
MANAGING VIRTUAL STORAGE SYSTEMS:
AN APPROACH USING DEPENDENCY ANALYSIS

Andrzej Kochut
�

Computer Science Department
University of Maryland
College Park, Maryland 20742, USA
kochut@cs.umd.edu

Gautam Kar
IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598, USA
gkar@us.ibm.com

Abstract:
We present an approach for managing the performance of virtual storage systems by

experimentally identifying the dependencies that exist between various components that
comprise the system. Specifically, we show how one may profile dependencies between
each logical volume exported by a storage system and components that this volume uses.
To do so the technique estimates the arrival rate and size of requests issued to the internal
system component as a functions of arrival rate and size of requests issued to the logical
volume. The complete dependency profile of the system consists of a set of such functions
for READ and WRITE operations separately and for each pair: logical volume - internal
system component. The empirical technique of obtaining such profiles for typical existing
storage systems is presented. We propose the use of Common Information Model (CIM) as
a way to express dependency and performance information in an architecture-independent
manner. The dependencies between components are computed as a fraction of bandwidth
that is passed on to the sub-components. We discuss how the dependency profile of the
system may be used to perform root-cause analysis and early Service Level Agreement
violation notification. We also demonstrate the use of the method by applying it to a Linux
system using software RAID.

Keywords:
Dependency analysis, virtual storage systems, root-cause analysis, Service-Level Agree-

ment, systems monitoring.

1. Introduction
Fast growth in demand for big, efficient and reliable storage systems has led to the

development of very complex and heterogeneous architectures. With this increase in
architectural complexity and size of storage, new challenges for design, monitoring
and management have emerged. The share of management costs in the Total Cost of

�

Work done while author was an intern at IBM T. J. Watson Research Center.

Andrzej Kochut, Gautam Kar

Ownership for storage systems has increased steadily, creating a need for storage man-
agement systems that are scalable and autonomous. Management problems associated
with storage systems start with the design of the system itself. The tasks of optimal
allocation of data objects to logical volumes, configuration of software and hardware
components, determining root-causes of problems, and predicting the violation of Ser-
vice Level Agreement (SLA) prove to be very difficult. There is substantial amount of
work done in the area of virtual storage design. The suite of storage design algorithms
presented in [1] and [2] may be used to automatically design and configure a set of
RAID arrays, given performance and reliability requirements of the request streams.
In [9] authors show a way to automatically configure Storage Area Network to suit
the needs of predicted data transmission. Difficulty in the design of the system stems
from the trade-off between the utilization of components of the storage system and the
nature of guarantees in the SLA used by the users of the system. Moreover, the de-
sign of the storage system is an ongoing process, because needs/demands of the users
change constantly, making it necessary to re-evaluate storage requirements and re-
provision storage allocation. Since, today, storage systems, in the form of SANs, are
shared between multiple servers, and hence multiple applications, such reprovisioning
is necessary to honor SLAs between the storage service layer and the applications.

In this paper we concentrate on aspects of performance problem detection and res-
olution in distributed environments consisting of virtual storage systems, e.g. SAN.
The special emphasis of this research has been to understand how problems identified
at the storage layer can be related to problems manifested at the application layer. The
approach we have taken is to develop methods to characterize and compute dependen-
cies that exist between virtual storage entities that applications and file systems use,
and physical storage entities, such as RAID drives, into which the virtual entities are
mapped. We propose modeling the dependencies between components of the system
as a set of functions representing the arrival rate and size of requests issued to the
internal component as a function of arrival rate and size of requests issued to the logi-
cal volume exported by the system. These functions are numerical representations of
the storage policies implemented by the system. Storage policy defines the way data
is stored and retrieved, what communication media are used to transfer the data, and
what additional operations are performed while executing the request. For example,
RAID1 ([4], [6]) storage policy defines on which physical devices the data is repli-
cated, from where the data is read (load balancing), how the system behaves when one
of the devices fails, etc. Figure 1 depicts a virtual storage system. Logical volumes
LV1 and LV2 use a fiber switch to transfer the data to and from hard drives and virtual
storage systems, such as IBM’s Enterprise Storage Server (ESS). Data objects (DO1
through DO5) are mapped onto logical volumes. Streams of requests (S1 through S6)
access the data objects.

Although it is sometimes possible to obtain an analytical model of the storage pol-
icy (one of the examples may be found in [8]), in general storage systems it may be
very difficult to obtain a model that is close to reality. Thus we propose an empirical
technique for estimating the dependency profile by applying controlled, variable load
to logical volumes and observing the impact it has on internal system components.
Our approach requires instrumentation of the system that can supply the management
application with data about the component’s performance. Because of the heterogene-
ity of the storage systems, the data needs to be expressed in a uniform, standard way to
enable interoperability between components supplied by different vendors. To achieve

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis

Fiber Switch

S 6S 3S 2S 1

ESS

LV 1 LV 2

HD 2 HD 3 HD 4HD 1

S 4 S 5

DO 1 DO 2 DO 3 DO 4 DO 5

Figure 1. Example of a virtual storage system. Logical volumes LV1 and LV2 are mapped onto physical
drives HD1 through HD4 and ESS using fiber switch. Data objects (DO1 through DO5) are mapped onto
logical volumes. Streams S1 through S6 access data objects.

this goal we propose the use of Common Information Model (CIM) as defined in [5].
CIM is a set of classes that may be used to describe system components as well as
metrics associated with each component. By use of this standard, the management ap-
plication may gather system-wide information about each component’s performance
and use it to prepare dependency profiles and later monitor the behavior of the system.
Our method is similar to Active Dependency Discovery (ADD) technique presented in
[3], where the authors perturb a system’s components in order to estimate dependen-
cies between them. However ADD is used for application-level dependencies while
our method quantifies the performance dependencies between the elements of the stor-
age subsystem.

The remainder of this article is organized as follows. Section 2 describes the way
we model the system and use the model for computing dependencies. In Section 3 an
example application of our method to the Linux Software RAID is presented. Finally,
in Section 4 we discuss our future research plans.

2. Active Modeling Technique
Today’s storage systems are usually heterogeneous, capable of storing terabytes

of data and employing complex storage policies. A virtual storage system exports to
its users a set of logical volumes that resemble physical devices. However, usually
they are not mapped directly to the underlying physical devices in a simple one-to-one
manner. Instead, the mapping is generally very complex. All these factors make a
virtual storage system very difficult to design, model and monitor.

Andrzej Kochut, Gautam Kar

2.1 Model of the Virtual Storage System

We model the storage system as a set of independent components treated as “black-
boxes” that execute requested actions by interacting with other components of the
system. Each storage component presented with a request (i.e. READ or WRITE
operation issued by another component or upper-level subsystem) performs internal
computations and may issue requests to one or more other lower-level components.
The request may be fulfilled in synchronous or asynchronous fashion. Moreover, we
assume that each component may buffer requests and perform various optimizations
on them before requesting processing from other components. For example, it is quite
typical for storage systems to coalesce requests in order to increase sequentiality of
physical disk access. In our example from Figure 1, the model of the system con-
sists of eight components corresponding to two logical volumes, fiber switch, ESS
and four hard drives. The way the components interact is decided by a set of policies
that are defined for the system. For instance, policy of the logical volume LV1 deter-
mines what actions are performed once the LV1 is presented with the READ request.
A simple scenario may involve issuing two READ requests to two hard drives and
then transmitting the data using one of the channels of the fiber switch. However, in
more realistic, real-world situations, the sequence of events may be considerably more
complex. Various mirroring and striping techniques, multiple levels of caching, and
other storage optimization strategies may make the process very tough to model and
understand.

We believe that due to the complexity and heterogeneity of storage systems it is
very important to have a modeling technique that could be applied with different lev-
els of granularity. For example, we may want to model IBM’s ESS either as a single
storage element exporting storage space characterized by the size of the storage, its
performance and reliability properties, or we may want to model it at a greater level
of detail taking into consideration its internal structure. The choice between various
levels of detail depends on available performance data as well as on the precision of
predictions we want to make. Our model is flexible, making it possible to choose the
level of detail that is suitable for a particular system. In a more elaborate scenario, in-
stead of one component representing ESS, we can have many interacting components
corresponding to elements of the drive arrays, cluster caches and other performance-
related elements of the architecture.

The second part of our model consists of sets of metrics associated with each stor-
age component. We identified three metrics as being crucial for understanding the
behavior of a system’s component: request arrival rate, size of requests, and request
service time. An important metric that may be computed based on the above values
is the utilization of a component. We use the standard definition of utilization as a
multiplication of arrival rate and service time. The utilization indicates how close a
given component is to becoming a bottleneck.

In order to make it possible to gather system-wide information in the heterogeneous
virtual storage system we propose the use of Common Information Model (CIM) de-
fined by Distributed Management Task Force. CIM is a common data model for de-
scribing management information. In particular, the standard contains a set of classes
describing virtual storage subsystem as well as general framework for expressing met-
rics associated with system’s elements. Each vendor (hardware or software) that con-
tributed to the storage system that we want to monitor should provide the performance

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis

metrics described in the standard. The management application may access the per-
formance data of all hardware and software elements constituting the virtual storage
system. In the example from Figure 1, manufacturers of hard drives, fiber switch, and
ESS should provide specific software that could populate performance information in
the CIM schema. Similarly, software vendors should provide corresponding perfor-
mance information about logical volumes. We believe that existing software drivers
may be easily extended with the performance metrics we require. In order to use CIM
with our method it is sufficient to add instances representing the performance metrics
to the class MetricDefinition. Modeling of components and their dependencies may be
done using classes from CIMDevice schema. A good example of modeling the storage
system using CIM may be found in [7]. In Section 3 we present an example of ap-
plication of our method to the Linux software RAID. We demonstrate how to extend
the information exported by each device participating in the virtual storage subsystem
with performance metrics required by our method. The extension task proves to be
easy and non-intrusive.

2.2 Dependency Discovery Technique

We describe a method to dynamically gather information about the way compo-
nents of a virtual storage system interact with each other. Our method consists of
three major stages: instrumenting the system, applying controlled load to the col-
lection of logical volumes, measuring the metrics (identified in the previous section)
associated with the physical storage volumes, and finally, analyzing the obtained data
and preparing the dependency profiles.

In the instrumentation stage, each component that may influence the performance
should export the metrics described in Section 2.1. The use of CIM makes it possible
to have multi-vendor systems be monitored using a common data model. In practice,
each vendor would supply its specific CIM provider (piece of code publishing the
performance data in the common CIM data repository). We have implemented an
experimental CIM provider for our Linux system described in Section 3.

The second stage is devoted to inter-component dependency discovery and quan-
tification. In order to do so, we propose estimating the impact of each of the logical
volumes on the physical system components. Given a logical volume V and a compo-
nent C of the storage system, we want to measure the way a stream of requests applied
to V affects the system component C. We model this dependency as a set of functions
computing arrival rates and sizes of requests issued to component C in terms of arrival
rates and sizes of requests issued to logical volume V. We call this set of functions a
dependency profile of component C on logical volume V. In the general case, each
type of operation issued to logical volume may cause an arbitrary operation on any
other component of the system. However, in most of the storage systems the situa-
tion is simpler. The WRITE operation causes only WRITE operations to be issued to
other components, and similarly the READ operation causes only READ operations
to be issued to other components. However, it may be the case that the WRITE re-
quest issued to a logical volume causes a READ request to be issued to one of the
components. For example, if the storage system uses indexing, the index may be read
in order to obtain information needed to perform the WRITE operation. Thus the full
dependency profile of a component C on logical volume V consists of four functions:

Andrzej Kochut, Gautam Kar

������� �������
	���
���
���������
���������
��! �"#��$
- average rate of arrival of

READ requests to the component C, given that requests of type type
arrive at V with average rate rate and are of average size size and all
remaining logical volumes remain idle.
������� %'&)(��
	���
���
���������
���������
��! �"#��$

- average size of arrival of
READ requests to the component C, given that requests of type type
arrive at V with average rate rate and are of average size size and all
remaining logical volumes remain idle.
*+��&,�-� �������
	���
���
���������
���������
��! �"#��$

- average rate of arrival of
WRITE requests to the component C, given that requests of type type
arrive at V with average rate rate and are of average size size and all
remaining logical volumes remain idle.
*+��&,�-� %'&)(��
	���
���
���������
���������
��! �"#��$

- average size of arrival of
WRITE requests to the component C, given that requests of type type
arrive at V with average rate rate and are of average size size and all
remaining logical volumes remain idle.

All of the above functions characterize the impact of requests issued to the logical
volume V on the internal system component C. This interaction is determined by a
number of factors, the most important of which is the storage policy of the storage
system. This is a set of algorithms governing the way the data is stored and retrieved.
For instance, in the example from Figure 1 the storage policy determines what oper-
ations are performed once the READ request is issued to the logical volume LV1. It
decides from which physical drives the data should be read as well as what communi-
cation channel in the fiber switch should be used to transmit the data. Some of these
choices may be random. For example, if LV1 implements RAID 1 algorithm and uses
drives HD1 and HD2, then the system may randomly choose the drive from which the
data should be read. It is quite common to have load balancing techniques that use
randomization to maximize the parallelism of data access.

Complexities of the virtual storage systems make it very difficult to compute the
above functions analytically. We propose estimating them by applying controlled vari-
able load to components of the system. Assuming that all performance-critical ele-
ments were instrumented and the data is readily available for the management appli-
cation using the CIM standard, we can observe the impact of request streams issued to
the logical volume on components of the system. In this way, by varying the type (i.e.
READ or WRITE), arrival rate, and size of requests issued to the logical volume, we
may obtain sample values of the functions constituting the dependency profile. During
the measurements we increase the load until the utilization of one of the components
approaches 1. At that point we know that the maximum capability of the subsystem
was reached, and sampling may stop. In order to obtain service time profile of the
component, we apply varying load to this component and observe the variation of its
performance metrics. By varying arrival request rate and size of requests, we may ob-
tain samples of the service time function. Similarly, as in the case of computation of
the dependency profiles we stop increasing load once one of the components becomes
fully utilized.

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis

After obtaining dependency profiles for each pair (logical volume - component)
as well as service time functions for each component of the system, it is possible
to determine the dependencies between elements of the storage system. We propose
using effective bandwidth as a measure of dependency. More precisely, for each log-
ical volume V we identify a set of components that V depends upon. This set may
be identified by inspecting dependency profiles. If the size and rate functions for a
volume-component pair are non zero, it means there is a dependency between these
components. For each component C on which V depends, we compute the bandwidth
demand put on component C by traffic coming into component V as

� * 	 �
���
������ �#
 ���#����
�� �"���$�� *+��&,��� �������
	 �
���
 ��������
���������
��! �"#��$��
*+��&#��� %'& (� 	 �
���
������ �#
 ���#����
�� �"���$�� ������� �������
	 �
���
 ��������
���������
��! �"#��$��

�����-� %'& (� 	 �
���
������ �#
 ���#����
�� �"���$

As a measure of the dependency strength between logical volume V and com-
ponent C we elected to use the coefficients obtained by first order linear regression
applied to pairs: bandwidth incoming to V, bandwidth demand put upon component
C. We believe, that the distribution of the bandwidth depends primarily upon the stor-
age policy, and not the size and arrival rates of requests. Experiments that we have
conducted with Linux Software RAID support this assumption. However, in a general
case, it may be possible that the dependency between components changes with the
load applied to the system (i.e. changes in the arrival rate or average request size of the
stream accessing logical volume). In that case we have a dynamic dependency quan-
tification updated each time the traffic pattern changes. However we believe that this
situation is not likely in the real-world storage systems. Thus, in the article we assume
that the dependency strength may be modeled using linear regression on bandwidth
distribution.

2.3 Applications of the Method

Dependency information, as collected in the previous section, may be used to build
a dependency graph. While monitoring a set of applications, e.g. a file system, if a
performance deterioration is observed, it would be possible to narrow down the set of
probable causes by traversing the graph. The root-cause of the problem may then be
determined by analyzing the set of suspected components resulting from the traver-
sal. In our interpretation, for pair of components V and C, a dependency strength
of 1 indicates that full bandwidth is passed on to component C. Values higher than
1 suggest that additional traffic is generated in order to execute requests. Value of
zero denotes lack of any dependence between V and C. Values higher than zero, but
smaller than one imply partial dependence between components V and C. These inter-
pretations may be used as hints while traversing the graph in search of the root-cause
of the problem. Figure 2 depicts example dependency graph for system from Figure 1
for READ operation. Arrows denote dependency between components of the system.
Values associated with arrows in the graph denote strengths of dependencies. For ex-
ample, data object DO2 depends on logical volume LV1 with strength 1. LV1 depends
upon ESS with strength equal to 0.8, which means that 0.8 of the bandwidth of READ
operations issued to LV 1 is “handed over” to ESS.

Andrzej Kochut, Gautam Kar

Fiber Switch

LV 1

DO 1 DO 2 DO 3

HD 2ESS HD 1

1.0 1.0

1.0 0.8 0.3
0.7

1.0

Figure 2. Example of the dependency graph for READ operation for the storage system from Figure 1.

Another application of the model is SLA violation prevention. Assuming that for
a given system all of the performance profiles have been obtained, we can monitor
each component of the system during its operation and alert the users (i.e. the oper-
ating system that uses the storage subsystem) about the possibility of SLA violation.
Performance related SLA requirements are typically expressed as constraints on the
maximum time spent by the system on processing a request, given that the arrival rate
of requests and their sizes remain within the declared bounds. To forecast an SLA
violation we propose monitoring the utilization of each component. Whenever the
utilization of a component approaches one, the probability of queuing delays on this
component increases. Using the dependency information it is possible to determine
which data objects and requests streams may be affected by the delay and issue an
alert to owners/issuers. The notification may be used by the users to throttle down the
request rate or to take other preventive actions.

The third possible use of our model is data objects placement. Given an existing
virtual storage system, the act of assigning data objects to logical volumes is a difficult
one. The obtained dependency profile may be used to predict utilization of internal
components given characteristics of request streams accessing the data objects and
placement of data objects. Thus we may use our profiles as input to a verification stage
in the optimization algorithm, searching the exponential space of possible placements.
However, issues related to this application are beyond the scope of this article.

3. Method application to Linux Software RAID
To demonstrate the use of our method we present its application to an example

virtual storage system. Our experimental system consists of Linux RedHat 7.1 running
kernel 2.4.9. The virtual storage system consists of two hard drives and two logical
volumes: RAID 0 and RAID 1. Figure 3 depicts this configuration.

Two physical hard drives HDA and HDC were partitioned into HDA1, HDA2,
HDA3, and HDC1, HDC2, respectively. The first logical volume implemented soft-
ware RAID 0 algorithm and used three partitions HDA1, HDA2, and HDC1. The
second volume, implementing software RAID 1 algorithm, spanned two partitions:

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis

RAID 0 RAID 1

HDA1 HDA3

HDCHDA

HDA2 HDC1 HDC2

Figure 3. Linux software RAID architecture used for the experiment. Logical volume implementing
RAID 0 algorithm spans partitions HDA1, HDA2, and HDC1. RAID 1 uses partitions HDA3 and HDC2.

HDA3, and HDC2. To instrument the system we extended the standard Linux ker-
nel statistics with metrics defined in Section 2.1. For each block device we obtained:
average request arrival rate, average service time, and average size of the READ and
WRITE requests (averaged over short intervals). The instrumentation we added is
non-intrusive and relies on the data structures already present in the kernel. We be-
lieve that obtaining these metrics is quite easy for most of the storage architectures.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

7000

8000

Bandwidth on RAID 0 (KB/s)

B
an

dw
id

th
 o

n
hd

a
an

d
hd

c
(K

B
/s

)

Figure 4. Dependency between logical volume RAID 0 and components HDA and HDC for READ
operation. X axis represents bandwidth observed on logical volume RAID 0. Y axis denotes bandwidth
observed on HDA (circles), and bandwidth observed on HDC (crosses). The solid line represents first-order
linear regression model of the dependency between RAID 0 and HDA. Dashed line represents first-order
linear regression model of the dependency between RAID 0 and HDC.

Andrzej Kochut, Gautam Kar

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

Bandwidth on RAID 1 (KB/s)

B
an

dw
id

th
 o

n
hd

a
(K

B
/s

)

Figure 5. Dependency between logical volume RAID 1 and component HDA for WRITE operation.
X axis represents bandwidth observed on logical volume RAID 1. Y axis denotes bandwidth observed on
HDA (circles). The solid line represents first-order linear regression model of the dependency between
RAID 1 and HDA.

Internal Logical Volume
component RAID 0 RAID 1
HDA 0.62 0.65
HDA1 0.31 0.00
HDA2 0.31 0.00
HDA3 0.00 0.65
HDC 0.37 0.34
HDC1 0.37 0.00
HDC2 0.00 0.34

Internal Logical Volume
component RAID 0 RAID 1
HDA 0.67 1.00
HDA1 0.33 0.00
HDA2 0.33 0.00
HDA3 0.00 1.00
HDC 0.33 0.99
HDC1 0.33 0.00
HDC2 0.00 0.99

(a) (b)

Table 1. Estimation of dependency strengths for READ operation (a) and WRITE operation (b) obtained
using our method.

The process of gathering the dependency information consisted of applying a con-
trolled varying load to components of the system (one component at a time with re-
maining components being idle). Requests were randomly scattered over the volumes
to minimize the effect of OS level caching. We developed an application that applied
increasing load as long as all components of the system were under-utilized. First,
we applied load to the RAID 0 logical volume. As a result we obtained samples of
the rate and size dependency functions for various sizes and request rates arriving to
RAID 0. The arrival rates and sizes of requests issued to all components as a result of
the experiment were gathered. We used Matlab statistical toolbox to compute the first-
order linear regression for the sample points representing bandwidth applied to logical
volume and internal component. The resulting dependencies between RAID 0 and
components HDA and HDC are depicted in Figure 3. Figure 4 shows the dependency
between RAID 1 and component HDA for WRITE operations.

Managing Virtual Storage Systems:An Appr. Using Depend. Analysis

Similar sampling and regression modeling was performed for RAID 1 volume. The
results are summarized in Table 1 (a). Values in the table denote the fraction of the
bandwidth applied to the logical volume (columns) that were “passed on” to the in-
ternal components (rows of the table). For example, 0.37 of the amount of bandwidth
observed on RAID 0 appeared on HDC. It may be seen, that the method precisely iden-
tified nearly equal split of work between three equal-sized partitions (HDA1, HDA2,
and HDC1) caused by striping. Workload relayed to HDA was equally split among
HDA1 and HDA2. The load-balancing algorithm of Linux software RAID 1 showed
bias toward the drive HDA. Results for WRITE requests and both logical volumes are
presented in Table 1 (b). Again we can observe equal split of workload among all
partitions participating in the RAID 0. As expected in the case of mirroring, full in-
coming workload of the RAID 1 volume was relayed to both partitions participating
in the mirror. Presented results show that the method properly identified dependencies
between components of the Linux software RAID.

4. Conclusions and Future work
This paper presents an empirical method for detecting and quantifying performance

dependencies between components of the virtual storage system. We have proposed a
flexible model and a set of metrics that may be used to quantify these dependencies.
Use of the CIM standard enables our solution to be used in heterogeneous environ-
ment. We have described an empirical technique for quantifying the inter-component
dependencies by applying controlled load to logical volumes exported by the system
and monitoring the effect it has on the internal system components. We have proposed
effective bandwidth as a measure of dependency and have showed an application of it
in a Linux environment using software RAID.

The results reported in this paper are based on experiments conducted on a simple
virtual storage system. One of the areas we are pursuing as future research work
is to relate the dependency knowledge obtained at the storage layer to performance
metrics measured at the application layer. In addition, our future research plans also
involve investigation of the correspondence between workload applied to a logical
volume V and utilization of internal system component C. It is possible to use the
dependency profiles defined in this article and knowledge about service time of C to
predict the utilization of C caused by the request stream applied to the logical volume
V. Moreover, the total predicted utilization of the component C may be estimated as
a sum of utilizations of all volumes that use C. This information will help a systems
designer in the allocation of data objects with associated quality of service, such as
data base table spaces, to virtual storage entities such a logical units.

References

[1] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy, R. Golding, A. Merchant, M. Spa-
sojevic, A. Veitch, and J. Wilkes. Minerva: An automated resource provisioning tool for large-scale
storage systems. ACM Transactions on Computer Systems, 19(4):483–518, 2001.

[2] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and Q. Wang. Ergastulum: quickly finding
near-optimal storage system designs. HP Technical Report, 2001.

[3] A. Brown, G. Kar, and A. Keller. An active approach to characterizing dynamic dependencies for
problem determination in a distributed environment. International Symposium on Itegrated Network
Management, May 2001.

Andrzej Kochut, Gautam Kar

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. Raid: High-performance,
reliable secondary storage. ACM Computing Surveys, Vol. 26 No. 2, pp. 145-185, 1994.

[5] DMTF. Common information model specification. http://www.dmtf.org, June 1999.

[6] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for redundant arrays of inexpensive disks (raid).
International Conference on Management of Data (SIGMOD), pages 109–116, 1988.

[7] J. Schott. Modeling storage. DMTF System/Device Working Group, http://www.dmtf.org/, 2001.

[8] M. Uysal, G. A. Alvarez, and A. Merchant. A modular, analytical throughput model for modern
disk arrays. In Proc. of the Ninth International Symposium on Modeling, Analysis and Simulation on
Computer and Telecommunication Systems (MASCOTS), August 2001.

[9] J. Ward, M. O’Sullivan, T. Shahoumian, and J. Wilkes. Appia: Automatic storage area network fabric
design. In Conference on File and Storage Technologies (FAST), Monterey, CA., January 2002.

