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Abstract: Policy-based Management can guide the behavior of a network or distributed 
system through high-level declarative directives that are dynamically 
introduced, checked for consistency, refined and evaluated, resulting typically 
in a series of low-level actions. We actually view policies as a means of 
extending the functionality of management systems dynamically, in 
conjunction with pre-existing “hard-wired” management logic. In this paper, 
we first discuss the policy management aspects of a resource management 
architecture for IP Differentiated Services networks and we focus on the 
functionality of the network dimensioning component. We then present a 
detailed description of the design and implementation of the components of 
the policy management sub-system needed to be deployed in order to make 
our system policy-driven. Finally, we present examples of network 
dimensioning policies describing their transformation from their definition by 
the operator until their enforcement. 
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1. INTRODUCTION 

For years the Internet networking community has been struggling to develop 
ways to manage networks. Initial attempts brought mechanisms and protocols that 
focused on managing and configuring individual networking devices i.e. the Simple 
Network Management Protocol (SNMP). This model worked well in early 
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deployments of IP management systems for local and metropolitan area networks 
but now, with the evolution of Quality of Service (QoS) models such as the 
Differentiated Services (DiffServ) framework, the complexity and overhead of 
operating and administrating networks increases enormously. As such, it is very 
difficult to build management systems that can cope with the growing network size, 
complexity and multi-service operation requirements. There is also a need to be able 
to program management systems and network components to adapt to emerging 
requirements and subsequently to be able to dynamically change the behavior of the 
whole system to support modified or additional functionality. The emerging Policy-
based Network Management paradigm claims to be a solution to these requirements. 

Policy-based Management has been the subject of extensive research over the 
last decade [1]. Policies are seen as a way to guide the behavior of a network or 
distributed system through high-level, declarative directives. The IETF has been 
investigating policies as a means for managing IP-based multi-service networks, 
focusing more on the specification of protocols (e.g. COPS) and the object-oriented 
information models for representing policies. Inconsistencies in policy-based 
systems are quite likely since management logic is dynamically being added, 
changed or removed without the rigid analysis, design, implementation, testing and 
deployment cycle of “hard-wired” long-term logic. Conflict detection and resolution 
is required in order to avoid or recover from such inconsistencies. 

In the next section, we discuss the policy management aspects of a resource 
management system for IP Differentiated Services networks; we then focus on the 
functionality of the dimensioning component in section 3 and in section 4, we 
present a detailed description of the design and implementation of the components 
of the policy management sub-system needed to be deployed in order to make our 
system policy-driven. Finally, we present examples of network dimensioning 
policies, describing their transformation from their definition by the operator until 
their enforcement. 

2. SYSTEM ARCHITECTURE 

We have designed a system for supporting QoS in IP DiffServ Networks in the 
context of the European collaborative research project TEQUILA (Traffic 
Engineering for QUality of service in the Internet at LArge scale). This architecture 
can be seen as a detailed decomposition of the concept of an extended Bandwidth 
Broker (BB) realized as a hierarchical, logically and physically distributed system. 
A detailed description can be found in [2]. A classification of the policies applied to 
this system was presented in [3]. In Figure 1 we present only the resource 
management part of the architecture together with the components of the policy 
management sub-system i.e. Policy Management Tool, Policy Repository and Policy 
Consumer needed to make the system extensible through policies. 
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Figure 1. Policy-driven Resource Management System 
The Network Dimensioning (ND) component is responsible for mapping traffic 

requirements to the physical network resources and for providing Network 
Dimensioning directives in order to accommodate the predicted traffic demands. We 
describe the functionality and algorithms of Network Dimensioning in more detail in 
Section 3. The lower level of the system intends to manage the resources allocated 
by Network Dimensioning during the system operation in real-time, in order to react 
to statistical traffic fluctuations and special arising conditions. This part is realized 
by the Dynamic Route (DRtM) and Dynamic Resource Management (DRsM), 
which both monitor the network resources and act to medium to short term 
fluctuations. DRtM operates at the edge nodes and is responsible for managing the 
routing processes in the network. It mainly influences the parameters based on 
which the selection of one of the established MPLS Labeled Switched Paths (LSPs) 
is effected at an edge node with the purpose of load balancing. An instance of DRsM 
operates at each router and aims to ensure that link capacity is appropriately 
distributed among the PHBs in that link. 

A single Policy Management Tool exists for providing a policy creation 
environment to the administrator where policies are defined in a high-level 
declarative language and after validation and static conflict detection tests, they are 
translated into object-oriented (O-O) representation (information objects) and stored 
in a repository. The Policy Repository is a logically centralized component but may 
be physically distributed since the technology for implementing this component is 
the LDAP (Lightweight Directory Access Protocol) Directory. After the policies are 
stored, activation information may be passed to the responsible Policy Consumer in 
order to retrieve and enforce them. The Policy Consumer can be seen as a collocated 
Policy Decision Point (PDP) and Policy Enforcement Point (PEP) with regards to 
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the IETF Policy Framework [4]. A detailed description of the design and 
implementation of these components is presented in Section 4. 

In Figure 1 the representation of the policies at every level of the framework is 
also depicted showing that every policy is going through two stages of 
translation/refinement in its life-cycle in order to be enforced: first from the high-
level specification to an object-oriented format (LDAP objects) and second from the 
LDAP objects to a script that is interpreted on the fly, complementing this way 
conceptually the management intelligence of the above layer in the hierarchy. For 
example, a policy enforced on the DRsM component is actually enhanced 
management logic that conceptually belongs to the ND layer of our system. 
Although policies may be introduced at every layer of our system, higher-level 
policies may possibly result in the introduction of related policies at lower levels, 
forming a policy hierarchy mirroring the management system’s hierarchy. This 
means that a policy applied to a hierarchical system might pass through another 
stage of translation/refinement that will generate the policies that are enforced in the 
lower levels of the system. It is questionable if the automation of this process is 
feasible without human intervention. A more detailed discussion on policy-based 
hierarchical management systems can be found in [5]. 

In the next section, we present the algorithm by which the Network 
Dimensioning component calculates the configuration of the network in order for 
the reader to understand the examples of policies enforced on this component 
presented in the following sections. 

3. NETWORK DIMENSIONING ALGORITHM 

ND performs the provisioning activities of the system. It is responsible for the 
long to medium term configuration of the network resources. By configuration we 
mean the definition of LSPs as well as the anticipated loading for each PHB on all 
interfaces, which are subsequently being translated by DRsM into the appropriate 
scheduling parameters (e.g. priority, weight, rate limits) of the underlying PHB 
implementation. ND does not provide absolute values but they are in the form of 
ranges, constituting directives for the function of the PHBs, while for LSPs they are 
in the form of multiple paths to enable multi-path load balancing. The exact PHB 
configuration values and the load distribution on the multiple paths are determined 
by DRsM and DRtM respectively, based on the state of the network, but should 
always adhere to ND directives.  

ND runs periodically, first requesting the predictions for the expected traffic per 
Ordered Aggregate [6] (OA) in order to be able to compute the provisioning 
directives. The dimensioning period is in the time scale of a week while the 
forecasting period is in the time scale of hours. The latter is a period in which we 
have considerably different predictions as a result of the time schedule of the 
subscribed Service Level Specifications (SLSs). For example, ND might run every 
Sunday evening and provide multiple configurations i.e. one for each period of each 
day of the week (morning, evening, night).  
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The objectives are both traffic and resource-oriented. The former relate to the 
obligation towards customers, through the SLSs. These obligations induce a number 
of restrictions about the treatment of traffic. The resource-oriented objectives are 
related to the network operation, more specifically they are results of the high-level 
business policy that dictates the network should be used in an optimal manner. The 
basic Network Dimensioning functionality is summarized in Table 1. 

Table 1. Network Dimensioning Algorithm Overview 
Input:�
Network topology, link properties (capacity, propagation delay, PHBs) 
Pre-processing: 
Request traffic forecast, i.e. the potential traffic trunks (TT) 
Obtain statistics for the performance of each PHB at each link 
Determine the maximum allowable hop count �  per TT according to the PHB statistics 

Optimisation phase: 
Start with an initial allocation (e.g. using the shortest path for each TT) 
Iteratively improve the solution such that for each TT find a set of paths: 
The minimum bandwidth requirements of the TT are met 
The hop-count constraints �  is met (delay/ loss requirements are met) 
The overall cost function is minimized 
Post-processing: 
Allocate any extra capacity to the resulted paths of each OA according to resource allocation 
policies  
Sum the path requirements per link per OA, give minimum (optimisation phase) and 
maximum (post-processing phase) allocation directives to DRsM 
Give the appropriate paths calculated in the optimisation phase to DRtM 
Store the configuration into the Network Repository  

 
The network is modeled as a directed graph 

� �
�' 6 %� , where 6  is a set of 

nodes and %  a set of links.  With each link L %�  we associate the following 
parameters: the link physical capacity �# , the link propagation delay �����	�
D , the set 
of the physical queues + , i.e. Ordered Aggregates (OAs), supported by the link. 
For each OA, K +�  we associate a bound ��D  (deterministic or probabilistic 
depending on the OA) on the maximum delay incurred by traffic entering link L  and 
belonging to the K +� , and a loss probability ��P  of the same traffic. 

The basic traffic model of ND is the traffic trunk (TT). A traffic trunk is an 
aggregation of a set of traffic flows characterized by similar edge-to-edge 
performance requirements [7]. Also, each traffic trunk is associated with one ingress 
node and one egress node, and is unidirectional. The set of all traffic trunks is 
denoted by 4 .  

The primary objective of such an allocation is to ensure that the requirements of 
each traffic trunk are met as long as the traffic carried by each trunk is at its 
specified minimum bandwidth. However, with the possible exception of heavily 
loaded conditions, there will generally be multiple feasible solutions. The design 
objectives are further refined to incorporate other requirements such as: a) avoid 
overloading parts of the network while other parts are under loaded, b) provide 
overall low network load (cost). 



 Paris Flegkas, Panos Trimintzios, George Pavlou, Antonio Liotta
 

The last two requirements do not lead to the same optimization objective. In any 
case, in order to make the last two requirements more concrete, the notion of “load” 
has to be quantified. In general, the load (or cost) on a given link is an increasing 
function of the amount of traffic the link carries. This function may refer to link 
utilization or may express an average delay, or loss probability on the link. Let ��X  
denote the capacity demand for OA K +�  satisfied by link L  and �

� �
� � �U X #�  

the link utilisation. Then the link cost induced by the load on OA K +�  is a 
convex function, � 	

���
���F U , increasing in ��U . The total cost per link is defined as 

� 	 � 	
���

�	� ���
��


& U F U
�

� � , where [ ]


� ����U U ��  is the vector of demands for all OAs of  

link L . The total cost per link is an approximate function, e.g. � 	
��� ���
��� ���F U A U� . 

We provide an objective that compromises between the two a) and b), that is 
avoid overloading parts of the network and minimize overall network cost: 

	 
MINIMIZEÅÅ � 	 � 	 � ÅÅ �

�
� ���

��� ���
��� ��� ���

& U F U N
� � �

� ¬��  p� � �� ®
� � �     (1) 

When �N � , the objective (1) reduces to objective b), while when N l d  it 
reduces to a).  

Each traffic trunk is associated with an end-to-end delay and loss probability 
constraint of the traffic belonging to the trunk. Hence, the trunk routes must be 
designed so that these two constraints are satisfied. Both the constraints above are 
constraints on additive path costs under specific link costs. However the problem of 
finding routes satisfying these constraints is, in general, NP-complete [8]. Given that 
this is only part of the problem we need to address, the problem in its generality is 
rather complex.  

Usually, loss probabilities and delay for the same PHB on different nodes are of 
similar order. We simplify the optimization problem by transforming the delay and 
loss requirements into constraints for the maximum hop count for each traffic trunk 
(TT). This transformation is possible by keeping statistics for the delay and loss rate 
of the PHBs per link, and by using the maximum, average or N -th quantile in order 
to derive the maximum hop count constraint.  

For each traffic trunk T 4�  we denote as �2 the set of (explicit) routes defined 
to serve this trunk. For each   R 2�  we denote as !"B  the capacity we have assigned 
to this explicit route. We seek to minimize (1), such that the hop-count constraints 
are met and the bandwidth of the explicit routes per traffic trunk should be equal to 
the trunks’ capacity requirements. 

This is a network flow problem and considering the non-linear formulation, for 
the solution we use the general gradient projection method [9]. This is an iterative 
method, where we start from an initial feasible solution, and at each step we find the 
minimum first derivative of the cost function path and we shift part of the flow from 
the other paths to the new path, so that we improve our objective function (1). If the 
path flow becomes negative, the path flow simply becomes zero. This method is 
based on the classic unconstraint non-linear optimization theory, and the general 
point is that we try to decrease the cost function through incremental changes in the 
path flows. A more detailed description of the algorithm is presented in [10]. 
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4. DESIGN AND IMPLEMENTATION OF THE 

POLICY COMPONENTS 

In the following sections, we present and describe the design and 
implementation of the policy sub-system components. First in the Policy 
Management Tool section, the description of policy definition language as well as 
the capabilities of the graphical interface are presented; we then focus on the Policy 
Repository where the most important issue is how one models policies in an O-O 
format and then on the Policy Consumer where policies are translated to scripts and 
executed on the fly. Examples of policy rules are also presented demonstrating the 
different way of representation of the rules at every stage of their life cycle i.e. from 
high-level directives to LDAP objects and finally to interpreted scripts realising the 
new management logic added through these policies. 

4.1 Policy Management Tool 

A high-level definition language has been designed and implemented that 
provides to the administrator the ability to add, retrieve and update policies in the 
Policy Repository. The administrator enters a high-level specification of the policy, 
which is then passed to a translation function that maps this format to entries in an 
LDAP Directory realizing the Policy Repository (see next section) through LDAP 
add operations, according to an LDAP schema of our information model; the latter 
has been produced following the guidelines described in [11]. The format of a policy 
rule specification is shown below: 

 
[Policy ID] [Group ID] [time period condition] [if {condition [and] [or]}] then 

{action [and]} 
 
The first two fields define the name of the policy rule and the group that this 

policy belongs to so that the generated LDAP entries should be placed under the 
correct policy group entry. The time period condition field specifies the period that 
the policy rule is valid and supports a range of calendar dates, masks of days, 
months as well as range of times. The following  {if then} clause represents the 
actual policy rule where the condition and action fields are based on the information 
model described earlier in this section. Compound Policy Conditions are also 
supported both in the Disjunctive Normal Form (DNF) (an ORed set of ANDed 
conditions) and in the Conjunctive Normal Form (CNF) (an ANDed set of ORed 
conditions) as well as Compound Policy Actions representing a sequence of actions 
to be applied. Our implementation also caters for the notion of rule-specific and 
reusable conditions and actions in a way that every time a new policy rule is added, 
it first checks if its conditions and actions are already stored in the repository as 
reusable entries.  If such entries exist, an entry is added with a DN pointer to the 
reusable entry under the policy rule object while if not they are treated as rule-
specific, placing the condition entry below the policy rule entry. 
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A compiler has been implemented in order to parse and translate the policy rules 
specified with the above syntax using SableCC [12]. This is an object-oriented 
framework that generates compilers by building a strictly-typed abstract syntax tree 
that matches the grammar of the language, automatically generates tree-walker 
classes and enables the implementation of the actions on the nodes of the tree using 
inheritance. Translation classes have been implemented that map the entered policy 
rules to LDAP add operations, according to an LDAP schema of our information 
model (see next section). Notifications to the corresponding Policy Consumers are 
also sent every time a policy rule is successfully added to the repository. The role 
attribute of every policy rule is used to distinguish which policy consumer to notify 
since this attribute represents the properties of the PEPs that each PDP manages 
according to Policy Core Information Model (PCIM)[13]. 

Figure 2.a) Policy Management Tool Screenshot b) LDAP Browser Instance 

A Graphical User Interface (GUI) has been implemented in order for the 
administrator to manage policies that are entered in the system (Fig. 2). It provides 
capabilities to add new policies, retrieve or delete existing policies. The addition of 
the policies can either be done directly by writing the whole policy rule in the format 
described previously or follow a wizard that guides the administrator through the 
process of creating and entering a new policy to the system step by step. A directory 
browser has also been implemented and integrated with the tool that enables the 
operator to browse the information stored in a tree-structured repository like the 
LDAP Directory. In the browser’s design, the idea of a current entry was adopted for 
displaying the contents of a tree. Each browser instance has one current entry, which 
is a selected tree entry. Its distinguished name (DN), its attributes’ types and values, 
its superior entry’s distinguished name and its subordinate entries’ relative 
distinguished names (RDNs) are displayed. The current entry’s position in the tree 
can be identified by the current entry’s distinguished name. The user may select any 
of the current entry’s subordinate entries or its superior entry and make it the 
browser’s current entry. This way, one can move up and down the hierarchy of the 
Directory Information Tree (DIT) that is accessed. If an attribute’s entry is a pointer 
to another entry, the user can make it the current entry, in which case they still keep 
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the option to go back. In addition, the user is allowed to fill in the DN of the entry to 
be displayed in the Current Entry field. 

In order to demonstrate the results of the enforcement of policies we used a 10-
node (nodes 0-9) 36-link random topology and a traffic load of 70 % of the total 
throughput of the network. Our first example (P1) concerns a policy rule that wants 
to create an explicit LSP following the nodes 4, 9, 7, 6 with the bandwidth of the TT 
being 2 Mbps that is associated with this LSP. The policy rule is entered with the 
following syntax: 

If OA==EF and Ingress==4 and Egress==6 then Setup LSP 4-9-7-6 2 

Mbps (P1) 

The second example (P2) of a policy rule concerns the effect of the cost function 
exponent in the capacity allocation of the network. As we mentioned earlier by 
increasing the cost function exponent, the optimisation objective that avoids 
overloading parts of the network is favoured. So, if the administrator would like to 
keep the load of every link below a certain point then he/she should enter the 
following policy rule in our system using again our policy notation: 

If maxLinkLoad > 80% then Increase Exponent by 1         (P2) 

4.2 Policy Repository 

An object-oriented information model has been designed for representing the 
network dimensioning policies, based on the IETF Policy Core Information Model 
(PCIM) and its extensions (PCIMe) specified in [13] and [14] respectively. One of 
the major objectives of such information models is to bridge the gap between the 
human policy administrator who enters the policies and the actual enforcement 
commands executed at the component in order to realize the business goal of the 
administrator. Another goal is to facilitate interoperability among different systems 
so that policy consumers that belong to different systems understand the same 
semantics of policy and they have a mutual knowledge of how policies are stored in 
the policy repository despite the fact that each policy consumer might interpret it 
differently. IETF has described a QoS Policy Information Model [15], representing 
QoS policies that result in configuring network elements to enforce the policies, 
while our information model describes policies that are applied at a higher level 
(Network Management Level). Some of these policies may possibly be refined into 
lower-level policies mirroring our architecture’ s hierarchy and finally result into 
policies configuring the Network Elements. 

In our information model that represents Network Dimensioning policies that 
can be enforced in our system, most of the conditions are modeled by using the class 
SimplePolicyCondition with instances of the variable and value classes (IF 
<variable> matches <value>). Some of the actions are modeled by defining classes 
derived from the PolicyAction abstract class while others are modeled by using the 
class SimplePolicyAction with the appropriate aggregations, using instances of the 
variable and value classes (“SET <variable> TO <value>”). For example, the 
maximum number of alternative trees that the ND algorithm should calculate for 
every TT is represented by a pair of maxAltTree variable and IntegerValue classes 
as well as the definition of the constant used in the link cost function. In [3] the 
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policyAction class hierarchy is described in more detail where the 
DimensioningPeriodAction class models the policy action that sets the period that 
ND is calculating a new configuration, while the NwBwAllocationAction and 
LinkBwAllocationAction classes represent the actions that indicate the amount of 
bandwidth to be allocated to every OA (depending on the policy condition) at a 
network wide level and in every link respectively. The SpareBwTreatmentAction 
and OverBwTreatment Action classes represent the policy actions that drive the 
post-processing stage of ND as explained in the previous section. The SetLSPAction 
class models the setup of an LSP that is defined by policy and the 
HopCountDerivationAction class represents the action that influences the way the 
derivation of the delay and loss requirements to an upper bound of number of hops 
is done. 

In Figure 3 the policy rule P1 presented as an example in the previous section is 
depicted modeled according to PCIM and PCIMe. As it can be seen, it comprises a 
compound policy condition which represents a combination of 3 simple policy 
conditions in Disjunctive Normal Form (ORs of ANDs) each of them belonging to 
the same Group (GroupNumber =1) and a Policy Action represented by the 
SetLSPAction class derived form the PolicyAction abstract class defined in PCIM. 
The first simple policy condition uses an OA variable which takes integer values 
from 1 to 4 (EF is 1, AF1x is 2, etc), the second and third simple policy conditions 
use an Ingress node and Egress node variables which take integer values form 0 to 9 
for our network topology (the egress node simple policy condition is not shown in 
Figure 3 for illustrative purposes).  The aggregations used in order to define in order 
to define this rule are also depicted as defined in PCIMe. 

Name=LSPRule1
Class=PolicyRule
Priority=1
PolicyRoles = ND

Compound PolicyCondition
ConditionListType=1

Name=PA_LSP1
Class=SetLSPAction
Nodes = { 4 9 7 6}
Bw = 2000

SimplePolicyCondition

Name=OAEF
Class=PolicyIntegerValue
IntegerList = [1]

Name=OrderedAggregate
Class=PolicyOAVariable
ValueTypes=[PolicyIntegerValue]

Name=OAValues
Class=PolicyIntegerValue
IntegerList=[1..4]

SimplePolicyCondition
EgressNode
SimplePolicyCondition

Name=IngressNode4
Class=PolicyIntegerValue
IntegerList = [4]

Name=IngressNode
Class=PolicyIngressVariable
ValueTypes=[PolicyIntegerValue]

Name=OAValues
Class=PolicyIntegerValue
IntegerList=[0..9]

PolicyConditionInPolicyRule
PolicyActionInPolicyRule
PolicyConditionInPolicyCondition
PolicyVariableInSimplePolicyCondition
PolicyValueInSimplePolicyCondition
ExpectedPolicyValuesForVariable

Aggregation Legend:

GroupNumber = 1 GroupNumber = 1 GroupNumber = 1

Name=LSPRule1
Class=PolicyRule
Priority=1
PolicyRoles = ND

Compound PolicyCondition
ConditionListType=1

Name=PA_LSP1
Class=SetLSPAction
Nodes = { 4 9 7 6}
Bw = 2000

SimplePolicyCondition

Name=OAEF
Class=PolicyIntegerValue
IntegerList = [1]

Name=OrderedAggregate
Class=PolicyOAVariable
ValueTypes=[PolicyIntegerValue]

Name=OAValues
Class=PolicyIntegerValue
IntegerList=[1..4]

SimplePolicyCondition
EgressNode
SimplePolicyCondition

Name=IngressNode4
Class=PolicyIntegerValue
IntegerList = [4]

Name=IngressNode
Class=PolicyIngressVariable
ValueTypes=[PolicyIntegerValue]

Name=OAValues
Class=PolicyIntegerValue
IntegerList=[0..9]

PolicyConditionInPolicyRule
PolicyActionInPolicyRule
PolicyConditionInPolicyCondition
PolicyVariableInSimplePolicyCondition
PolicyValueInSimplePolicyCondition
ExpectedPolicyValuesForVariable

Aggregation Legend:

PolicyConditionInPolicyRule
PolicyActionInPolicyRule
PolicyConditionInPolicyCondition
PolicyVariableInSimplePolicyCondition
PolicyValueInSimplePolicyCondition
ExpectedPolicyValuesForVariable

Aggregation Legend:

GroupNumber = 1 GroupNumber = 1 GroupNumber = 1

 

Figure 3. Policy Rule P1 according toPCIM/PCIMe 
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Using the same methodology, policy rule P2 is modelled according to 
PCIM/PCIMe using a Simple Policy Condition and ExponentAction class derived 
from the Policy Action abstract class.  These classes are mapped to structural and 
auxiliary classes as defined in [11] in order to be stored to an LDAP Directory, 
which realizes our Policy Repository.  

Since our system described in Section 2 is a large scale distributed system, it is 
valid to consider CORBA as the technology to support the remote interactions 
between the components. This was the key motivation for mapping the LDAP 
functionality to CORBA realizing the Policy Repository as an LDAP Directory 
offering a CORBA IDL interface, identical to the LDAP specifications [16], to the 
rest of the components. The following Code 1 caption shows the part of the 
specification of an LDAP server in Interface Definition Language (IDL) providing a 
LDAP search operation to every LDAP client in our system. Note that the CORBA 
implementation of the LDAP search operation returns the result in a single message 
while the LDAP protocol returns the multiple matching entries in a series of 
messages, one for each entry. The results are terminated with a result message, 
which contains an overall result for the search operation. 

//… 
typedef string LDAPDN_t;         
enum Scope_t { 
        sc_baseObject, 
        sc_singleLevel, 
        sc_wholeSubtree 
    }; 
typedef string Filter_t; // filter for this implementation 
struct SearchResultEntry_t_struct { 
        LDAPDN_t                objectName; 
        AttributeList_t         attributes; 
    }; 
typedef SearchResultEntry_t_struct SearchResultEntry_t; 
typedef sequence<SearchResultEntry_t> SearchResultEntryList_t; 
interface LDAPServer { 
   void Search ( 
        in  LDAPDN_t                    baseObject, 
        in  Scope_t                     scope, 
        in  Filter_t                    filter, 
        in  AttributeDescriptionList_t  attributeTypes, 
        out SearchResultEntryList_t     searchResultList 
    ) raises (noSuchObject, invalidDNSyntax, invalidFilterSyntax, generalError); 
//… 
}; // interface LDAPServer 

Code 1. LDAP Search operation in IDL 
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4.3 Policy Consumer 

Policy Consumers may be considered as the most critical components of the 
policy management framework since they are responsible for enforcing the policies 
on the fly while the system is running. The key aspect of policies apart from their 
high-level declarative nature is that they can also be seen as a vehicle for “late 
binding” functionality to management systems, allowing for their graceful evolution 
as requirements change. So, a policy capable system should provide the flexibility to 
add, change or remove management intelligence while according to traditional 
management models, management logic is of static nature, parameterized only 
through Managed Objects (MOs) attributes and actions. In order to achieve such 
functionality, a policy is eventually translated to a script “evaluated” by an 
interpreter with actions resulting in management operations. In [3] a detailed design 
and decomposition of the policy consumer was presented where every policy 
consumer comprises a Repository Client which retrieves all the LDAP objects 
associated with a policy rule, a script generator which is responsible for creating the 
script that implements the policy, and a policy interpreter which provides the “glue” 
between the policy consumer and the policy-based component and interprets the 
script, which includes functions that perform management operations. In the 
following paragraphs, we present how the policy rule examples P1 and P2 are 
translated and enforced by the Policy Consumer. 

After the P1 rule is correctly translated and stored in the repository, the Policy 
Management Tool notifies the Policy Consumer associated with ND that a new 
policy rule is added in the repository, which then goes and retrieves all the 
associated objects with this policy rule. From the policy objects the consumer 
generates code that is interpreted and executed on the fly representing the logic 
added in our system by the new policy rule. In our implementation, we have chosen 
TCL as the scripting language due to the ease with which it interfaces with C, since 
the ND component is implemented in C. The pseudo code of how the above policy 
is realised by the Policy Consumer is shown in caption Code 2. 

 
TTOA: the set of TTs belonging to OA 
For each tti �77OA we get the following: 
   vingress, vegress : ingress, egress nodes  
   b(tti): bandwidth requirement of tti 
for each tti� �77EF do 
   if ((vingress == 4) and (vegress == 6)) 
    add_LSP (“ 4-9-7-6” , 2000) 
 b(tti) = b(tti) – 2000  
   Else 
  Policy not executed – TT not found 

Code 2. Pseudocode produced for enforcing (P1) 
As it can be seen from the above pseudo-code, it first searches for a TT in the 

traffic matrix that matches the criteria specified in the conditions of the policy rule 
regarding the OA, the ingress and egress node. If a TT is found then it executes the 
action that creates an LSP with the parameters specified and subtracts the bandwidth 
requirement of the new LSP from the TT in the traffic matrix file so that the ND 
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algorithm will run for the remaining resources. Note that if the administrator had in 
mind a particular customer for this LSP then this policy should be refined into a 
lower level policy enforced on the DRtM component, mapping the address of this 
customer onto the LSP.  

The same procedure explained in the previous example is followed again and the 
policy consumer enforces this policy by generating a script, which is shown in 
Caption Code 3. 

maxLinkLoad: the maximum link load utilisation 
after the end of the optimisation algorithm 
n: the cost function exponent (initially = 1) 
Optimisation_algorithm n 
while (maxLinkLoad > 80 )  
      n = n+1 
      optimisation_algorithm n 

Code 3. Pseudocode produced for enforcing  (P2) 
As it can be observed from Figure 4, the enforcement of the policy rule caused 

the optimization algorithm to run for 4 times until the maximum link load utilisation 
at the final step drops below 80%. The exponent value that achieved the policy 
objective was �N � .  There might be cases that rules like the one above will cause 
infinite recursion when the algorithm cannot drop the maximum link load below a 
certain threshold, so a maximum number of iterations should be defined to avoid 
these kind of problems. 
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Figure 4. Effect of the cost function exponent on the maximum link load utilization 

For the purpose of demonstrating the effects of the enforcement of policies in 
our system we implemented a TE-GUI shown in Fig. 5. It depicts the topology of 
the network that the ND component is calculating a new configuration. The GUI 
draws the links of the topology with different colours according to load utilisation 
and all the LSPs for every OA created. It has also the capabilities to display overall 
statistics for the load distribution for every link per OA as well as statistics for every 
step of the ND algorithm i.e. average link utilisation, link load standard deviation, 
max link load, running time etc. In the following figure, two snapshots of the TE-
GUI are depicted one before and one after the enforcement of the above policies. As 
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it can be seen, the enforcement of the policies caused the link load to fall under 80 % 
(before the enforcement of policies the link 5->6 was loaded over 90%) as well as 
the LSP created by the P1 is also drawn. 

 

Figure 5. TE-GUI snapshots (a) before and (b) after the enforcement of policies P1 
and P2 

5. CONCLUSIONS 

While most of the work on policies has focused in specifying rules for 
configuring network elements, our work addresses issues for defining higher level 
(network-wide) policies that apply to a hierarchical distributed management system. 
We view policies as a means for enhancing or modifying the functionality of policy 
influenced components reflecting high-level business decisions. When designing a 
policy-based system, it is very important to identify the parameters that are 
influenced by policies resulting in driving the behavior of a system to realize the 
administrator’ s business goals. This decision should take into account the 
inconsistencies caused by the coexistence of policies with “ hard-wired”  
functionality. 

In this paper, we presented a policy-driven resource management system and 
described the components of such a system, focusing on Network Dimensioning. 
We then presented a detailed description of the design and implementation of the 
components of the policy sub-system needed to be deployed in order to make our 
system policy-driven and finally, examples of network dimensioning policies are 
presented describing their transformation from their definition by the operator until 
their enforcement. 

 As a continuation of the work described in this paper, we will be focusing on 
defining policies for the rest of the components of the TE system and explore the 
issue of the refinement of policies entered at the Network Dimensioning to lower 
level policies that apply to Dynamic Resource and Route Management components 
forming a policy hierarchy. Also we intend to look at the specification of conflict 
detection and resolution mechanisms specific to our problem domain. 
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