

A MANAGEMENT-AWARE SOFTWARE
DEVELOPMENT PROCESS USING DESIGN
PATTERNS

Oliver Mehl, Mike Becker, Andreas Köppel, Partho Paul, Daniel Zimmermann and
Sebastian Abeck
{oliver.mehl, mike.becker, andreas.koeppel, partho.paul, daniel.zimmermann, sebastian.
abeck}@cooperation-management.de
Cooperation & Management
Institute of Telematics, University of Karlsruhe
Zirkel 2, D-76128 Karlsruhe, Germany

Abstract: The provision of quality-assured IT services through a service provider
requires that all IT components involved in these services can be managed in
an efficient and effective way. The necessary management infrastructure must
be adapted to these IT components and must be standard-based to allow its
integration into an overall management environment. The broad spectrum of
applications differing in functionality and architecture together with the need
for a deep correlation of the management infrastructure with the internal
structure and processes of an application make it difficult to use pre-defined
application management solutions off-the-shelf.
The development process described in this paper addresses the problem by
integrating the development of the management infrastructure into the
software development process. The integration assures that the management
infrastructure is adapted to the application to be managed. The infrastructure,
including the management model as its core component, is based on the
Common Information Model (CIM) standard. To support the development of
the management model, a management design pattern catalog is introduced,
that provides CIM-based patterns for the definition of standardized
management models. The use of this catalog is demonstrated by an extension
to the management model for the distributed Enterprise Resource Planning
System R/3 of SAP AG.

Key words: application management, software development process, management
infrastructure, management model, design pattern, CIM

 O. Mehl, M. Becker, A. Köppel, P. Paul, D. Zimmermann, S. Abeck

1. INTRODUCTION

Modern software systems have to be able to provide IT services to customers in
a quality-assured way. Therefore, every component that forms an application -
including network-, system- and application components - must provide a
management infrastructure including management models and corresponding
instrumentation mechanisms.

Due to the broad structural variety and individual functionality of application
architectures, the process to create an adequate and sound management
infrastructure is a complex task. Additionally, in contrast to network or systems
management, where management models can be built on dedicated base models, in
most cases application management models must be built from scratch. An in-depth
look into the application and its internal processes is necessary to ensure that the
generated model reflects the application system appropriately. This puts the task of
creating such a management model into the hands of the software developer. Being
the person most familiar with the application, he is predestined to deal with the
provisioning of the necessary management infrastructure.

custom
er

application
m

anagem
ent

m
anagem

ent
infrastructure

developm
ent of

m
anagem

ent-aw
are

softw
are

use of
IT-servicesIT-based business process

provider

IT service

management infrastructure development process

software development process

agent &
model

distributed
application

instrumen-
tation

management
application

softw
are

developer
custom

er

application
m

anagem
ent

m
anagem

ent
infrastructure

developm
ent of

m
anagem

ent-aw
are

softw
are

use of
IT-servicesIT-based business process

provider

IT service

management infrastructure development process

software development process

agent &
model

distributed
application

instrumen-
tation

management
application

softw
are

developer

Figure 1. Development of management-aware software

To reduce the complexity of this task, an integrated process for the development
of management-aware software systems as depicted in Figure 1 is necessary. A tight
integration of the software and management infrastructure development processes
avoids the problems of a too late alignment and harmonization of the application and
its management infrastructure. To handle the additional complexity of this approach
an integrated approach must provide guidelines and tools for application developers
to ensure that management aspects are considered in all phases of the process.

Within this context the paper focuses on the development of the management
model as part of the management infrastructure and demonstrates how the use of a
design pattern catalog for management models supports the process. The design

A Management-Aware Software Development Process

patterns presented describe recurring parts of management models for application
systems, modeled on a level of abstraction suited for management needs using a
standardized management modeling language to ensure reusability and portability.

2. STATE OF THE ART

2.1 Management of applications

The complexity of application management [1] is not only driven by its various
functional aspects but also by the broad spectrum of applications as managed
objects. An important requirement for a successful management of applications is an
adequate information model, which describes the applications’ functional
components and relations in the context of the business processes. Regarding the
way to develop these models two basic approaches can be identified.

The most frequently used approach at present is a disjoint development of the
software system and the corresponding management model. In this case, the
management model and instrumentation code [2] need to be developed and
integrated after the implementation of the application. If integration is impossible,
the management must be based on information already available from the software,
complemented by information gathered from an outside view of the application (e.g.
system management information). This approach bears the risk of significant
differences between the representation of the application in the management model
and the actual software structure. The quality of the management achieved in this
approach depends heavily on the degree to that additional instrumentation code can
be integrated into the existing application system.

The second approach is to integrate the development of the management model
into the software development process. This approach reduces the danger of
inconsistent views on the application through a tight coordination between the
development processes of both models. Due to their different aims and viewpoints a
total match of the models is unlikely. Nevertheless, an integrated approach usually
results in a well-adapted management view on the managed application that directly
influences the quality of the overall management solution. The management-aware
development process presented in this paper follows this integrated approach as
described in detail in section 3.

2.2 Management infrastructure

In today’s management scenarios required information for managing an
application is often provided trough a specific management infrastructure in a non-
standard way. To be integrated into a broader context such as service management
management information must be accessible not only by application-specific
management tools, that are tightly coupled to the managed application, but also by
external management applications or platform such as Tivoli [3], BMC [4] or HP
Openview [5] to enable correlation and aggregation of the management information.

 O. Mehl, M. Becker, A. Köppel, P. Paul, D. Zimmermann, S. Abeck

A standard for modeling management information is the Common Information
Model (CIM) [6] specified by the Distributed Management Task Force (DMTF). In
contrast to management information languages such as SMI-GDMO (Structure of
Management Information, Guidelines for the Definition of Managed Objects) [7],
DMI-MIF (Desktop Management Interface, Management Information Format) [8] or
SNMP-SMI (Simple Network Management Protocol, Structure of Management
Information) [9] that are devoted to particular management domains CIM is an
implementation and architecture-independent modeling language that allows to
describe overall management information in a networked / enterprise environment
[10]. It is flexible and extensible and therefore provides a wide range of
applications. The rules for building CIM-compliant management models are defined
in the CIM meta schema [6]. A set of basic elements to model management
information is provided through the CIM base schema. CIM makes extensive use of
the concepts of classes and instances known from object-oriented modeling and uses
UML class diagrams to describe the models. This fact supports the idea to use CIM
in an integrated development process in which the software developer must carry out
the development of the management model as he is usually already familiar with
these concepts and the notation.

The CIM compliant management infrastructure can be used to guarantee
standardized access to an application’s management information and functionality.
To provide a manageable application that supports this approach, a developer has to
provide the CIM-based management model, additional instrumentation code as well
as a CIM provider for the application that can be registered with the CIM object
manager (CIMOM) to make the CIM model, management data and functionality
available to management applications.

3. AN INTEGRATED MANAGEMENT
DEVELOPMENT PROCESS

The idea to integrate the management development process into existing
software development processes assumes the identification of a generic core
process. This process can then be extended to incorporate management aspects
taking into account the integrated development of a standard-based management
infrastructure for a management-aware software system. The integrated process can
then be mapped to the original development processes to make them management-
aware. Obviously the integrated development approach increases the overall
complexity of the software development process that must be handled by the
software developers. Even though a separate development team that is specialized in
management details might transparently develop the complete management
infrastructure, an intense synchronization between both processes is inevitable and
results in additional costs. On the other hand the integrated process avoids the costly
and error-prone process of adding management components after the
implementation of the core functionality of a software system. The consideration of

A Management-Aware Software Development Process

management aspects right form the start of the application development improves
the application’s manageability in terms of the overall quality of its services.

When taking a closer look at established software development models such as
the waterfall model, the V model or the spiral model [11] all of them share three
main phases: a system analysis phase, a software design phase and an
implementation and test phase. The integrated management development process
depicted in Figure 2 is based on a software development process (SWD process) that
consisting of these three shared phases. The management infrastructure development
process (MID process) is separated into corresponding phases. The integration of
both processes is done for each phase separately to ensure a consistent completion of
each phase and by that to ease the integration of each of the phases into existing
development processes.

custom
er

application
m

anagem
ent

m
anagem

ent
infrastructure

development of management-aware software

use of IT-services
IT-based business process

provider

IT service management
application

management infrastructure development process
system analysis software design implementation

and test

software development process
system analysis software design implementation

and test

agent

distributed
application

instrumen-
tation

management
application

softw
are developer

CIM provider

CIMOM

CIM model

CIM
repository

custom
er

application
m

anagem
ent

m
anagem

ent
infrastructure

development of management-aware software

use of IT-services
IT-based business process

provider

IT service management
application

management infrastructure development process
system analysis software design implementation

and test

software development process
system analysis software design implementation

and test

agent

distributed
application

instrumen-
tation

management
application

softw
are developer

CIM provider

CIMOM

CIM model

CIM
repository

Figure 2. An integrated, CIM-based development process for management-aware software

To ensure a standardized access to the management information and
functionality of the application the management infrastructure developed in this
processes is supposed to be CIM-compliant. It deals with the development of the
management model, the provider, the instrumentation code as well as the
management application.

The following sections describe the first two phases of this development process.
The last phase is left out as it concerns only implementation details.

 O. Mehl, M. Becker, A. Köppel, P. Paul, D. Zimmermann, S. Abeck

3.1 The system analysis phase

The main focus of the system analysis phase is to determine and describe the
requirements for an application system defined by the end user or customer. The
requirements are documented in a product concept catalog and are later transferred
into a customer requirement specification. Both documents describe the scope of the
services of the developed application. In both cases the specification of the
management requirements is realized after the requirements for the software have
been defined as most management aspects are linked to or based on details of the
software requirements analysis. To support the definition of management
requirements a management catalog is used. The catalog provides a very high level
classification of generic management information organized according to the five
functional areas FCAPS of the OSI management [12]. It can be used in interviews to
capture and define the customer’s management requirements by instantiation and
adaptation of the generic management aspects to the developed product.

After the requirements are defined, a product model is specified. Based on this
model prototypes of the graphical user interfaces (GUI) are constructed that provide
both, the software engineer and the customer, with a first vision of the application.
In addition, a first version of a user manual is produced that is completed during the
other two phases of the development process. If the development of a management
application is necessary, the GUI for this application is specified in this phase
following the same process but on a more general level. At first the management
data provided by the management application is described in a broad outline through
the definition of a first set of relevant management information and access functions
for the application. This process is also supported by the management catalog that
allows the definition of this data based on input from the requirement analysis.
Additionally control mechanisms for the application are specified. Management data
and management functions are then implemented in the management GUI.

The system analysis phase ends with the review of all the documents and
specifications that have been created during this phase to guarantee that the
specifications meet the requirements. In case of inconsistencies, changes or
extensions to the existing specifications must be carried out.

3.2 The software design phase

The software design phase depicted in Figure 3 deals with the transformation of
the specified requirements into a software architecture. During this process
constraints and limiting conditions are refined and extended based on the outcomes
of the system analysis phase. In addition, operation conditions are defined.

The software architecture describes the structure of the software system by
defining the system components and their relationships. A system component is a
closed part of a software system dealing with a specific (functional) aspect of the
application. Depending on the level of detail the components are organized into
layers or tiers whereas logical layers are mapped onto physical layers. The mapping
of the components can be done following predefined schemes.

A Management-Aware Software Development Process

After the system components and the architecture have been defined, the
components are specified in detail. This includes the definition and documentation
of their interfaces as well as their internal behavior in a formal or semi-formal way.
Tools supporting this process are e.g. UML CASE tools to create static (class
diagrams) or dynamic (activity or sequence diagrams) diagrams of the components.
Due to its complexity, the process of defining the software architecture and its
components is carried out iteratively, refining the results of the preceding phase. If
necessary, results must also be fed back into prior phases of the design process to
change or extend earlier specifications or constraints.

The design of the management model can be initiated after the system
components and the overall architecture have been defined. The management model
can include various kinds of management information from the different
management areas depending on the focus of the management. Constraints and
decisions taken in the design of the application architecture influence the
development of the management model. They must be taken into account to ensure a
consistent and sound management view of the application. To ease the development
of the management model, a management design pattern catalog is used. The
purpose of this catalog, its structure and usage is described in section 4 in detail.

MID tools

SWD doc.

SWD tools

SWD

MID

MID doc.

SWD: software development MID: management infrastructure development

architecture
design

definition
of constrains

change / extend

component
specification

model design

UML CASE tools

change / extend

e.g. UML CASE tools

influences

instrumentation design

architecture / specification

mgmt.application
development

dependents

dependents

e.g. UI tools

provider design

functional description
model

provider and mgmt. application architecture/specification

influences

system
 analysis

im
plem

entation and test

management design pattern catalog

extends

MID tools

SWD doc.

SWD tools

SWD

MID

MID doc.

SWD: software development MID: management infrastructure development

architecture
design

definition
of constrains

change / extend

component
specification

model design

UML CASE tools

change / extend

e.g. UML CASE tools

influences

instrumentation design

architecture / specification

mgmt.application
development

dependents

dependents

e.g. UI tools

provider design

functional description
model

provider and mgmt. application architecture/specification

influences

system
 analysis

im
plem

entation and test

management design pattern catalog

extends

Figure 3. Management-aware software design phase

The management information and functionality is provided by the application
components through the instrumentation. Therefore the instrumentation
requirements extend the component specification as they define additional functions
and parameters that need to be integrated into the components. The instrumentation
also influences the design of the management model: only aspects that can be
covered by the instrumentation can be instantiated in the management model.

After the management model and instrumentation design become more stable,
the design of the management provider and, if necessary, the management

 O. Mehl, M. Becker, A. Köppel, P. Paul, D. Zimmermann, S. Abeck

application development is initiated. The provider is responsible to transfer the
management data received from the instrumentation to the management application
(via the CIMOM) and must therefore implement the management model. The
management application is designed and refined according to the requirements and
the initial GUI design defined in the system analysis phase. Based on the
information represented in the management model, details about management data
presentation and possible data manipulation operations are specified.

4. A MANAGEMENT DESIGN PATTERN CATALOG
FOR THE SOFTWARE DESIGN PHASE

The component- or object-oriented way to design the CIM-compliant
management model in the integrated development process fosters the reuse of design
models in the form of patterns that solve recurring design problems. In software
engineering design pattern consist of a combination of components or classes, their
interfaces and relationships that reflect important aspects of a solution to a specific
problem. The reuse of these patterns is only possible if they provide a sufficient
level of abstraction from both the underlying problem and the solution. While
software design patterns usually handle details of the system design, patterns used to
build management models operate on a higher level of abstraction relying on
component- and function-oriented view of an application system. Following this
approach a management design pattern catalog can be used to assist in the
development of management models. Using such a catalog provides several
benefits: The developer of the management model gets a set of building blocks that
allow an efficient implementation of the model. The patterns also support the
development of the application system instrumentation as they specify operations
and attributes that must be provided by the application to enable its management.
Both aspects reduce the effort to develop an appropriate management infrastructure
for an application as only additional application-specific characteristic that are not
covered by the patterns must be added to the model. Additionally, the use of
management design patterns stimulates the development of comparable management
models. By basing the representation of application system components in the
management model on well-defined building blocks the interoperability with other
models providing similar attributes and inheritance hierarchies is supported.

4.1 Management design pattern catalog

In contrast to application software design the management model design focuses
on the functional units and services of an application on a reasonable level for
management tasks. When analyzing the functional aspects of the application various
indicators help the developer to discover such entities. Examples are components
supporting asynchronous data processing or boundaries between software
components that are embedded in separate executables or communicate remotely.

A Management-Aware Software Development Process

The management design pattern catalog supports the developer in identifying
such entities as well as in the selection of the parts of these entity that are relevant to
be include in the management model. The resulting requirements for the
instrumentation of the application system can then be fed back into the application
design process. The level of abstraction used for the patterns is located in between
the rather abstract concept of architecture styles (see [13]) and the fine-grained
software design patterns used in the software design process. The patterns focus on
the description of logical processing elements such as services and sub-systems. The
patterns are described following the approach used in [14] to ease their selection and
use by software developers. Therefore each pattern in the catalog is described by its
name, a short overview as well as examples for its use. Synonyms and related terms
are mentioned to ease navigation and search for an appropriate pattern. While this
information is intended to support the selection of a pattern from the catalog, each
pattern is also described in detail and visualized by a CIM model. Preconditions and
limitations for the use of the pattern are mentioned.

The initial set of design patterns for the management design pattern catalog were
identified during the design of a management infrastructure for the Enterprise
Resource Planning System (ERP System) R/3 of SAP AG. A strong effort during the
analysis was put on keeping the identified patterns independent from the specific
characteristics of the SAP software to guarantee their reusability and to define them
on a suitable level of abstraction to keep them applicable for other scenarios.

Two high-level patterns were identified as starting points for further analysis:

– The basic structure of an application system as a class model is presented in the
distributed application system pattern.

– Systems featuring logical segments with private data and configuration sections
may be modeled using the logical system pattern. A web server providing
services for different virtual sites on the same hard- and software platform can
be taken as an example for such a system.

Design patterns for single services that were identified in the functional analysis

include:
– An application service represents a service that provides a set of related

functions in an application system.
– A distributed service is provided by services of different component systems. A

load balancing service can be taken as an example for this pattern.
– A specialized service represents a service implemented from specialized

components or component systems within a distributed application system,
playing a vital role as a single point of failure for the system.

– A queued service uses data queues or asynchronous request processing to
provide its service. An example is a request processing service of a print server.

In addition, the following patterns can be used to describe more general

component relationships.
– The pattern client-server relationship represents the relationships between two

components that are part of a service provide/service user relationship. The

 O. Mehl, M. Becker, A. Köppel, P. Paul, D. Zimmermann, S. Abeck

communication relation ship between business tier components and a database
can be described using this pattern.

– To create a model describing the properties of an external component that is
used by an application system the pattern external view may be used.

4.2 Pattern examples in detail

In the following sections the design patterns distributed service and specialized
service are described in detail using the catalog structure introduced in section 4.1.

4.2.1 Application Service

Overview: An application service combines a set of functions of a technical service.
All processing elements of an application can be mapped to such a service. Criteria
for this kind of services are a fixed interface and permanent service availability.
Example: A spool service for print jobs or a web server module such as a SSL
module for communication encryption can be modeled as application service.
Related terms: functional group, processing element, module

CIM_ApplicationSystem

ApplicationService

Antecedent

Depedent

1

*

CIM_HostedService

Antecedent

Depedent

1

1..*

CIM_ServiceSAP
Dependency

Antecedent

Depedent

*

*

CIM_ServiceAccessBySAP

11

CIM_SAPSAPDependency

*
*

AppServAppServDependency

AppService
Setting

Configuration

ServicePort

LogicalStorage
Resource

GroupComponent

PartComponent

*

*

SettingContext

Antecedent

Depedent

*1

AppServParameters

Antecedent

Depedent
*

*

AppServUsesLogicalStorage

ServiceReference

LogicalStorage
Resource

CIM_LogicalElement

ServicePort

CIM_ServiceAccessPoint

ServiceReference

1..*

1..*
ConfigurationComponent

AppServUsed
LogicalStorage

CIM_Dependency

CIM_ServiceService
Dependency

AppServAppServ
Dependency

Figure 4. CIM model of the management design pattern application service

Motivation: The pattern allows to model the management aspects of any relevant
components of an application system from a functional point of view.
modeling details: The ApplicationService class is linked to the CIM_Application-
System class that implements the service functionality. It can use other application

A Management-Aware Software Development Process

services to implement its functions or provide its own functionality to other services.
This is done by the use of a ServiceReference (to use functions of other services) or
a ServicePort (to provide functionality) that are derived from the class CIM_Service-
AccessPoint. The use of data storage systems is modeled through the class Logical-
StorageResource. Configuration options are mapped to the AppServiceSetting class
derived from CIM_Configuration that represents a part of the overall application
settings.
Preconditions and limitations: The key problem to use this pattern is the
identification of the relevant elements of an application that should be modeled as
application services. Therefore an adequate level of abstraction of the software
component model must be chosen before this pattern can be used.
Visualization: See Figure 4

4.2.2 Specialized Service

Overview: The pattern specialized service represents a service that is implemented
only by specific components and is of central importance for the overall system.
Example: The payment transaction component of an e-commerce application can be
seen as a specialized service. It is the single interface of the application providing
access to the bank to carry out financial transactions and it is used by all other
components of the e-commerce application requiring this functionality.
Related terms: Dispatcher, master, single point of failure

Distributed
ApplicationSystem

1..
SystemComponent

Component
ApplicationSystem

SpecializedApplication
Service

Antecedent

Depedent

1

*

DASHostenSpecAppServ

AntecedentDepedent 11

CSysHostingSpecAppServ

ApplicationService

Antecedent

Depedent

1

*

SAServConsumer

SpecializedComponent
ApplicationSystem

CIM_Dependency

DASGlobalAppService DASHostedSpecAppServ

CASLocalAppService CSysHostingSpecAppServ

Figure 5. CIM model of the management design pattern specialized service

Motivation: Specialized services are of special interest from a management point of
view regarding fault or performance management. A failure on their part has major
implications on the overall system availability. Their performance influences the
overall productivity of the system.

 O. Mehl, M. Becker, A. Köppel, P. Paul, D. Zimmermann, S. Abeck

Modeling details: A specialized application service is modeled by the Specialized-
ApplicationService class derived from the ApplicationService class. This class is
associated with a component system SpecializedComponentApplicationSystem that
provides the service. The specialization of this system does not necessarily involve
special software components but can also be achieved through specific configuration
options. The service is used by other application services indicated by the
SAServConsumer association to the ApplicationService class.
Preconditions and limitations: The overall application system must be built from
different component systems. The services provided by the application system must
be provided through component-based services. The relationships between these
services must be known to allow the identification of specialized services. The
pattern does not represent the functional aspects of the relationships.
Visualization: See Figure 5

5. USE OF MANAGEMENT DESIGN PATTERNS IN
THE CONTEXT OF THE ERP SYSTEM SAP R/3

The overall architecture of the ERP system SAP R/3 follows a distributed three-
tier architecture. In this scenario the database tier is a centralized external relational
database providing its services to the business tier. In the business tier so called
work processes use this central database to provide their functionality in the context
of various business processes. The work processes are grouped to application servers
that are located on different physical systems. Each application server consists of
exactly one dispatcher process and an optional gateway service to handle the
distribution of requests between the local work processes and the communication
between the applications servers of a single SAP system.

The Internet Communication Manager (ICMan) component enables an
application server to communicate using IP-based protocols such as HTTP or
SMTP. This is achieved by extending the application server by a separate ICMan
process that can be addressed by the work processes through the dispatcher process.

In the following the use of the management pattern catalog is demonstrated in
the development of a management model for the ICMan.

5.1 Management model for the ICMan component

Based on the functional and architectural aspects of the ICMan component the
management pattern specialized service was identified as best choice to develop the
management model. The service provided by the ICMan can be characterized as
specialized service, because its service is provided by not more than one component
instance but it is accessed by several other components to provide their services.
Even though the ICMan component can’t be seen as central in the overall
application context it is central in the context of its associated application server.

Figure 6 depicts the CIM model of the ICMan component as it was integrated
into the management model of the SAP base system. According to the design pattern

A Management-Aware Software Development Process

specialized service the ICMan component was modeled as a CIM class
SAP_BCInternetCommMgrService derived from the abstract class SAP_Application-
Service that corresponds to the class ApplicationService in the design pattern. The
association CsysHostingSpecialService is instantiated as SAP_BCKernelICMan-
Implementation and is linked to the SpecializedComponentApplicationSystem that
implements the component system including the ICMan, which in this case is
represented by SAP_BCKernel. As the service of the ICMan is used by the work
processes of the application server the dependency SAServConsumer is modeled by
the association SAP_BCICManProvidesServiceToWP between the SAP_BCInternet-
CommMgrService class and the SAP_BCWorkProcess that correspond to the
ApplicationService class in the pattern.

SAP_BCInternetCommMgrService

SAP_BCSystem

GroupComponent

PartComponent

*

1..*
ComponentSystem

SAP_BCApplicationServer

SAP_ApplicationService

Antecedent

Dependent

1

0..1

SAP_BCHostedICManService

Antecedent

Depedent

0..1

*
SAP_BCICManProvidesServiceToWP

SAP_BCWorkProcess

SAP_BCKernel
GroupComponent PartComponent
1 1

SAP_BCApplicationServerKernel

Antecedent

Depedent

0..1

1

SAP_BCKernelICManImplementation

Figure 6. CIM model of the ICMan component

6. CONCLUSION

The management-aware development process depicted in this paper presents an
approach for the integrated development of applications and their management
infrastructure by the inclusion of management aspects in all phases of the software
development. It fosters the alignment and integration of the management
infrastructure, weaving the management model with the application system in a
standardized way. The design pattern catalog presented supports application
developers to handle the additional complexity of the integrated development
process. It provides as set of patterns to ease the construction of CIM-based
management models as an important building block of the management
infrastructure. The use of the pattern catalog was demonstrated in the development
of the management model of a central component of an ERP system.

 O. Mehl, M. Becker, A. Köppel, P. Paul, D. Zimmermann, S. Abeck

The integrated development process is currently being evaluated in the
development of different management-aware components. The results are fed back
into the ongoing improvement of the process and the supporting tool set. Actual
activities focus on the specification of an extended schema for a product concept
catalog and a customer requirement specification used in the system analysis phases
as well as customized methods for using them efficiently. As one of the supporting
tools the design pattern catalog is also continuously evaluate, revised and extended
by modeling further components of the SAP ERP system to improve and verify the
reusability of the design patterns defined so far.

REFERENCES

[1] R. Sturm and W. Bumpus, "Foundations of Application Management": John Wiley &
Sons, 1999.

[2] M. Katchabaw, S. Howard, H. Lutfiyya, A. Marshall, and M. Bauer, "Making Distributed
Applications Manageable Through Instrumentation", presented at 2nd International
Workshop on Software Engineering for Parallel and Distributed Systems (PDSE'97), 1997.

[3] IBM, "Tivoli® Software", http://www.tivoli.com.
[4] B. Software, "Enterprise Applications Management", http://www.bmc.com.
[5] H.-P. Company, "HP OpenView", http://www.openview.hp.com.
[6] DMTF, "Common Information Model (CIM) Specification, Version 2.2",

http://www.dmtf.org/standards/cim_spec_v22/.
[7] ISO, "International Organization for Standardization - Information Technology - Open

Systems Interconnection - Structure of Management Information: Guidelines for the
Definition of Managed Objects, ISO 10165-4", 1992.

[8] DMTF, "DMTF, Desktop Management Interface (DMI) Standards",
http://www.dmtf.org/standards/standard_dmi.php, 1998.

[9] IETF, "RFC1155 - Structure and Identification of Management Information for TCP/IP-
based Internets , Internet Engineering Taskforce", 1990.

[10] W. Bumpus, "Common Information Model: implementing the object model for
enterprise management". New York, N.Y: Wiley, 2000.

[11] G. Kotonya and I. Sommerville, "Requirements Enginerring": John Wiley & Sons,
2000.

[12] ISO, "International Organization for Standardization - Information Technology - Open
Systems Interconnection - System Management: Object Management Function, ISO
10164-1", 1993.

[13] D. Garlan and M. Shaw, "An Introduction to Software Architecture", vol. Volume I:
World Scientific Publishing Company, New Jersey, 1994.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design Patterns: elements of
reusable object-oriented software": Addison-Wesley Publishing Company, Reading, MA,
1995.

