
A HIGHLY DISTRIBUTED DYNAMIC IP MULTICAST
ACCOUNTING AND MANAGEMENT FRAMEWORK
Hassen Sallay, Olivier Festor
The Madynes Research Team
LORIA-INRIA Lorraine
615, rue de Jardin Botanique
54602 Villers-l„es-Nancy, France
Tel: +33 (0) 383.592.000, Fax: +33 (0) 383.278.319
Hassen.Sallay@loria.fr, Olivier.Festor@loria.fr

Abstract: We present a highly distributed management architecture dedicated to IP multicast ser-
vices. This architecture relies on a three level hierarchical model over which both man-
agement data and functions are distributed. We show how the architecture can be used to
support an extended multicast accounting algorithm which adapts itself to the dynamics
of a multicast tree and detail the implementation of the proposed framework using active
network technology.

Keywords: Dynamic Accounting, Multicast Management, IP Accounting, Active Networks.

1 Introduction
As predicted in the last years [17], IP multicast is slowly moving from an optional

feature in some networks to a primary service in the Internet. Multicast services gain
more and more importance and become increasingly attractive. Multicast protocols are
now deployed in almost all router products available on the market and they support
a wide variety of applications (cooperative work, video-conferencing, tele-teaching,
CDN update, . . .).

With the advent of protocols like PIM-SSM 1 or EXPRESS2 [26, 13] which are
scalable and which cover a wide number of applications, multicast deployment and
usage will grow even faster. Unfortunately, this success curve is currently slowed by
several factors. One of these limiting factors, is the lack of integrated management
solutions able to cope with all components entering in the multicast service delivery
chain [19].

Efficient management of multicast services is both a crucial requirement and a ma-
jor challenge for multicast services. Building management solutions which can ad-
dress dedicated security, accounting and fault management for multicast is a key to
their successful deployment. But, due to its differences with unicast communications,
namely the potentially huge number of participants together with its tree-based con-
nectivity which dynamically evolves over time, the design and implementation of the

1Protocol Independent Multicast - Single Source Mode
2EXPlicitly Requested Single-Source Multicast

H. Sallay, O. Festor

afore mentioned management services are much more complex to achieve. To be effi-
cient in the multicast context, four factors need to be considered :

1 the multicast dynamics,

2 the scale factor,

3 the degree of specialisation for the management functions, and,

4 the ease of deployment and integration with the legacy.

Multicast services are dynamic by nature. This dynamic behaviour is mainly gen-
erated by join/leave operations of group members. The diffusion tree follows this
dynamic behaviour, either expanding or reducing itself over time. In such an evolving
environment, the signalling and management plane loops sometime share very close
timing requirements, management being forced to follow near real-time constraints
found in the control plane.

Multicast is in theory the solution which scales best. The problem of scalability is
in itself not bound to the multicast technology used but rather to the implementation
and the associated management solutions. For management solutions dedicated to
multicast services, scalability is essentially a gradient of :

the number of multicast groups to manage,

the number of nodes of each managed multicast tree,

the frequency of change in groups,

the overhead of management and signalling.

Designing efficient management solutions that can scale up to thousands of groups
and millions of group members, while maintaining a limited management overhead
remains a very challenging task.

Management functions such as accounting and security have to integrate the spe-
cific nature of multicast in the definition of the corresponding management applica-
tions and related metrics. For example, it is not an easy task to maintain an up-to-date
central knowledge of the number of participants together with their distribution in a
multicast tree. Thus, if one of the accounting approach relies on considering the exact
number of participants, these dynamic operations (join/leave) must be traced in a very
precise way. Moreover new parameters like the number of active groups, the overall
number of groups and members in a given network, the tree topology and the number
of links, traffic volume and memory usage within routers must be considered in the
cost allocation process3 for multicast service.

For the security function, if a group has strong security requirements, cryptographic
keys have to be generated and distributed each time a member joins or leaves a group
to guarantee that members who left do no longer have access to the group’s exchanged
data and that members who join do not have access to data that was exchanged before
they joined.

To be well integrated, any management solution must provide gateways and inter-
faces to standard protocols and frameworks. To be efficient, they also need to take

3i.e. the application of a set of strategies which enables a cost to be associated to each participant including
the savings generated by the use of multicast.

Distributed Dynamic IP Multicast Management

advantage of the most recent technologies to facilitate their deployment and configu-
ration. In the context of IP multicast management, this means that gateways with the
SNMP world must exists and that the management platform must be sufficiently open
and dynamic to adapt itself to changes and to be capable of supporting new types of
management algorithms.

The goal of the work undertaken in our group, is to build such a framework to
manage IP multicast services. Based on the above requirements and on an in-depth
study of multicast management, we propose a management framework that is highly
distributed and extensible to fit both very flexible service level constraints and very
dynamic network conditions. In addition to describing the core concepts of the ar-
chitecture, we show how it was implemented using an active network framework. To
illustrate the applicability of the framework, we propose an extension of a recently
described cost allocation algorithm and show how the framework can cope with the
added dynamics and show how it can be used in the context of fault management.

The paper is organised as follow. Section 2 provides a description of work re-
lated to multicast accounting and security management. The proposed architecture
is presented in section 3. The technology choices made to host this architecture are
described in section 4. Section 5 is dedicated to the description of the application of
the architecture for cost allocation and accounting purpose followed by the implemen-
tation details (section 6). Some conclusions together with an outlook for future work
are given in section 7.

2 Related work
Several approaches have been designed and proposed so far for the management of

multicast communications. Each of them targets a set of specific management func-
tions.

Within IETF, the AAA4 model [23, 7] has been designed. This architecture inter-
acts with the various services it applies to through specific modules. Diameter [6] is
the communication protocol used among different entities of the AAA architecture.
This protocol can be extended to meet the requirements of specific target applications.
So far, no extension was proposed to embrace multicast services. Thus, using the
architecture for multicast management is not feasible as is and its scalability has not
been investigated in this context.

Herzog et al. [12, 11] propose different strategies to allocate the cost of a mul-
ticast tree over its members. A cost allocation mechanism and a LPM5 architecture
defining components in charge of access control and accounting have also been pro-
posed in this work. An example of the proposed strategies is ELSD6. This strategy
divides equally the cost of a link over all members in the downstream of the multicast
tree. This strategy, which is the most equal for a tree/source schema, has been imple-
mented in the MultiCost prototype.
Unfortunately this strategy, together with the LPM architecture, do not take into ac-
count the dynamics of a multicast tree and consider the costs associated to a link to
be static. LPM also implements access control but does not support any key distribu-

4Authentication Authorisation Accounting architecture
5Local Policy Modules
6Equal Link Split Downstream

H. Sallay, O. Festor

tion mechanism nor does it support any fault management function. The use of a tree
metric for charging multicast communications is described in [8].

Designed by Holbrook et al., EXPRESS7 [26], is a multicast communication
model dedicated to the single source multicast schema. Within EXPRESS, a protocol
named ECMP8 offers support for accounting tasks and integrates options for secu-
rity features in addition to routing and membership management. ECMP assumes the
accounting architecture is based on a centralised architecture (the source being the
center) from where accounting campaigns on a well known attribute are initiated on
demand. Data collected through this process are global data related to the multicast
tree like number of members, number of branches, . . .
Collecting more fine grained data for more precise accounting strategies, e.g. number
of members beyond a given router, generates a huge wave of requests over all nodes of
the multicast tree. Centralised management at the source is known for its bottleneck,
its intolerance to any fault, and the overload generated on the network with often un-
necessary management traffic. ECMP does not consider the dynamics of the multicast
tree, nor does it implement any cost allocation strategy. The protocol remains dedi-
cated to source specific multicast trees and no implementation of this part is known to
us so far.

Solutions for securing multicast can be found in [24, 10, 16, 4]. Centralised key
generation by a KDC9 in charge of manually distributing these keys is proposed in
[24]. This solution has clear scalability problems due to the off-line coordination
effort that needs to be provided between the KDC and the members of the multicast
service. Several decentralised and automated solutions are proposed in [10, 16, 4].
These architectures distribute key management functions among the involved entities
and have a much better scalability.

In [1], an architecture for fault and quality management of a multicast link based
on SNMP is proposed. Another architecture, based on the integration of existing man-
agement tools like MTrace and MRM10 [2] is also proposed in a previous work of our
group [18]. While these architectures offer a good level of integration and interesting
functions like limited fault management, topology discovery and test generation and
processing, they face scalability issues and do not address security nor accounting. A
dynamic topology discovery approach for IP multicast is proposed in [20]. An alter-
native is proposed is [15]. A more complete monitoring environment called MCPM
[14] exists but does not address accounting.

3 A highy distributed architecture
In this section we present the basics of the management architecture we designed

to overcome the limitations of existing approaches and fit the requirements identified
in the context of IP multicast.

3.1 Design choices
The main concept behind our architecture is to distribute as much as possible both

management data and processing units to maintain a high degree of dynamics and

7EXPlicity REquested Single-Source
8Express Count Management Protocol
9Key Distribution Center
10Multicast Reachability Monitoring

Distributed Dynamic IP Multicast Management

ensure scalability. This distribution follows a pattern that enables composition and
coupling of operations. Our architecture embraces this principle to meet the require-
ments identified in the introduction.

We consider the multicast dynamics as a two facets entity : one at the micro-
dynamics level and another at the macro-dynamics one. Through the micro-dynamics
level, the evolution of the group members (join/leave operations to a multicast group)
can be monitored. The macro-dynamic level represents the evolution of the multicast
tree through expansion/reduction operations (i.e. routers leaving/joining the multicast
tree). As we will see below, differenciating these two facets, leads to the design of
a scalable management solution especially in terms of the number of group members
supported.

The overhead generated by the transport of management data related to a multicast
service can also be reduced by setting the granularity of the data to be exchanged.
Thus, only data that is mandatory for a given management task is sent over the net-
work. Management data storage becomes necessary at the places where these data are
produced and tasks can be delegated to the various network nodes that participate in
the multicast service delivery chain. In this case, the processing distribution follows
the data distribution providing the most efficient solution for large groups.

3.2 Global architecture
The proposed architecture provides a 3-level hierarchy : the source level, interme-

diate nodes level and the edge nodes level. At each level of the hierarchy a dedicated
management agent is operational (see Figure 1).

Source
MSA

MEA

MEA

MNA

MNA
MEA

MEA
MEA

MEAMNA

MEA
MNA

MEA

ISP Domain

MSA : Multicast SourceAgent
MEA : Multicast Edge Agent
MNA : Multicast Node Agent

Multicast tree

Multicast member

Data

Data

Data

Data

Data

Data Data

Data

Figure 1. Global management architecture

At the multicast source level, a Multicast Source Agent (MSA) is in charge of the
management activities. The instantiation and content of this agent can be part of the
SLA/SLS that have been defined for the service between the service provided and
the multicast service customer. The agent itself can be instantiated within the source
which delivers traffic if a single administrative domain is considered. When multiple
sources exist in one multicast session, the MSA agent is placed in the rendez-vous
point node. In a multi-domain environment, we can extend our architecture by consid-
ering one administrative domain as a peer. The multicast service will be established by
the cooperation of the different peer representing different domains. The source agent

H. Sallay, O. Festor

can play the role of the peer and negociate the service SLA setup among different ISPs
concerned by the service. In this paper we consider only the single domain scenario,
and leave the multi-domain scenario for a future work.

The MSA hosts a data storage facility that has the entire data related to the service.
The collection algorithm initiated to feed the database follows the dynamics of the
multicast tree. The database is updated each time an edge node (router) joins or leaves
the tree.

At the edge node level, Multicast Edge Agents (MEA) are deployed. These agents
manage the micro-dynamic facet of the multicast management. They maintain a lo-
cal view of session join and leave operations performed by end users. To this end,
these agents interact with the membership management protocols like IGMPv3 [5] or
MLDv2 [9] through dedicated interfaces and build a local database which holds very
detailed data about each member. These agents push the data forward to the concerned
source agents (MSAs) only after all members of a session have left.

Nodes of the intermediate level (not the source, nor the edges) hold specific agents
called Multicast Node Agent (MNA). Deployment or activation of these agents is done
dynamically according to the expansion/reduction of the multicast tree of the man-
aged service. This dynamic deployment implements the macro-dynamics facet related
to topology changes in the multicast tree. These agents interact with the local multi-
cast routing protocol entities through a well defined interface. Through this interface,
data related to the service can be collected (e.g. number of sent/lost packets, number
of links per multicast node, . . .). Each agent has a local view of the tree topology,
maintains a link with the underlying agents (MNA or MEA) as well as a link upward
towards the source MSA.

This model is more scalable than a full source driven polling approach. Moreover it
enables source agents to build service level statistics which are specific to the service
level management process in use for the service (e.g. checking the conformity of the
delivered service to the agreed level).

4 AMAM : an active network-based support of the
architecture

The previously presented architecture can be implemented in several ways. This
can be done with feature and protocol extensions of specific multicast approaches or
through a standard management framework like SNMP with dedicated Management
Information Models and associated MIBs together with usage scenarios. We chose
an alternative to the above solutions, namely to exploit the benefit of active network
technology in terms of flexibility and extensibility, to host the various components of
the architecture [21, 22, 3]. We use this technology to dynamically download and
operate both edge and node agents (MEAs and MNAs), enabling a seamless evolution
that follows the topology changes of the managed multicast tree. The availability of a
dynamic code distribution facility and the presence of execution environments on all
nodes enables rapid and online cost calculation strategies change, update of security
components, activation of tests for fault management purpose or more generally to
push management functions where they are needed.

The resulting implementation called AMAM (Active-based Management Archi-
tecture for IP Multicast) is illustrated in Figure 2. Within AMAM, multicast manage-
ment functions are designed as a set of dedicated active applications called plug-ins
(accounting plug-in, security plug-in, test sender plug-in, . . .). Plug-ins are stored
in a repository within the source agent context. Once installed on the source agent,

Distributed Dynamic IP Multicast Management

these components can be downloaded by either MEA or MNA agents where they are
executed. Plug-ins uninstall themselves when they are no longer in use.

The FLAME active network framework is the execution environment we used to
build AMAM. This execution environment enables both dynamic installation and re-
moval of active applications but also APIs and associated libraries enabling the exe-
cution environment to dynamically extend the interface it offers to active applications
(e.g. providing a new packet capture service). All AMAM plug-gins are defined as
FLAME applications.

Active
Application
Repository

Global
management
information

base

Accounting plugin (AP)

Security plugin (SP)

Mcast proxy plugin (MP)

Fault plugin (FP)

MSA agent MEA/MNA agent

Operating System

FLAME Execution Environment

Internal architecture

MP AP

SP

Figure 2. AMAM architecture

The repository contains by default four plug-ins, each of them having its own in-
ternal architecture. These plug-ins are :

the Mcast proxy plug-in (MP). The role of this plug-in is to provide trans-
parency to the underlying multicast technology used. The plug-in interacts with
the routing as well as with the membership management protocols through spe-
cific interfaces to collect information concerning members and delivered traffic.
Providing such a protocol independence facilitates deployment and integration
into legacy approaches. This plug-in is loaded in all agents.

In the edge agents, MP builds a multicast table that contains information
for each member on this edge. This generic table is built using proxy-lets which
provide the link with the two currently supported group membership protocols
namely IGMP for IPv4 and MLD for IPv6 (see Figure 3).

In the node agents (MNAs), proxy-lets that communicate with the routing
protocol are used. Other plug-ins use these proxy-lets and the data they collected
to perform their management task (see Figure 2);
the Accounting plug-in (AP) specialised in accounting tasks. It owns an in-
terface with the local MP, with external APs deployed in the other nodes as
well as with the group members that joined a session. Using the routing proxy-
lets, this agent collects information related to the multicast traffic and feeds the
local database. Based on this information and the member table built by the
MP agent, this plug-in allocates the cost and computes the amount that will be
assigned to each member. This information can then be used directly in the
charging process and published directly towards the users through the Client
publishing interface. The agent also maintains a copy of charging units in the
local database (see Figure 3).
the Security plug-in (SP) executes the security functions. Combined with a
policy server which can be located at any place in the network, even in the

H. Sallay, O. Festor

FP

MP
interface

FP communication
module

Multicast table

Multicast ListenerActive packet
handler

Flame Execution Environment

input

Multicast
Forwarding

Machine

Multicast Forwarding cache

Multicast
Proxylet
[MLD]
[IGMP]
[PIM]

MP

SP

MP
interface

SP communication
module

En/decryption module

Client key publishing

AP

MP
interface

AP communication
module

Cost Allocation/
charging/billing module

Client publishing

topological discovery/
generated tests

Report type Message type checksum
Agent Identifier

Options Number of records
Record[1]
Record[1]

Record[1]

Figure 3. Internal architecture of the plug-ins

multicast source domain, it ensures access control and user authentication. The
SP generates local keys and ensures their distribution to all connected members
through its key publishing interface. This plug-in also executes the algorithms
that encrypt/decrypt the multicast traffic that needs to be delivered (see figure
3).

the Fault plug-in (FP) notifies the source of changes in the topology (i.e. add/re-
move of a branch in the multicast tree) that were recorded locally by either
MNAs or MEAs. Based on the knowledge acquired through the reception of
these notifications, the source agent (MSA) builds a topological view of the dis-
tribution tree. The plug-in configures itself through the source agent to generate
test cases based on the information model defined in [18]. The routing proxy-let
is also used through the MP interface to measure link quality over the distribu-
tion tree.

In addition to the plug-ins, a management data exchange protocol has been defined
to enable communication among plug-ins either in different entities or in the same
system. The protocol defines a generic data format (see Figure 3). This message
format can be specialised for each plug-in. For example, the AP plugin defines a
message to transport the data necessary to allocate the costs and another to transport
the cost vector to be allocated. Each message contains the following elements :

report plug-in type : an octet that specifies the type of the plug-in that sends
the report. For example, if the report type of an MP agent is set to 1, then all
messages received by FLAME whose type is 1 are forwarded to the local MP
plug-in;

message type : one octet describing the message type. Each plug-in defines its
own message name-space;

checksum : checksum over the entire packet. It is checked at each node which
processes the message;

Distributed Dynamic IP Multicast Management

agent identifier : a two octet identifier uniquely identifying the agent that initi-
ated the message;

options : used to specify a set of options required by plug-ins;

number of records : number of data records contained in the message;

record : contains the data which is specific to the message type.

The sequencing of messages is defined by each plugin.

5 Using AMAM for cost allocation and accounting
management

Cost allocation is done through the application of a set of strategies which enable
the assignment of a given cost to every participant in the downstream. In the multicast
case, gain can be obtained by sharing costs. For example, the ELSD (Equal Link Split
Downstream) strategy divides equally the cost of a link to all participants behind the
link. The cost is computed over several parameters like the volume of traffic, the used
bandwidth, congestion state of the link, To this transport cost, one has to add the
content cost. The ELSD strategy has been implemented in [12] but without taking into
account the dynamic nature of multicast trees.

Our architecture enables the support for an extended ELSD approach that we pro-
pose. This extension, called D-ELSD explicitly considers the dynamics of a multicast
tree as a fundamental parameter of the strategy as opposed to ELSD.

Lets consider following definitions:

An allocation session allocates costs among leaving participants. This session is
started each time an edge node looses its last participant. The node that initiates
the allocation session is represented as init in the remainder;

∆t denotes the duration between the arrival of the first member on an MEA
and the departure of the last member from the same MEA. Over this period, the
MEA records all arrivals and departures of its local members;

∆t =
∑k

m=0
δm and Nloc(i) = V ectkm=0[nm] where nm is the number of

active members in δm at node i;

for each intermediate node, the MNA agent maintains the evolution of the num-
ber of branches towards downstream nodes. Let ∆t =

∑r
h=0

θh and Bloc(i) =
V ectrh=0

[bh] such that bh is the number of branches in θh
11;

let ∆t =
∑p

j=0
τj and Ndownstream(i) = V ectpj=0

[nj] such that nj is the
number of members downstream of node i within τj ;

let Nmerge(i) be the resulting vector of the following classification (δm, τj)
from Ndownsteam(i) out of every downstream branch and Nloc over ∆t for node
i. Thus, if we have only one branch downstream : Nmerge(i) = V ects=k+p

s=0 [ns]

over ∆t =
∑k+p

s=0
αs such that ns = ni + nj for αs = min(δm, τj). Thus, we

also have N
1/N
merge(i) : the notation of the vector whose elements are 1/ns;

11Note that one MEA can serve its members locally and have downstream branches to other MEAs or
MNAs. Thus, an MEA can maintain both vectors of numbers for members and branches.

H. Sallay, O. Festor

let chem(i, j) be the path from a node i to a downstream node j belonging to
the multicast tree and finally, let cost(i, i + 1) be the cost of a link between a
node i and its first downstream node chem(i, j) towards node j;

D-ELSD cost allocation is done in two phases : (1) a preparation phase during
which the data necessary for the application of a strategy is collected. The necessary
data is the number of members downstream (in the chem(source, init) path)(2) a
processing phase where the cost for all members which receive their traffic through a
path that crosses chem(source, init). Thus :

for the duration ∆t, the node that initiates the cost allocation session (node i),
builds his Nmerge(i) vector. Once built, this vector includes the entire dynamics
of the downstream multicast subtree. The initiating node sends this vector to the
first upstream node (i − 1) on the path to the source (chem(source, i)).

This vector will then be used as the Ndownstream(i−1) vector. Node i−1
then builds its fusion vector and sends it upwards. This process continues until
all vectors have reached the source;

once the MSA received the vector V ect[ni]
i=l
i=0 for the duration ∆t =

∑l
i=0

βi,
it builds the following allocation vector :

V ecttoSend(source) = cost(source, downstream node) ∗ [N 1/N
merge(source)]

(5.1)
and sends it to the first node downstream. l represents all join/leave events

that have been registered for the ∆t duration for the subtree containing chem-
(source,init);

every node i in chem(source, init) that did receive an allocation vector from
the upstream node, builds the cost vector for its members according to the fol-
lowing equation :

V ectcost(i) = V ecttoSend(i − 1) ∗ I(l, l) ∗ (M(l, k) ∗ Nloc) (5.2)

where I(l, l) is the identity matrix of size l and M(l, k) the transformation ma-
trix of the vector Nloc from size k to a size l vector.

M(l, k) =

1 0 . . . 0
...

... . . .
...

1 0 . . .
...

0 1
. . .

...
...

...
. . . 0

... 1
... 1

... 0
...

...
...

...
...

...
0 . . . 0 1

(5.3)

where the number of 1’s per column is the number of δl in δk

Distributed Dynamic IP Multicast Management

Node i sends a notification to its upstream nodes that it assigns the following
cost vector :

V ecttoSend(i) = V ecttoSend(i − 1) + cost(i, i + 1) ∗ N1/N
merge(i) (5.4)

Every node on the path chem(source, init) does the same processing until the
vector reaches the node that initiated the session.

As soon as the cost allocation vector has been received (see equation 5.2), each
MEA agent that is in the subtree on the chem(source, init) path ensures allocation for
all its local members. This is done, based on the detailed knowledge of the behaviour
of each member, behaviour that has been recorded in the local database. A member
mi being connected during a ⊂ ∆t period of time will get a cost equal to the sum
of elements from V ectcost for this duration. These costs can be communicated to the
members which can thus estimate their cost in near real time.

Note that the link cost is computed while respecting the strategies of load compu-
tation. Load computation can rely on several parameters like the volume of received
data, the duration of the connection to the service, the used bandwidth, . . .). The cost
vector depends only on the cost allocation strategy. In our framework, we used an
extended version of ELSD but other strategies can be implemented as well.

6 Implementation issues
In this section we will discuss some implementation issues in the AMAM archi-

tecture. Figure 4 represents the deployment senario of the management agents. We
assume that in each edge router, a MEA is installed and that the MP plugin is down-
loaded by default. The MP plugin serves to interact with the multicast membership
and routing protocols as mentionned before. When MP detects the arrival of the first
member joining the multicast session, the MEA initiates the deployment of the differ-
ent MNAs in all the routers which are in the route to the first MNA/MEA belonging
to the multicast distribution tree. These MNAs take their proper deployment configu-
ration from a policy sever provided by the FLAME environment. Once installed, the
MNAs records the routing information that will be used in the accounting process (like
number of branches. . .). The MEA records in its turn all the arrival and departure of its
local members. When The MEA detects the departure of the last member, it initiates
a cost allocation session according to the D-ELSD strategy. The source computes the
cost allocation vector and sends it to the concerned downstream routers. Each MEA,
based on this cost allocation vector and its local information computes the charge of
its local members and sends them a real time invoice. Finally, before desinstalling it-
self, the MNA notifies the policy server. This interaction with the policy server is also
used to construct and update the topologic view of the multicast tree distribution at the
source. The MEA, before desinstalling its downloaded plugins (except MP plugin),
sends the local management data to the source for a final storage purposes (see Figure
4).

Note that D-ELSD is computed only when a topology change in the multicast dis-
tribution tree occured and not as long as there is a join/leave of members. Consquently,
the scalability of management functions in the core is the same as the one of the mul-
ticast routing protocol since these management nodes only communicate and process
data on a tree topology change only.

The open interfaces with the membership and routing protocols can be obtained
by extending the major open source IGMP, PIM-SM and MLDv2 implementations.

H. Sallay, O. Festor

III

join Source

MSA
MEA

MEA

MEA
MEA

MEA
MNA

MEA
MNA

I

policy server

MNA

Source

MSA
MEA

MEA

MEA
MEA

MEA
MNA

MEA
MNA

II

policy server

Agent_deployment/plugin-download

MNA

Cops_response

MNA

MEA

Source

MSA
MEA

MEA

MEA
MEA

MEA
MNA

MEA
MNA

policy server

MNA

MNA

MEA

Source

MSA
MEAMEA

MEA
MEA

MEA
MNA

MEA
MNA

policy server

MNA

MNA

MEA

leave

IV

VI

Source

MSA
MEA

MEA

MEA
MEA

MEA
MNA

MEA
MNA

policy server

MNA

Send_desinstall_Notification

MNA
MEA

MEA

Join
send_elsd_data

Source

MSA
MEAMEA

MEA
MEA

MEA
MNA

MEA
MNA

policy server

MNA

MNA

MEA

send-invoice
send_elsd_cost_vector

V

Send_local_magnt_data

MEA plugin (except MP), MNA : desinstalled

Figure 4. AMAM Agents deployment scenario

In our research group, we have extended the IGMPv3 interface for some accounting
purposes. For instance, the connection duration for each member is computed with
some timer variable used by the IGMP proxylet to fixe the time of arrival and departure
of each member.

To evaluate how the performance could be affected when extra functions are de-
ployed in the agents, FLAME provides some integrated functionnalities for perfer-
mance evaluation that we will use for our real implementation of AMAM. To improve
the scalability gain in the case of large scale of group members a simulation work will
be done for more performance analysis.

7 Conclusion and future work
In this paper, the need for developing management architectures dedicated to multi-

cast services was addressed. The dynamics of these services, the very specific require-
ments towards the standard management functions especially the needs for scalability
and ease of deployment and maintenance have been identified as the major points, a
management solution for multicast services should master.

Based on these requirements, a management architecture was proposed. This ar-
chitecture is based on a three level hierarchy over which both management data and
functions are distributed. It enables the fusion of both signalling and management
planes for several multicast management functions like security and accounting. The
FLAME execution environment has been selected to host the architecture. The result-
ing environment is called AMAM. Within AMAM, management functions are defined

Distributed Dynamic IP Multicast Management

in terms of active applications which can be downloaded on demand and which use
a dedicated protocol to exchange management messages. Integration with the con-
trol planes (membership management and routing) is done through proxy-lets. New
management functions can be dynamically added.

Two management functions and their implementation within AMAM have been
presented. Through the proposal of an extended ELSD strategy, we have shown that
the architecture can support accounting functions that support the dynamics of mul-
ticast group members. Other functions can be implemented in the framework in a
similar way. For example, in the security management process and especially in the
key management function, AMAM implements efficiently the solution based on the
principle of a single global key per source and several local keys managed by the edge
routers. The source agent generates one global key and ensures its distribution to all
nodes of the multicast tree. This key is used to encrypt the traffic that will be deliv-
ered over the secured group. Each edge agent decrypts the traffic with the global key
and generates a local key, ensures its distribution to its local members and encrypts the
traffic with this local key. Local update of cryptographic keys makes the solution more
scalable avoiding a complete update over the entire tree each time a member joins or
leaves. Furthermore, the architecture can deploy approaches like MRM through con-
figuration of MNAs and MEAs. Session control can be done based on the information
model proposed in [18]. Another multicast monitoring service was also implemented
in this architecture. This is the Hierarchical Passive Multicast Monitoring (HPMM)
framework [25] which does fault correlation over the multicast tree.

Pushing forward the implementation of the architecture within the FLAME active
network constitutes our first goal in the near future. This mainly requires some refine-
ment in the specification of the management plug-ins. A second goal is to complete
the study of the behaviour of the framework in the context of SSM multicast services.
Finally, the architecture need to be extended to be deployed in a multi-domain (multi-
ISP) environment.

References
[1] E. Al-Shaer and Y. Tang. Smrm: Snmp-based multicast reachability monitoring. Proc. NOMS’2002,

p. 467-482, 8th IEEE/IFIP Network Operations and Management Symposium : Management Solu-
tions for the New Communications World, R. Stadler and M. Ulema, Editors, ISBN 0-7803-7382-0,
April 2002.

[2] K. Almeroth, L. Wei, and D. Frainacci. Multicast reachability monitor (mrm), April 1999.
[3] L. Andrey, I. Chrisment, O. Festor, and E. Fleury. Les réseaux multi-média, chapter Les réseaux

actifs. collection IC2 chez Hermès, 2000.
[4] A. Ballardie. Scalable multicast key distribution, May 1996. IETF RFC 1949, Experimental.
[5] B. Cain, S. Deering, B. Fenner, I. Kouvelas, and A. Thyagarajan. Internet group management proto-

col, version 3, March 2001. RFC 1075.
[6] P. Calhoun, J. Arkko, E. Guttman, G. Zorn, and J. Loughney. Diameter base protocol, june 2002.

<draft-ietf-aaa-diameter-11.txt>.
[7] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. Generic AAA Architecture, August

2000. RFC 2903.
[8] H.J. Einsiedler, P. Hurley, B. Stiller, and T. Braun. Charging multicast communications based on a

tree metric, May 1999. 1st Workshop on Multicast Protokolle und Anwendungen, Braunschweig,
Germany.

[9] B. Haberman and R. Worzella. Ip version 6 management information base for the multicast listener
discovery protocol, January 2001. RFC 3019, Standards Track.

[10] H. Harney and C. Muckenhirn. Group key management protocol (gkmp) architecture, July 1997.
IETF RFC 2094, Experimental.

H. Sallay, O. Festor

[11] S. Herzog, S. Shenker, and D. Estrin. Sharing the “cost” of multicast trees: an axiomatic analysis.
IEEE/ACM Transactions on Networking, 5(6):847–860, 1997.

[12] Shai Herzog. Accounting and Access Control for Multicast Distributions : Models and Mechanisms.
PhD thesis, USC, august 1996.

[13] H. Holbrook and B. Cain. Source-specific multicast for ip. november 2000.
[14] A. Kanwar, K. Almeroth, S. Bhattacharya, and M. Davy. Enabling end-user network monitoring

via the multicast consolidated proxy monitor. In SPIE ITCom Conference on Scalability and Traffic
Control in IP Networks, Denver, Colorado, USA, 2001.

[15] Jangwon Lee and Gustavo de Veciana. Resource and topology discovery for IP multicast using a
fan-out decrement mechanism. In INFOCOM, pages 1627–1635, 2001.

[16] R. Oppliger and A. Albanese. Distributed registration and key distribution (dirk), May 1996.
[17] Bob Quinn and Kevin Almeroth. Ip multicast applications : Challenges and solutions, septembre

2001. RFC 3170, Informational.
[18] H. Sallay, R. State, and O. Festor. A distributed management platform for integrated multicast mon-

itoring. Proc. NOMS’2002, p. 483-496, 8th IEEE/IFIP Network Operations and Management Sym-
posium : Management Solutions for the New Communications World, R. Stadler and M. Ulema,
Editors, ISBN 0-7803-7382-0, April 2002.

[19] K. Sarac and K. Almeroth. Supporting multicast deployment efforts: A survey of tools for multicast
monitoring.

[20] K. Sarac and K. Almeroth. Scalable techniques for discovering multicast tree topology, 2001.
[21] J. Schoenwaelder. Emerging internet management technologies. IEEE IM’99 (Tutorial), October

1999.
[22] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. Wetherall, , and G.J. Minden. A survey of active

network research. IEEE Communications Magazine, Vol. 35, No. 1, pp80-86, January 1997.
[23] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat, M. Holdrege,

and D. Spence. AAA Authorization Framework, August 2000. RFC 2904 Informational.
[24] D. Wallner, E. Harder, and R. Agee. Key management for multicast : Issues and architecture. Internet

RFC 2627, june 1999.
[25] J. Walz. Multicast Monitoring - Current Usage and a New Hierarchical Pr otocol . Master’s thesis,

Dept. of Computer Science, University of Massachusetts, February 2001.
[26] Hugh W.Holbrook and David R. Cheriton. Ip multicast channels : Express support for large-scale

single-source applications. 29(4), october 1999.

