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Abstract: Mobile networks produce a huge amount of spatio-temporal data. The data consists of
parameters of base stations and quality information of calls. The Self-Organizing Map
(SOM) is an efficient tool for visualization and clustering of multidimensional data. It
transforms the input vectors on two-dimensional grid of prototype vectors and orders them.
The ordered prototype vectors are easier to visualize and explore than the original data.
There are two possible ways to start the analysis. We can build either a model of the
network using state vectors with parameters from all mobilecells or a general one cell
model trained using one cell state vectors from all cells. Inboth methods further analysis
is needed. In the first method the distributions of parameters of one cell can be compared
with the others and in the second it can be compared how well the general model represents
each cell.
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1. Introduction
As the launch of third generation technology approaches, operators are forming

strategies for the deployment of their networks. These strategies must be supported
by realistic business plans both in terms of future service demand estimates and the
requirement for investment in network infrastructure.

When provisioning 3G services the control for the access part can be divided into
three levels. Two lowest layers are radio resource management (RRM) functionalities
and the highest hierarchy level is control performed by the network management sys-
tem (NMS). More about this control hierarchy can be found in [10]. The scope of this
paper is the NMS level. The role of NMS is essential owing to the fact that major en-
hancements or new service roll-outs are planned by utilizing the measured long term
performance data from existing network.

The multidimensional performance space in future cellularnetworks force the tra-
ditional operator processes to go through some major changes. Additional challenges
arise from the fact that in the case of 3G there will be multiple services, customer dif-
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ferentiation (customers with different priorities) and multiple radio access technolo-
gies to be managed simultaneously, optimally, as one resource pool. Furthermore, the
high competitive situation forces operators to fast changes in service provisioning. All
this will move the focus of operators daily tasks from offlineplanning to rapid network
performance evaluation, trend analysis and optimisation based on network measure-
ments. Therefore new analysis schemes for 3G networks are presented in this paper.
The strength of the proposed method is its ability to combinemultiple measurements
and thus provide the result in a simple format despite the fact that the input space
is very complex. The method also aids the operator in visualizing the service per-
formance and in classifying the cells. The cell classification (clustering) will aid the
operator in setting the configuration parameters controlling the service provisioning.
Furthermore, similarly behaving cells can be identified andthus problem solving in
the network is more effective.

In this paper, the use of the Self-Organizing Map (SOM) in optimization process
is proposed. The SOM is a widely used neural network algorithm [7]. It has several
beneficial features that make it a useful tool in data mining and exploration. The SOM
follows the probability density function of the underlyingdata and functions, thus, as
an efficient clustering and data reduction algorithm. The SOM is readily explainable,
simple and - perhaps most importantly - highly visual. SOM based methods have
been applied in the analysis of processes data, e.g., in steel and forest industry [8]. In
addition, the SOM has been used in analysis and monitoring oftelecommunications
systems. Applications include novel equalizer structuresfor discrete-signal detection
and adaptive resource allocation in telecommunications networks. In this paper, wide-
band code division multiple access (WCDMA) mobile network has been analyzed
using the SOM. The goal is to develop efficient adaptive methods for monitoring the
network behavior and performance. Special interest is on finding clusters of mobile
cells, which can be configured using similar parameters.

In [3], [5] and [13] examples of 3G optimization cases are represented. In general
the availability of references related to 3G analysis and optimization is limited. This is
owing to the fact that there are very few commercial networksdeployed at the time of
writing. In abovementioned references the approach has been parameter centric: how
to measure and tune configuration parameters to obtain wanted performance. In the
case of this paper the network status visualization is the main focus. This information
can be further used in order to obtain optimization of correct parameter/parameter set
of selected cells.

In the next section, the application domain which is mobile radio access network
is described. Then the SOM algorithm is presented in Section3 and two methods to
classify mobile cells are described in Sections 4 and 5.

2. Mobile network and the data
The scope of this section is to describe the used network scenario and the param-

eters used in the simulations. The data used in this work has been generated using
WCDMA radio network simulator [6]. The WCDMA radio network depicted in Fig. 1
has been planned to provide 64-kbps service with 95% outdoorcoverage probability.
The average site distance is around 910 m.

The network configuration used to produce the data consistedof 32 base stations in
Helsinki city area. The users of the network were circuit-switched with 64-kbps and
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Figure 1. Helsinki city area with base stations.

the admission control was parameterized so that uplink interference had no impact on
the admission process. The most important radio network simulation parameters are
listed in Table 1.

Table 1. Important radio network parameters

Terminal maximum power 126 mW
Base station maximum power 20 W
Base station maximum power per link 450 mW
Target of UL/DL FER 5 %
Uplink system noise -102.9 dBm
Downlink system noise -99.9 dBm
Terminal speed 3 km/h

Used propagation model was Okumura-Hata with average area correction factor
of -1.5 dB (excluding water areas). The multipath channel model was Vehicular A:
five-taps with gains of -2.9, -5.2, -9.5, -13 and -15 dB respectively.

Slow fading deviation was 8 dB and the correlation distance was 50 m. Minimum
coupling loss was 50 dB. Pilot power was 1 W. Softhandover waslimited by saving
maximum 3 links per terminal.

Power control is done once in a frame only to speed up the simulation. The power
control step size is 0 to 15 dB depending on the difference between the averageEb/Io

over 10 previous frames and the targetEb/Io [9]. Number of subscribers was 2112,
which generate five 120 second calls on the average in an hour.Total simulation time
was 1800 seconds.

The state of the network is characterized by 17 parameters ofeach base station
which are saved every 100ms. The parameters include uplink noise raise in dBs, down-



Raivio, Simula, Laiho and Lehtimäki

link average total transmission power in watts, number of users and average frame
error rate (FER) of both uplink and downlink.

In this study, only uplink noise raise and uplink FER of each cell is used. A loga-
rithmic scale with10−2 as minimum FER is used.

3. Self-Organizing Map
The Self-Organizing Map forms a nonlinear topology preserving mapping from the

input space to the output space. This means that patterns near each other in the input
space are mapped to neurons which are close to each other in the neural net. In the
original algorithm, the SOM is trained by the following unsupervised algorithm.

Each input vectorx(t) is compared with node vectorsmi to find the best-matching
unit (BMU) c.

||x − mc|| = mini{||x − mi||} (1)

The best-matching node and the neighboring nodes are modified in the direction of
the input data.

mi(t + 1) = mi(t) + α(t)hci(t)[x(t) − mi(t)] (2)

The neighborhood functionhci is usually a Gaussian function, which is centered
around nodec and multiplied by decreasing learning rateα(t).

One step of the training algorithm of the SOM is illustrated in Fig. 2. The size
of the SOM is 16 units, which have been arranged into a two-dimensional grid of 4
by 4 units. A data sample is marked with a cross; the black circles are the values of
the prototype vectors before, and the gray circles after updating them towards the data
sample. This kind of an update step is repeated iteratively during the training process.

Figure 2. An illustration of the SOM training.

In this work, a batch version of the original algorithm is used, because it is com-
putationally more effective. The samples collected from a fixed time interval are first
averaged over the topological neighborhoods of the respective winner cells in the map.
After that the node vectors are updated in one step using these averaged values, as in
the classical K-means algorithm [11].
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The SOM algorithm is able to perform both data clustering andvisualization. The
benefit of using SOM is in visualization of interesting partsof data. The algorithm
moves the nodes of the map towards the areas of higher densityof mapped input
vectors. As a result, the SOM efficiently visualizes the clusters.

4. Classification of mobile cells using correlations of SOM
component planes

Here a method for clustering mobile cells on the basis of covariance matrixes of
SOM component planes is presented. The method utilizes the SOM algorithm twice.
At first SOMs of one variable are built (see Sec. 4.1). Then thecovariance matrixes
of the SOM component planes are computed. Covariances of oneor more variables
are used as data to a second SOM. The outputs of the second SOM are the clusters of
mobile cells (see Sec. 4.2). In Sec. 4.3 the classification ofusing several variables is
demonstrated.

4.1 SOM of one variable

Data of each cell is masked so that one variable of each mobilecell is analyzed with
the corresponding ones of the other cells. The data to be analyzed has been normalized
to zero mean and unit variance as one data vector over all the cells. Here uplink noise
raise and logarithm of uplink FER have been analyzed using the SOM. Hexagonal 2D
neighborhood grid of 10 x 15 nodes is used. Fig. 3 shows the SOMcomponent planes
when the FER is studied. There is one component plane per eachmobile cell. The
parameter values of the mobile network state at one moment can be read from similar
locations on component planes. For example, upper left corner gives one possible
combination of network error rates.

c1 c2 c3 c4 c5 c6 c7 c8

c9 c10 c11 c12 c13 c14 c15 c16

c17 c18 c19 c20 c21 c22 c23 c24

c25 c26 c27 c28 c29 c30 c31

  
−1.96

−1.31

−0.659
c32

Figure 3. SOM component planes of the FERs. Minimum FER is fixed to10
−2.

The component planes are visualized using a common color axis. This makes it
possible to see the real error rates, but it also hides the smaller variations inside the
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cells. In the figure only some of the cells seem to differ from the common behavior.
Cell 26 has a lot higher FER than all the others.

4.2 Reorganized SOM component planes

If we are interested in, for example, to find out which mobile cells have similar
FER distribution, the task of human analyzer can be made easier by further processing
the component planes of SOM. This kind of postprocessing is more important if the
number of component planes is higher.

The component planes are considered as separate figures. Covariance matrix of the
figures is computed by first converting the figure dot or node valuescn

ij to vectorsan,
wherei andj are the coordinates on the map andn is the mobile cell number. The
length of each vectoran is the product of component plane dimensions.

The covariance matrixC of the planesan is the new data, which will be used in
Sec. 4.3. This data has one row for each mobile cell. A new second level SOM is
trained using the covariance matrix. The topology of the newSOM is 2D rectangular
grid. Because 32 component planes are analyzed grid of size 8x 8 nodes is used.
The covariance matrix row of each cell is mapped on the secondlevel SOM and the
best-matching unit (BMU) for each mobile cell is found. The map nodes are labeled
using the results of BMU search.

The second level SOM can be visualized using the labels or thecorresponding first
level SOM component planes. In the latter case the SOM component planes have been
reorganized so that the similar ones locate near each other.This makes it easier to find
correlations between SOM components.

The SOM planes reorganization method has been discussed earlier in [14] and [15].
In the latter paper several modifications of the algorithm have been represented. In
Fig. 4 the SOM component planes of Fig. 3 have been reordered using the method
above.

From the Fig. 4 we can see that cell 26 has higher error rate than the others and that
also the FER distributions of cells 12, 14, 17, 21, 25, 29, 30 differ quite much from
the others. The rest of the cells have similar FER distribution. The different behavior
of cells can be partly explained with the help of the radio network plan: cells 26 and
21 suffer from bad interference situation (due to the fact that the water areas allow
easy propagation for interfering signals), in case of cells12 and 29 the difference can
be explained with the position of the cell. These cells are located at the edge of the
network, and thus only little data is available. Number of neighboring interfering cells
is also lower compared to the other cells.

4.3 Classification using several variables

Several SOMs for different variables can be built and reorganized using the meth-
ods of previous sections. The covariance matrixesCk of all first level SOMs can be
combined so that we get a new data matrixC = [CkCl . . .], k 6= l. Matrix C has a
row Cn for each celln. The row is a concatenated vector of cell correlations of used
variables.

When the SOM is trained using this new data, we are able to get anew ordering of
the cells. The result (Fig. 5) is about the same as in Fig. 4. Only cells 14, 21, 25 and 26
differ from the others. It is obvious that in this case correlations of uplink noise raises
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Figure 4. SOM planes representing error rates of the mobile cells are reorganized. Planes are also
labeled using cell numbers. Color scaling is as in Fig. 3.

do not have a meaningful effect on clustering. The same cellsdiffer from common
behavior as before.

Clusters of mobile cells can be found using U-matrix presentation [12] or hierarchi-
cal clustering of SOM node vectors [16]. Hierarchical clustering can be either divisive
or agglomerative [2]. In divisive hierarchical clusteringdata vectors are separated in
finer groupings. Agglomerative hierarchical clustering methods add similar groups to-
gether starting from some initial base clusters. The base clusters can be either all SOM
node vectors or some set of them like local minimas. Here, group-average hierarchical
clustering is used with SOM node vectors as base clusters.

The number of clusters can be fixed manually on basis of the U-matrix or more
sophisticated methods like Davies-Bouldin index can be used [1]. Here, the number of
clusters is fixed manually to four. The clusters of the original data are shown in Fig. 6.
The classification result combined with locations of the cells has been shown in Fig. 7.
As it can be seen, cells can be characterized and divided intodifferent clusters. In a
radio network optimization process it is reasonable to assume that the configuration
parameters for cells within a cluster are at least partly thesame. The BMUs of the
original data have been printed (in Fig. 6) using subscript 1and the BMUs of the new
data set with subscript 2 (c11 means cell 1 with original data). In the new data set, the
pilot power of cells 21 and 26 have been decreased from the original 1W to 0.5W. The
reason for this change was to reduce the physical size of these two cells to improve the
overall quality of service. It can be seen in the following results that the change was
not yet adequate.
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Figure 5. SOM planes representing error rates are ordered using correlations of both uplink noise raise
and FER component planes.
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Figure 7. Locations and classes of mobile cells.

When new data is analyzed, SOM component plane representation of the data has
to be constructed. The easiest way to do this is training the SOM again. When the
SOM is trained, the new data can be used in the BMU search or it can be masked
out. If the new data is masked out in the BMU search, but used when the neurons are
updated we can obtain similar SOM as before, but in addition we get the component
planes for the new data. From the component planes new covariance matrices can be
computed, new clusters can be found and the BMUs of the new andthe old data can
be found.

The method described above classifies mobile cells on basis of correlations of se-
lected variables. A model of mobile network which describesthe relations between
mobile cells has been built. This method analyses the correlations between cells i.e.
does a bad performing cell have degrading influence also on the neighboring cells.

5. Classification of mobile cells using cluster histograms
In Section 4 method to form data clusters was presented. The input data was used to

build a model of the network. In this section another method for classification of mo-
bile cells is presented. Also this method uses two levels of SOMs. In order to analyze
sequence of data samples instead of a single data point a histogram map is computed.
Histogram consists of proportions of data samples falling in each of the data clusters.
These histograms describe the long-term behavior of data sequences and they are used
in the cell classification. A new SOM is generated using the histogram information
as the training set. By using a clustering algorithm exact behavioral clusters can be
generated. These behavioral clusters are found by hierarchical clustering method, here
the Ward clustering [2] with local minimas of SOM node vectors as base clusters. His-
tograms for each mobile cell are computed using the clustersas bins. The histograms
are the data, which are used to train the second SOM and to find the BMUs for each
cell.
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Figure 8. SOM trained by uplink noise raises and error rates of all the cells of the network.

5.1 General mobile cell model

In Fig. 8 the component planes of the general mobile cell model are shown. The
optimal number of clusters minimizes Davies-Bouldin index[1]

1

C

C∑

k=1

max
l 6=k

{
Sc(Qk) + Sc(Ql)

dce(Qk, Ql)
} (3)

whereC is the number of clusters,Sc within-cluster distance anddce between clusters
distance,Qk andQl are the clusters. When Ward clustering is used, four clusters or
states for mobile cells minimize the Davies-Bouldin index.In Fig. 9 state 4 represents
the higher load state and the others normal state.

1

2
3

4

Figure 9. Four clusters of SOM node vectors given by Ward clustering and Davies-Bouldin index.

The BMUs of data vectors give the state or the class of the cell. From a sequence of
states we can compute the class frequencies of mobile cells.Using these histograms
as data to a second level SOM we get a SOM of histograms. The topology of the new
SOM is 2D rectangular grid. Grid of size 8 x 8 nodes has been used as in 4.2. The
BMU search of the map is based on Kullback-Leibler distance [4]. The Kullback-
Leibler distance or relative entropy between two probability distributionspX(x) and
qX(x) is defined by
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Dp||q =
∑

x∈X

pX(x) log(
pX(x)

qX(x)
) (4)

where the sum is over all states of the system (i.e., the alphabetX of the discrete
random variableX).

The group-average hierarchical clustering with local minimas of SOM node vectors
as base clusters gives new clusters of mobile cells. These clusters with mobile cell
BMUs are shown in Fig. 10. The result is about the same as in theprevious section.
The shifts of states of cells when the pilot power of cells 21 and 26 is decreased are
visualized using old clusters to label the new data and compute new histograms. As
before the BMUs of the original data have been printed using subscript 1 and the
BMUs of the new data set with subscript 2. The clustering information with spatial
data is also shown in Fig. 11.
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Figure 10. Three clusters of mobile cells. Cell clusters are found using cluster histograms of SOM
trained by uplink noise raise and FER of each cell.

The method described above classifies mobile cells using class frequencies as mod-
els of mobile cell behavior. The distributions describe howmuch a particular mobile
cell differs from a general cell model, which has been built using as much data as pos-
sible. General cell model is an absolute reference for cell performance. The position
of the cell on the reference map reflects its actual performance.

6. Conclusion
In this paper two new methods to monitor mobile network statehave been pre-

sented. In the first method, lower level SOMs of one variable are first build. Covari-
ance matrices of the component planes of these SOMs are then used to train another
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Figure 11. Locations and classes of base stations.

map, which reorders the mobile cells. In the second method, alower level SOM, which
represents general mobile cell model is built. Histograms of the states of the base sta-
tions are built using clusters of lower level SOM. The same clusters can be used later
to find out histograms of new data. Thus, the operational modeof each cell and the
whole network can be monitored. The first method is powerful when the correlation
between the cells is of interest. The second method is used when information of the
absolute performance of cells is required.

The data which is used to build the lower level SOM in the method based on class
histograms should be selected carefully so that it represents well all the possible states
of the cells. If it does not, the lower level SOM should be trained again using new set
of data.

In this paper it has been demonstrated that SOM can be used in cell clustering.
The possibility of finding similarly behaving cells will make the operators’ optimiza-
tion task more cost effective. Similar configuration parameter sets for cells within a
cluster can be utilized. Furthermore, owing to the highly visual nature of SOM, the
multidimensional performance space can be visualized moreeffective than with tra-
ditional tools. Thus the operators have means to get an interpretation of the service
performance.
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