models are feasible [4]. (3) Some fault localization sub-problems
may be accurately represented by bipartite symptom-fault maps [16], thereby neces-
sitating fault localization algorithms suitable for bipartite fault propagation models.
The distinguishing features of the approach presented in this paper, when compared to
previous fault localization techniques suitable to use with a symptom-fault map as a
fault propagation model, are as follows: the technique is more general by not assum-
ing any particular problem domain or probabilistic model [4, 10, 17], resilient to lost
and spurious symptoms [7, 10], event-driven [4, 7, 10, 17], incremental [4, 7, 10, 17,
15, 16], and more efficient [15, 16].

The paper is structured as follows. Section 2 describes the concept of probabilistic
incremental hypothesis updating, which was originally introduced in [13]. In Sec-
tion 3, incremental hypothesis updating is extended to include positive and lost symp-
toms in the analysis. Section 4 presents the methodology of dealing with spurious
symptoms and discusses the necessary modifications to the original algorithm. In Sec-
tion 5, the experimental study of the technique is described.

2. Incremental hypothesis updating

A symptom-fault map is a bipartite directed graph that, for every fault, encodes
direct causal relationships between the fault and a set of symptoms observed when the
fault occurs. We will useF andS to denote the sets of all possible faults and symp-
toms, respectively. In a non-deterministic model, with every faultfi ∈ F a probability
of its independent failure is associated, which is denoted byp(fi). The edge between
fi ∈ F andsj ∈ S indicates thatfi may causesj . The edge is weighted with the
probability of the causal implication,p(sj |fi). A subset of symptoms observed by the
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management application is denoted bySO. The purpose of fault localization is to find
Fd ⊆ F that maximizes the probability that (1) all faults inFd occur and (2) each
symptom inSO is explained by at least one fault fromFd.

The technique we present in this section, which is calledincremental hypothesis
updating[13] (IHU), creates a set of most likely hypotheses, which may all be pre-
sented to the system administrator. Rather than waiting for a specific period of time
before presenting a solution, the technique makes all these hypotheses available on a
continuous basis, and constantly upgrades them with the information learned from the
arriving symptoms. This allows the administrator to initiate recovery actions sooner,
and it allows additional testing procedures to be performed. Each hypothesis is a sub-
set ofF that explains all symptoms inSO. We say that hypothesishj ⊆ F explains
symptomsi ∈ SO if it contains at least one fault that explainssi. The hypotheses
are ranked using a belief metric,b. The algorithm proceeds in an event-driven and
incremental fashion. The execution triggered by theith symptom,si, creates a set of
hypotheses,Hi, each explaining symptomss1 throughsi. SetHi is created by updat-
ingHi−1 with an explanation of symptomsi. We defineHsi as a set{fk ∈ F} such
thatfk may causesi, i.e., the fault propagation model contains a directed edge from
fk to si. Using the notation from [10],Hsi

is the domain of symptomsi.
After theith symptom is processed, belief metricbi represents the probability that

(1) all faults belonging tohj have occurred, and (2)hj explains every observed symp-
tomsk ∈ SO,i = {s1, . . . , si}. Formally,bi(hj) is defined as follows:

bi(hj) =
( ∏

fk∈hj

p(fk)
) ∏

sl∈SO,i

(
1−

∏
fk∈hj

(1− p(sl|fk)
)

(1)

To incorporate an explanation of symptomsi into the set of fault hypotheses, in the
ith iteration of the algorithm, we analyze eachhj ∈ Hi−1. If hj is able to explain
symptomsi, we puthj into Hi. Otherwise,hj has to be extended by adding to it a
fault from Hsi . To avoid a very fast growth in the size ofHi, the following heuristic
is used. Faultfl ∈ Hsi

may be added tohj ∈ Hi−1 only if the size ofhj , |hj |, is
smaller thanµ(fl), the minimum size of a hypothesis inHi−1 that containsfl and
explainssi. The usage of this heuristic is derived from the fact that the probability of
multiple simultaneous faults is small. Therefore, of any two hypotheses containingfl,
the hypothesis that contains the fewest faults is the most likely to constitute the optimal
symptom explanation. Thus, since it is not efficient to keep all possible hypotheses,
we remove those that are bigger in size. While updating the set of hypothesis,bi(hj)
is approximated iteratively based onbi−1(hj) using the following equations:

– If hj ∈ Hi−1 andhj explainssi

bi(hj) = bi−1(hj)
(
1−

∏
fl∈hj∩Hsi

(1− p(si|fl)
)

(2)

– Otherwise, iffl explainssi

bi(hj∪{fl}) = bi−1(hj) p(fl) p(si|fl) (4)

The upper bound on the worst case computational complexity of the resultant algo-
rithm isO(|SO|k|F|), wherek is the maximum size of the set of hypotheses andk is
O(|F|) (in our study,k = 2|F|). When|Hi| = k, a new hypothesis may be added to
Hi only after a hypothesis with the smallestbi() is removed.
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3. The analysis of positive symptoms

The original version of IHU [13] formulates explanations of observed system dis-
order while not taking advantage of the fact that some possible indications of the
disorder have not been observed. As many researchers point out [2, 17], the fact that
many of its possible symptoms have not been observed should decrease our confidence
in the fault’s occurrence. In the realm of fault localization, an observation of network
disorder is called anegative symptom. Both an opposite observation and the lack of
any observation are consideredpositive symptoms. As it was shown in the study on
fault localization with belief networks [15], the inclusion of positive symptoms into
the fault localization process may significantly increase its accuracy.

To include the analysis if positive symptoms in IHU, the belief metricb∗i associated
with hypothesishj ∈ Hi needs to contain two components: a negative componentbn

i

and a positive componentbp
i , whereb∗i (hj) = bn

i (hj) bp
i (hj) andbn

i (hj) = bi(hj) of
Equation (1). The positive component is defined as the probability that faults inhj

have not generated any of the symptoms inS − So,i. It decreases the value of the
belief metric associated with hypothesishj if many of the symptoms that can occur as
a result of faults inhj have not been observed. The positive component ofb∗i (hj) is
expressed through the following equation.

bp
i (hj) =

∏
sl∈S−SO,i

∏
fk∈hj

(1− p(sl|fk)) (4)

When investigating a fault localization technique that takes advantage of positive
symptoms, two properties of the managed system have to be taken into account: symp-
tom observability ratio and symptom loss rate, which lead to refinements in the calcu-
lation of bp

i presented in the following sections.

3.1 Symptom observability ratio

Frequently, an indication of an existing disorder may not be observed by the man-
agement system because the system configuration configuration excludes some condi-
tions from being monitored, or filters out some of the symptoms before they reach the
management application. If this fact is not taken into account, the reduction ofb∗i (hj)
caused by the positive multiplierbp

i (hj) may be excessive. Symptoms which may not
be observed as a result of the management system configuration may be dealt with
by not including them in the fault propagation model. An alternative solution, which
preserves the model despite the management system configuration changes, associates
a flag 1 or 0 with every symptom in the model to indicate that, in the current configu-
ration, the symptom is observable or not observable, respectively. We will denote by
So ⊆ S the set of all symptoms which are observable in a current management system
configuration. When symptom observability status is taken into account, the second
product in Equation (4) is calculated oversl ∈ So − SO,i rather thansl ∈ S − SO,i.

The ratio of the number of all observable symptoms to the number of all possible
symptoms is called an observability ratio, and is denoted byOR = |So|/|S| [15]. The
observability ratio is an important parameter of the fault management system, which
informs us of the extensiveness of the system instrumentation. It may be expected that
a higher instrumentation level allows fault localization to be more accurate, but causes
it to be less efficient as it requires the processing of more symptoms.
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3.2 Symptom loss

In a real-life system, a symptom that has been triggered by faults inhj may be
lost before it reaches the management application as a result of using an unreliable
communication mechanism to transfer alarms from their origin to the management
node, as is the case with the SNMP protocol [3], or too liberal threshold values which
prevent an existing problem from being reported. When a fault localization algorithm
relies on positive information, a high rate of lost symptoms, if ignored by the algo-
rithm, can reduce its accuracy. Thus, in the management system in which symptom
delivery is not guaranteed, including positive symptoms into account necessitates the
analysis of lost symptoms as well.

Let us denote byploss(si) the probability that symptomsi ∈ S is lost. The value of
ploss(si) may be derived from a packet loss rate in the communication system, or from
the confidence measure associated with the system baselining tool used to calculate
the monitored threshold values. Symptom loss is included into the fault localization
algorithm by modifying the definition ofbp

i (hj) (Equation (4)) as follows.

bp
i (hj) =

∏
sl∈So−SO,i

(
ploss(sl) + (1− ploss(sl))

∏
fk∈hj

(1− p(sl|fk))
)

(5)

3.3 Incremental calculation ofbp

IHU based on both positive and negative symptoms proceeds as follows. Initially,
all observable alarms are considered positive symptoms. The only valid hypothesis is
∅, andbn

i (∅) = bp
i (∅) = 1. In the process of analyzing new symptoms, the value of

belief metricb∗i (hj) is calculated by multiplyingbn
i (hj) andbp

i (hj), wherebn
i (hj) is

computed incrementally using Equations (2)-(3). We obtainbp
i (hj) as follows.

– If hj ∈ Hi−1 explains symptomsi, thenbp
i (hj) may be approximated using the

following formula.

bp
i (hj) =

bp
i−1(hj)∏

fl∈hj
(ploss(sl) + (1− ploss(sl))(1− p(sl|fk)))

(6)

– Otherwise, letfl ∈ Hsi be a fault used to extendhj . The value ofbp
i (hj ∪ {fl})

is calculated as follows.

bp
i (hj ∪ {fl}) = bp

i−1(hj) bp
i ({fl}) (7)

In Equation (7),bp
i ({fl}) denotes the positive component of a belief metric associated

with a singleton hypothesis{fl} calculated given all symptoms observed thus far.
The values ofbp

i ({fl}) are pre-computed when the model is initialized. After every
symptom observation,bp

i ({fl}) is incrementally updated using Equation (6).

4. Dealing with spurious symptoms

In real-life communication systems, an observation of a network state is frequently
disturbed by the presence of spurious symptoms, which are caused by intermittent
network faults or by overly restrictive threshold values. Spurious symptoms, if not
taken into account by the fault localization process, may significantly deteriorate its
accuracy. When a fault localization algorithm does not recognize that some symptoms
may be spurious (as such they do not require an explanation), it strives to find the
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explanation of all the observed symptoms, thereby creating hypotheses which contain
many non-existent faults [15]. In this section, we introduce an extended version of
IHU, IHU+, which incorporates spurious symptoms in the analysis.

To deal with spurious symptoms IHU has to be modified as follows. Letsi be the
ith observed symptom and letps(si) denote the probability that symptomsi is spuri-
ously generated. While deciding whether hypothesishj ∈ Hi−1 should be placed in
Hi without modification or extended, the algorithm has to consider two possibilities:
(1) that the symptom is valid and (2) that the symptom is spurious. When hypothesis
hj explainssi, then regardless of these two possible interpretations of symptomsi, hy-
pothesishj can be added toHi and the two choices are incorporated in the calculation
of the belief metric forhj . When hypothesishj does not explainsi, then treatingsi as
valid necessitates extendinghj , and treatingsi as spurious allows us to puthj in Hi

without extension. Since the first and second cases occur with probability1 − ps(si)
andps(si), these values are used as multipliers embedded in the calculation of the
corresponding values of the belief metric. Recall from Section 2, that the original al-
gorithm does not allow addinghj ∈ Hi−1 to Hi unless it explains or is extended to
explain symptomsi.

The inclusion of spurious symptoms into the analysis only affects the calculation
of the negative component,b+n

i (hj), of the belief metric,b+
i (hj), while the positive

component remains the same, i.e.,b+p
i (hj) = bp

i (hj) (Eqns. (6)-(7)). The modified
negative component,b+n

i (hj), is calculated iteratively as follows.

– If hj ∈ Hi−1 explains symptomsi, then

b+n
i (hj) = b+n

i−1(hj)
(
ps(si) + (1− ps(si)) (1−

∏
fl∈hj∩Hsi

(1− p(si|fl))
)

(8)

– Otherwise

b+n
i (hj) = b+n

i−1(hj) ps(si) (9)

In addition, for every faultfl ∈ Hsi
used to extendhj

b+n
i (hj ∪ {fl}) = b+n

i−1(hj) p(fl) p(si|fl) (1− ps(si)) (10)

Besides modifying the definition of the belief metric, the inclusion of the spuri-
ous symptoms’ analysis in the fault localization process necessitates two additional
changes in the original IHU. Recall from Section 2 that IHU takes advantage of two
heuristics that allow us to limit the size of the set of hypotheses. The first heuristic
forbids adding faultfl to hypothesishj ∈ Hi if the size of the resultant hypothesis
hj ∪ {fl} would be greater thanµ(fl). The second heuristic applied by Algorithm
IHU limits the maximum size of the set of hypotheses tok ∈ O(|F|) and removes the
least probable hypotheses if this limit is exceeded. These two heuristics are modified
in IHU+ as described in the following sections.

4.1 Calculating hypothesis size

In IHU, functionµ(fl) is defined as the minimum size ofhk ∈ Hi−1 that contains
fl and explains symptomsi, where the size ofhk is |hk|. In IHU+, the size ofhj ,
α(hj) is defined as the number of faults inhj plus the number of symptoms observed
so far thathj considers spurious. This modification serves two purposes. It:
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– Helps avoid the creation of duplicate hypotheses.
Duplicate hypotheses introduce redundancy into the set of hypotheses, which may
affect the accuracy of the technique. They increase the size of the set of hypothe-
ses thereby making hypothesis removal due to the excessive set size more fre-
quent. Thus, they increase the probability of removing a (currently) least likely
hypothesis that may later turn out to be optimal. Although it is possible to unify
duplicate hypotheses within the computational complexity bound of IHU+, the
necessity to do so renders the implementation of the algorithm more difficult.

– Prevents hypotheses that contain fewer faults while not explaining many symp-
toms from being given unwarranted preference.
When small hypotheses are unfairly favored over bigger hypotheses, it is difficult
for the algorithm to extend a small hypothesis so that it provides an explanation to
a bigger number of symptoms. As a result, the algorithm is likely not to provide
an explanation to many observed symptoms.

4.2 Controlling hypotheses number

The second heuristic applied by Algorithm IHU limits the maximum size of the
set of hypotheses tok ∈ O(|F|). To add a new hypothesis toHi, when|Hi| = k, a
hypothesishl for whichbi(hl) is minimal must be first removed fromHi. It is possible
that symptoms to be received in the next iterations would increase the belief associated
with hl so thathl would become the most probable hypothesis. If suchhl is removed
at an earlier stage of the fault localization process, the algorithm will not propose
the optimal solution. The phenomenon of removing a hypothesis that would become
optimal at a later stage of fault localization, if it was kept in the set of hypotheses, will
be referred to as the problem ofpremature hypothesis removal.

Although the problem of premature hypothesis removal exists regardless of includ-
ing positive, lost, and spurious symptoms into the analysis, in most cases it may be
ignored. A hypothesis removal due to the big size ofHi is a rare event, and it usually
happens after many symptoms have been observed and analyzed. At this stage, the
algorithm is already converging to the final solution, thus the removed hypothesis is
not likely to become optimal in the future. However, when spurious symptoms are in-
cluded in the analysis, the size ofHi grows much faster, and therefore the probability
of prematurely removing an optimal hypothesis is high. The early removal of an opti-
mal hypothesis is caused by the positive component of the belief metric, whose value
may be very small if at this stage of fault localization, only a few symptoms related to
the optimal hypothesis have been observed. The crux of the problem is thatb+p(hj)
is calculated as if the current set of observed symptoms was the final one.

IHU+ avoids the problem of the premature hypothesis removal by using function
ranki rather thanb+ to choose a hypothesis that has to be removed. Similar to the
belief metric, functionranki is composed of positive and negative componentsb+p

andb+n, but the contribution ofb+p
i is weighted according to the number of symptoms

observed so far. In the following definition ofranki(hj), B+n
i (hj) and B+p

i (hj)
represent logarithmic-scale values ofb+n

i (hj) andb+p
i (hj), respectively.

ranki(hj) = B+n
i (hj) + β(i)B+p

i (hj) (11)

Functionβ(i) represents the contribution of the positive belief-metric component.
In general, functionβ(i) should assume a very small value when the number of symp-
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toms observed so far,i, is small, and increase asymptotically to 1 as the value ofi
increases. In this study, we defineβ(i) as follows.

β(i) = 1− 2−SW ( i−1
EEF )2 (12)

In Equation (12), the expected evidence factor,EEF, and the average symptom
weight, SW, are model-dependent. The expected evidence factor determines how
quickly the value ofβ(i) should converge to 1 in the absence of spurious symptoms.
It is proportional to the average number of symptoms which may be observed per
fault, i.e.,EEF = c |S|OR

|F| . In this study, we usec = 4. The average symptom weight
accounts for the fact that some symptoms may be spurious, and, as such, should not
increase the value ofβ(i). This value should be equal to 1 when no spurious symptoms
occur, and decrease as the spurious symptom probability increases. We defineSW
using the following formula.

SW = 1−
∑

si∈S ps(si)∑
si∈S

∑
fl∈F p(si|fl) +

∑
si∈S ps(si)

(13)

The values ofEEF andSW are pre-computed at the model initialization phase, and
remain constant during the process of fault localization, as long as the fault propaga-
tion model is not changed. Other definitions of functionβ are possible. For instance,
we could incorporate a temporal aspect into functionβ by increasing its value with
time. Such a definition could represent a property that, after a certain time since the
fault localization process is started, all relevant symptoms should have been observed.

4.3 IHU+ algorithm

We are now ready to define an extended version of the incremental algorithm,
IHU+, which incorporates positive, lost, and spurious symptoms in the analysis and is
parametrized by observability ratioOR, symptom-loss probability functionploss, and
spurious-symptom probability functionps.

Algorithm: Incremental hypothesis updating – IHU+(OR,ploss,ps)

letH0 = {∅}, b+n
0 (∅) = b+p

0 (∅) = 1, andα(∅) = 0
for every observed symptomsi:

letHi = ∅, and for allfl ∈ F let µ(fl) = |F|+ |SO|
for all hj ∈ Hi−1 do

for all fl ∈ hj such thatfl ∈ Hsi

setµ(fl) = min(µ(fl), α(hj))
addhj toHi and calculateb+

i (hj)
for all hj ∈ Hi−1 \ Hi do

if ps(si) > 0
addhj toHi, calculateb+

i (hj), and setα(hj) = α(hj) + 1
for all fl ∈ F ∩Hsi

such thatµ(fl) > α(hj) do
addhj∪{fl} toHi, computeb+

i (hj∪{fl}), and setα(hj) = α(hj) + 1
choosehj ∈ H|SN | such thatb+

|SN |(hj) is maximum

Observe that the worst-case computational complexity of the algorithm that takes
positive, lost, and spurious symptoms into account is stillO(|SO||F|2).
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5. Simulation study

In this section, we describe a simulation study performed to evaluate the techniques
presented in Sections 2, 3, and 4. As a real-life application domain we chose end-to-
end service failure diagnosis [16], which deals with isolating faults responsible for
a malfunctioning of end-to-end connectivity between systems. The first step toward
diagnosing these problems is to isolate the responsible host-to-host services, where a
host is an intermediate node used to provide the end-to-end connectivity. In the prob-
lem of end-to-end service-failure diagnosis, a fault propagation model is a bipartite
causality graph with host-to-host and end-to-end service failures at the tails and at the
heads of the edges, respectively.

The simulation study presented in this paper uses tree-shaped network topologies,
which result, for example, from the usage of the Spanning Tree Protocol [12] as the
data-link layer routing protocol. The usage of tree-shaped topologies greatly simplifies
their random generation, while it does not affect the validity of the results presented
in this section. We focus on diagnosing Byzantine types of problems, for which the
usage of a non-deterministic fault propagation model is necessary.

We design the simulation described in this section according to the model we pre-
viously used to evaluate another fault localization algorithm [15], which is based on
belief propagation in belief networks. We useOR, LR , andSSR to denote the ob-
servability ratio (|SO|/|S|), ratio of the number of generated alarms that were lost
to the number of all generated alarms (i.e., alarm loss rate), and probability that an
alarm is generated in a spurious manner (i.e., spurious symptom rate), respectively.
We aim at creating a homogeneous set of test scenarios to establish the upper limit on
the accuracy of the proposed techniques and its relationship to the parameters of the
simulation model. Consequently, we assume that the fault propagation model used in
the study accurately approximates the relationships that exist in the real system.

Given the simulation model with parametersOR, LR, andSSR for a given net-
work topology of sizen, wheren represents the number of intermediate network
nodes, we design 100 simulation cases. We build a random tree-shaped topology,
and generate the probability distribution in the fault localization model. The inde-
pendent failure probabilities and conditional probabilities are uniformly distributed in
ranges[0.001, 0.01] and(0, 1), respectively. We randomly chooseOR|S| observable
symptoms, and place them in the set of observable symptoms,So. In a simulation
case, we create a number of simulation scenarios (typically 100-200) as follows. We
randomly generate a set of faults that exist in the system,Fc ⊆ F . UsingFc and the
conditional probability distribution we randomly generate the set of observed negative
symptomsSO ⊆ So. WhenSSR > 0, we also randomly chooseSSR |So| symptoms
from So, and add them toSO. WhenLR > 0, we removeLR |SO| random symptoms
from SO. Then, we run algorithms IHU, IHU+, or both to produce the most probable
explanation ofSO, Fd, i.e., the hypothesis with the highest value of belief metric in
the final set of hypotheses proposed by the algorithm. We compareFd to Fc, and
calculate the detection rateDR = |Fc∩Fd|

|Fc| and false positive rateFPR = |Fd−Fc|
|Fd| .

5.1 The impact of including positive symptoms

To evaluate the impact of including positive symptoms into fault localization, we set
LR = 0, andSSR = 0 in the simulation model. Correspondingly, we useploss(si) = 0
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and ps(si) = 0 in the fault propagation model. While settingOR to 0.5, 0.2, or
0.05, we compareDR andFPR achievable with IHU, which does not take positive
symptoms into account, and IHU+, which includes positive symptoms in the analysis.

As presented in Figs. 1(a) and 1(b), including positive symptoms in the process of
fault localization allowsDR to be significantly increased andFPR to be significantly
decreased. Overall, thanks to the positive information, the fault localization accuracy
improves. The smallerOR, the bigger the improvement. ParameterOR determines
the system instrumentation level defined as the average number of symptoms that may
be observed per fault. (Note that the average number of symptoms in the system
is a squared function ofn, thus the system instrumentation level naturally improves
whenn increases.) It may be concluded that, in poorly instrumented systems, positive
symptoms may be effectively used to improve the accuracy of the fault localization
process without worsening its performance.
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Figure 1. Accuracy achievable with algorithms IHU and IHU+ for variousORs.

5.2 The impact of ignoring symptom loss on the accuracy of fault localization

To isolate the impact of symptom loss on the accuracy of fault localization, we
set SSR = 0, and varyLR from 0.0 to 0.2. In the fault propagation model, we
useploss = 0, andps = 0. (The fault localization algorithm effectively ignores the
symptom loss.) We apply algorithm IHU+ to this model.

Symptom loss, when ignored by the fault localization process, does indeed de-
crease its accuracy: we observe a decrease ofDR (Fig. 2(a)) and an increase ofFPR
(Fig. 2(b)). The strength of the symptom-loss impact on the accuracy is related to
the value ofLR and the system instrumentation level. Nonetheless, the decrease of
accuracy caused by symptom loss is small (within 5% for bothDR andFPR), which
allows us to conclude that IHU+ is resilient to symptom loss even when it relies on
positive information to perform fault diagnosis and does not include the explicit rep-
resentation of lost symptoms in its model. To determine whether including this rep-
resentation may improve the fault localization accuracy, we observe that decreasing
accuracy when symptoms may be lost is due to two factors: (1) fewer symptoms are
observed and therefore the system instrumentation level perceived by the fault man-
agement application decreases, and (2) some symptoms are incorrectly interpreted as
positive ones. The relative contribution of these two factors determines the upper
bound on the possible increase in the accuracy resulting from including symptom loss
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in the fault propagation model. Observe that the impact of only the second factor may
be alleviated by including the representation of symptom loss in the model.
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Figure 2. The impact of symptom loss on the accuracy for variousORs andLRs.

To estimate the relative impact of factors (1) and (2), we perform another exper-
iment. We execute the simulation study using the following parameters of the sim-
ulation model: (1)OR = 0.05, LR = 0.0, (2) OR = 0.05, LR = 0.2, and (3)
OR = 0.04, LR = 0.0. The amount of information provided to the fault localization
algorithm in the second and third cases is the same, because 0.05(1-0.2)=0.04. Thus
the difference between the accuracies observed in the first and second cases represents
the impact of factor (1). The difference between the accuracies observed in the second
and third cases represents the impact of factor (2). As shown in Figs 3(a) and 3(b)
the overall decrease of accuracy due to symptom loss is split evenly between the two
factors. This lets us conclude that, were symptom loss represented in the fault propa-
gation model, the resulting improvement in accuracy could not be greater than 2-2.5%.
Indeed, our experiments with a fault propagation model usingploss(si) = 0.2 did not
reveal any statistically provable improvement in accuracy. With higher values ofLR,
some small improvement in accuracy has been observed.
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Figure 3. The impact of factors (1) and (2) in system withOR = 0.05 andOR = 0.2.

This simulation study assumes that all symptoms are equally likely to be lost, while
in reality ploss(si) is different for different symptoms, e.g., when symptom are trans-
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mitted in-band. We expect that when the symptom-loss probabilities are not equal, the
benefit of including symptom loss in the analysis would be more evident.

5.3 The impact of analyzing spurious symptoms

The impact of including spurious symptoms in the fault localization process is eval-
uated by applying IHU+ to fault propagation models usingps(si) = 0 andps(si) =
SSR, respectively. We varyOR between 0.5 and 0.2, and useSSR of 0.01 and 0.1.
As shown in Fig. 4(a), the inclusion of spurious symptoms in the fault localization
process in small networks decreasesDR. This is explained by the fact that in poorly
instrumented networks only a few symptoms are available to the fault localization pro-
cess. When the possibility of spurious symptoms is taken into account, and the amount
of available evidence is small, the algorithm concludes that there is no sufficient ev-
idential support for the existence of faults, and considers all the observed symptoms
spurious. Otherwise,DR would be higher (Fig. 4(a)) butFPR would be very high
as well (Fig. 4(b)). When system instrumentation improves, so does theDR of IHU+
with an accurate representation of spurious symptoms in the fault propagation model.
Overall, we conclude that including spurious symptoms in the fault propagation model
has a big impact on the accuracy of the fault localization algorithm. However, to take
full advantage of this capability, the system instrumentation level should be increased
correspondingly to the rate with which spurious symptoms are generated.
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Figure 4. The change of accuracy as a result of spurious symptoms analysis.

5.4 The impact of conditional probability estimation errors

In the final set of experiments we evaluate the impact of conditional probability
estimation errors on the fault localization accuracy. We consider a scenario in which
instead of the accurate conditional probability values, a small number of confidence
levels,c, are being used. To represent the real-life probabilityp, the model uses the
ith confidence level, wherei = bpcc. Thus, effectively, real-system probabilityp
is mapped into propagation-model weightbpcc

c + 1
2c . The creation of the probability

model by a human is feasible, if high fault-localization accuracy may be achieved
even when only a small number of confidence levels is used.

Fig. 5(a) and 5(b) compare theDR and FPR of Algorithm IHU having exact
knowledge of the probability distribution with theDR andFPR achieved using one,
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two, and three confidence levels for various observability ratios. The figures prove an
important property of the algorithm presented in this paper: it allows the expert to use a
small set of meaningful qualitative probability assignments such asunlikely, possible,
andlikely, rather than exact probabilities, while preserving very high accuracy.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100

D
et

ec
tio

n 
ra

te

Network size

exact
three confidence levels

two confidence levels
one confidence level

(a) Detection rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50 60 70 80 90 100
F

al
se

 p
os

iti
ve

 r
at

e

Network size

exact
three confidence levels

two confidence levels
one confidence level

(b) False positive rate

Figure 5. Accuracy for various granularities of confidence levels.

6. Conclusion

The technique proposed in this paper isolates the most probable set of faults through
incremental updating of the symptom explanation hypothesis. It uses a probabilistic
model, which makes the technique applicable to systems with a high degree of non-
determinism. While assuming the pre-existence of such a model, the technique is
robust against the model’s imperfection. As shown in the simulation study, the tech-
nique offers high accuracy, even in the presence of observation noise. It also has low
polynomial complexity. When applied to the problem of end-to-end service failure di-
agnosis, our implementation of the technique solves multi-fault scenarios in networks
composed of more than 100 routers or bridges within less that 10 seconds.

Since fault localization is not a new problem and many fault localization techniques
have already been proposed, it is important to consider comparing these techniques
with respect to their accuracy and performance. Unfortunately, the techniques pro-
posed in the literature [4, 7, 10, 15–17] that are suitable for bipartite models differ
with respect to assumptions they are based on, capabilities, and problems they aim at
addressing. Some of the properties that distinguish IHU from the previously published
approaches are introduced in Section 1. The different assumptions and capabilities
render the techniques difficult to compare in quantitative terms as they make any such
comparison inherently unfair. A set of objective criteria that allow the comparison to
be performed have yet to be identified, which is an interesting future research problem.

Nevertheless, IHU may be compared to our previously investigated fault localiza-
tion approach, which is based on belief updating in belief networks [15, 16]. The
belief-network approach is more flexible as it does not constrain the shape of a fault
propagation model to a bipartite one, but it is not incremental and its computational
complexity, even in bipartite models, is higher. Thus, while the belief-network ap-
proach offers similar accuracy and resilience to model imperfections and observation
noise as IHU, its scalability is significantly lower.
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Some of the observations made in the simulation study presented in this paper, e.g.,
the dependence of the benefit resulting from positive symptoms analysis on the system
instrumentation level or necessity to increase system instrumentation level in systems
with high spurious symptoms rates, are rather natural and could have been anticipated.
Our study allows these observations to be quantified. Since similar results have also
been obtained in the analogous study on the belief-network approach [15], we believe
these results apply to the fault localization problem in general.

Future work will include designing a distributed version of the algorithm, which ex-
plores the domain semantics of management systems. In the application to end-to-end
service failure diagnosis, the distributed technique will follow the initial ideas pre-
sented in [14]. The algorithm presented in this paper assumes that alternative causes
of the same event should be combined using logical OR. It will be extended to allow
other models such as AND or NOT models.2
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