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Abstract Trust is situation-specific and the trust judgment problem with which the
truster is confronted might be, in some ways, similar but not identical to some prob-
lems the truster has previously encountered. The truster then may draw information
from these past experiences useful for the current situation. We present a knowledge-
intensive and model-based case-based reasoning framework that supports the truster
to infer such information. The suggested method augments the typically sparse trust
information by inferring the missing information from other situational conditions,
and can better support situation-aware trust management. Our framework can be
coupled with existing trust management models to make them situation-aware. It
uses the underlying model of trust management to transfer trust information between
situations. We validate the proposed framework for Subjective Logic trust manage-
ment model and evaluate it by conducting experiments on a large real dataset.

1 Introduction

This paper presents a context management framework (CMF) that employs case-
based reasoning [19] to analyze the correlation between trust information among
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various situations and help to bootstrap in unanticipated situations using trust in-
formation available from similar situations. The case-based reasoning technique is
particularly useful for tasks that are experience-intensive, that involve plausible (i.e.
not sound) reasoning and have incomplete rules to apply.

The fundamental principle of the case-based reasoning technique is similar to
that of the human analogical reasoning process which employs solutions of past
problems to solve current ones. The reasoning process is generally composed of
three stages: remembering, reusing, and learning. Remembering is the case-retrieval
process, which retrieves relevant and useful past cases. In the reusing step, the case-
based reasoning system applies the cases that have been retrieved to find an effective
solution to the current problem. Learning is the process of casebase enhancement.
At the end of each problem-solving session the new case and problem-solving ex-
periences incorporated into the casebase [15].

We present a universal mechanism (called CMF) that can be combined with ex-
isting trust management models (TMM) to extend their capabilities towards efficient
modeling of the situation-aware trust by

• estimating the trust values based on similar situations, in unknown situations or
for unknown trustees when there is no information available. Therefore, CMF
can help TMM to bootstrap (Figure 1(a)).

• adjusting the output of TMM (trust value) based on the underlying situation, thus,
providing situation-awareness for TMM (Figure 1(b)).

In our approach TMM is implemented using the Subjective Logic [12]. One of our
main contributions is the extension of the Subjective Logic with a context-sensitive
domain model.

Fig. 1 Scope and intercon-
nection of context manage-
ment framework (CMF) and
trust management model
(TMM). a) Estimation of the
trust value in unknown situ-
ations. b) Adjustment of the
output of TMM (trust value)
based on the underlying situa-
tion.
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The rest of this paper is organized as follows: In section 2, we briefly explain
the Subjective Logic as an example of the trust management model. Our proposed
model for trust inference is described in section 3. Next in section 4, we present the
evaluation plan and results. Section 5 provides an overview of the related research.
Finally, conclusion and some ideas for future work are given in section 6.
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2 Subjective Logic Trust Management Model

In this section, we briefly explain the Subjective Logic fundamentals and give rea-
sons why it needs to be extended with a situation dimension. Subjective Logic [10]
enables the representation of a specific belief calculus in which trust is expressed
by a belief metric called opinion. An opinion is denoted by ωA

B = (b,d,u,a) ex-
pressing the belief of a relying party A in the trustworthiness of another party B.
The parameters b and d represent the belief respectively. disbelief in B’s trustwor-
thiness while u expresses the uncertainty in A’s trust in B. All the three parameters
are probability values between 0 and 1, and fulfill the constraint b+d +u = 1. The
parameter a is called the base rate and determines how uncertainty contributes to
the opinion’s probability expected value which is calculated as E(ωA

x ) = b + au.
The opinion space can be mapped into the interior of an equal-sided triangle, where
the three parameters b, d, and u determine the position of the point in the triangle
representing the opinion.

Based on the Subjective Logic, there are two different types of trust relations:
functional trust (FT A

B ) and referral trust (RT A
B ). The former concerns A’s direct

trust in B performing a specific task ,while the latter concerns A’s trust in B giving
a recommendation about someone else doing a task. In other words, it is the trust in
the ability to refer to a suitable third party. The simplest form of trust inference is
trust transitivity which is widely discussed in literature [4, 7, 23]. That is, if A trusts
B who trusts C, then A will also trusts in C. A valid transitive trust path requires that
the last edge in the path represents functional trust and that all other edges in the
path represents referral trust. Referral trust transitivity and parallel combination of
trust paths are expressed as part of the Subjective Logic model (figure 2) [12].

Fig. 2 Trust transitivity and
parallel combination of trust
paths. FT is functional trust
and RT is referral trust.
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The discounting operator (⊗) [11] is used to derive trust from transitive trust
paths, and the consensus operator (⊕) allows to combine parallel transitive trust
paths. The trust network in figure 2 can then be expressed as

FT A
B = ((RT A

D ⊗RT D
C )⊕ (RT A

E ⊗RT E
C ))⊗FTC

B (1)

There are two reasons for extension of the Subjective Logic with situation repre-
sentation. First, It has been shown [3] that trust is not always transitive in real life.
For example, the fact that A trusts B to fix her car and B trusts C to look after his
child does not imply that A trusts C for fixing the car, or for looking after her child.
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However, under certain semantic constraints, trust can be transitive and a trust re-
ferral system can be used to derive transitive trust. The semantic constraint in the
Subjective Logic is that the subject of trust should be the same along the entire path,
for example all trust subjects should be “to be a good car mechanic” (figure 2) or
“looking after her child”. On the other hand, this constraint is relaxed in our pro-
posal by introducing the notion of situation. We suggest that trust situations along
a transitive trust path can be different but similar to each other. For instance, trust
situations can be “to be a good car mechanic” or “to be a good motor mechanic”
(figure 3). In this way, we are able to use trust information from available similar
situations (section 6 provides the details).

Fig. 3 Trust transferability
among similar situations.
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Second, Jøsang introduces three different versions of the consensus operator (de-
noted by ⊕, ⊕, ⊕̃ respectively) for fusion of independent, dependent, and partially
dependent trust opinions [14]. If A and B have simultaneously observed the same
event in the situation then their opinions are dependent. If A and B observed the
same event during two partially overlapping situations then their opinions are par-
tially dependent (e.g. A and B observed the same event of fire at the same time.
A was in the place of fire, while B saw it on TV). Jøsang assumes that fraction of
the overlapping observations is known and proposes formulas to estimate dependent
and independent parts of the two observations to define the consensus operator of
partially dependent opinions (⊕̃). We propose to calculate the fraction of overlap-
ping observations as the similarity measure between the two situations.

3 The Proposed Framework

We consider two approaches for the inference task among situations: rule-based in-
ference and similarity-based reasoning, depicted respectively as case-based reasoner
(CBR) and rule-based reasoner (RBR) modules in figure 4. The former provides the
first role (Figure 1(a)), estimation of the trust value in unanticipated situations and
the latter is responsible for the second role (Figure 1(b)) of CMF, adjustment of the
trust values based on underlying situation. The gray box in figure 4 shows the focus
of this paper.
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Fig. 4 Knowledge containers
in case-based reasoner (CBR).
TMM: trust management
model, MBR: Model-based
reasoner, RBR: rule-based
reasoner, CMF: context man-
agement framework.
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3.1 Case-based Reasoner Module

In the case-based reasoning approach, knowledge is distributed among the four
knowledge containers: ontology, casebase, similarity measures, and solution trans-
formation.

• Ontology: We represent the situations in the pertinant domain in form of an on-
tology. A situation consists of set of contexts which are captured as nodes of
the ontology. Figure 5 depicts the ontology related to user-movie ratings. In this
example, a situation has two main contexts: User and Movie. Demographic in-
formation for the users (age, occupation, sex, and zip code) are local contexts for
the User context and movie genres are local contexts for the Movie context.

Fig. 5 The ontology example
for user-movie ratings.
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• Casebase: The characterizations of the previous experiences and the recommen-
dations (trust information including truster, trustee, trust value, and situation) are
stored as elements of cases in the casebase. Cases are represented as attribute-
value pairs.
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• Similarity 1: The similarity between situations is a weighted sum of the similarity
between their contexts. Similarity between contexts, in turn, are computed as the
wighted sum of the similarity between the underlying local contexts. According
to the Tverskys formula [30], the similarity between two concepts A and B can
be determined in the following way:

S(A,B) =
|U(A)∩U(B)|

|U(A)∩U(B)|+α |U(A)\U(B)|+(1−α) |U(B)\U(A)|
(2)

U(A) and U(B) are the sets of properties of concepts A and B, respectively. The
function U takes into account the depth of compared concepts in the ontology
hierarchy. α is a value in the range [0,0.5]. The value of 0 implies that the differ-
ences of A with respect to B are not sufficient to conclude that they are similar,
and the value of 0.5 means that the differences are necessary and sufficient to
conclude such an assumption. Figure 6 illustrates an example of the similarity
calculation.

Fig. 6 Relations taxonomy.
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In our approach, equation (2) is used to compare the attributes with each other,
while the comparison between the values of an attribute is performed using the
following general comparasion guidelines:

– Categorical: values in the same category are similar (e.g., weather).
– Continuous: closer values are alike (e.g., time).
– Hierarchical: values in the same hierarchy are similar (e.g., location).

Attributes which do not have these characteristics may require a custom com-
parator to be defined for them.

• Solution transformation: The model-based reasoner (MBR) is responsible for
adaptation or transformation of a solution (trust value) from previous experiences
to the current problem of trust judgment. It uses TMM to estimate trust value for

1 In [27] we provide a comprehensive set of similarity measurement algorithms.
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the current situation based on trust values of the similar situations (see figure 4).
In section 3.2.1, we consider the Subjective Logic model as TMM and provide
details for the solution transformation module.

3.2 Processes

CMF is generally composed of three processes: Remembering, Reusing, and Learn-
ing.

• Remembering: The query (the current trust assessment question) is compared
to cases (past trust assessment experiences) in the casebase and N most simi-
lar cases are retrieved (N nearest neighbors). This process uses the ontology to
measure the similarity between the query and each case in the casebase.

• Reusing: A trust value is predicted for the query using the solution transformation
module.

• Learning: A new case is built from the query and the predicted value and is added
to the casebase for future uses.

In following, we explain the details for solution transformation module consid-
ering the Subjective Logic as TMM.

3.2.1 Solution Transformation in Case of the Subjective Logic

We explain the functionality of the model-based reasoner through extension of the
Subjective Logic model as TMM. If A has functional trust in B in situation C1,
then A can infer its functional trust to B in situation C2 which is a similar situation.
For example, if A trusts B as a good car mechanic then A will probably trust B
in repairing motorcycles since there is a large similarity between the domains of
repairing cars and motorcycles.

Similarly to Jøsang’s way to define opinions, we use triples to describe similarity
which enables us to use the Subjective Logic operators.

Definition 1. The similarity opinion SC2
C1

from C1 towards C2 is the triple 2 (similar-
ity, non-similarity, uncertainty) and fulfills the constraints that the sum of all three
values is equal to 1. If C1 = C2, the similarity opinion is defined to be (1,0,0). Oth-
erwise, it is calculated based on the measure of similarity (S(C1,C2)) between the
two situations C1 and C2 and the depth of concepts in the ontology (see (2)):

SC2
C1

= (
S(C1,C2) ·UN(C1,C2)

k +UN(C1,C2)
,
(1−S(C1,C2)) ·UN(C1,C2)

k +UN(C1,C2)
,

k
k +UN(C1,C2)

) (3)

2 This metric is inferred from a metric for the trust value computation [13] by Jøsang and Knap-
skog.
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Here, k is a constant and UN(C1,C2) = |U(C1)∪U(C2)| defining the number of
properties in play at all. In general, the higher the similarity value is, the less un-
certain we are, and the uncertainty will be lower as more details (UN(C1,C2)) are
available in comparison of the two situations C1 and C2.

Our similarity opinion is a special form of referral trust. It reflects that the akin
situations of C1 and C2 is a kind of recommendation (reminding) to A to treat in
situations C1 and C2 similarly. Thus, we see the consensus operator ⊗ as the correct
mechanism to combine the similarity opinion between C1 and C2 with the functional
trust of A in B in order to infer the functional trust of A in B:

FT A
B,C1

= SC2
C1
⊗FT A

B,C2
(4)

FT A
B,X is extended notation for A’s functional trust to B which considers the un-

derlying situation X. The higher the similarity between C1 and C2 is, the closer the
trust of A to B in situation C1 will be equal to that of between A and B in situation
C2. The lower this similarity is, the more uncertain A will be about whether to trust
B or not in the second situation.

The same conversion formula can be used for Referral Trust.

RT A
B,C1

= SC2
C1
⊗RT A

B,C2
(5)

4 Evaluation

We chose MovieLens data 3 in view of the fact that we needed a context-enriched
data to evaluate our work. The MovieLens data has been collected by the GroupLens
Research Project at the University of Minnesota 4. The data consists of 100,000
ratings from 943 users on 1682 movies with every user having at least 20 ratings
and simple demographic information for the users is included. Figure 5 depicts the
ontology which corresponds to the MovieLens data.

User attributes are age, sex and 19 occupation categories 5, zipcode, and movie
attributes are 19 film genres 6. Much richer movie content can be obtained from
the Internet Movie Database (IMDB) 7. We consider user and movie concepts as
contexts and user and movie attributes as local contexts to form the situation for
each rating.

3 http://www.grouplens.org/node/73
4 http://www.cs.umn.edu/Research/GroupLens/data/
5 Occupation list: administrator, artist, doctor, educator, engineer, entertainment, executive, health-
care, homemaker, lawyer, librarian, marketing, none, other, programmer, retired, salesman, scien-
tist, student, technician, writer.
6 Film genres: unknown, action, adventure, animation, children, comedy, crime, documentary,
drama, fantasy, film-noir, horror, musical, mystery, romance, sci-fi, thriller, war, western.
7 http://us.imdb.com
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4.1 Data Setup

There are 5 datasets which are 80%/20% splits of the data into training and test
data (training set of 80,000 ratings, and the test set of 20,000 ratings). Each of these
datasets have disjoint test sets; this is for 5 fold cross validation (where we repeat
our experiment with each training and test set and average the results). The test sets
are used as references for the accuracy of the predictions.

In the MovieLens data, rating values 1 and 2 represent negative ratings, 4 and
5 represent positive ratings, and 3 indicates ambivalence (we consider them as -2,-
1,0,+1,+2). In order to convert these rating values to the Subjective Logic opinions
(the triple (b,d,u),b+d +u = 1) we can use the following conversion method:

b =

n
∑

i=2
(i−1) · f (i)

c+(n−1) ·
n
∑

i=1
f (i)

, d =

n−1
∑

i=1
(n− i) · f (i)

c+(n−1) ·
n
∑

i=1
f (i)

, u =
c

c+(n−1) ·
n
∑

i=1
f (i)

(6)
where the number of ratings at level i is described by function f (i) and c is a con-
stant.

4.2 Experimental Setup

The casebase is built up from the ratings in the training set. Each case is composed
of four parts: user identifier, movie identifier, rating value, and situation including
user and movie information. Ratings in the test set forms queries to CMF and each
query is composed of three parts: user identifier, movie identifier, and the situation
(the rating value is removed). The rating value in the query is predicted by CMF
using the casebase, and then consequently compared with the removed value in the
test set.

Four types of evaluation criteria are used in this paper:

• Coverage: measure of the percentage of movies in the test dataset that can be
predicted.

• FCP: fraction of correct predictions.
• MAE (Mean Absolute Error) : average of the prediction error (difference between

probability expected values of predicted and real opinions) over all queries.
• RMSE (root mean squared error) : root mean of the average of the squared pre-

diction error. RMSE tends to emphasize large errors.

The evaluation is described as a pseudo-code in algorithm 4.1. First, the casebase
and the set of queries are built from training and test sets, respectively. Second, the
Remember procedure is called for each query computes the similarity between each
case in the casebase and the query. Cases with a similarity less than a threshold are
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ignored and the ten most similar cases among the remainings are retrieved. Next, by
calling the Reuse procedure, a rating value is predicted for the query (Rq) based on
the rating values of the retrieved cases (Ri, i = 1..10) and their similarity measures
(Si) which are calculated by the Similarity procedure.

Rq = (S1⊗R1)⊕ (S2⊗R2)⊕ . . .⊕ (S10⊗R10) (7)

Then, a new case is built which contains user and movie information of the query
and the predicted rating value is added to the casebase by calling the Learn proce-
dure. The predicted ratings form the predicted set. Finally, the test and predicted
sets are compared according to the four metrics (Coverage, FCP, MAE, and RSME)
by calling the Evaluate procedure.

The Similarity procedure (see algorithm 4.2) calculates weighted average of sim-
ilarity measures of local contexts (age, sex, occupation, and zipcode for users and
genres for movies) to determine the similarity between situations. In our implemen-
tation these weights are 0.2, 0.15, 0.1, 0.05, 0.5 respectively and are determined
based on the fact that how much the local context can affect the rating decision. The
comparator for each local context are:

• Age: Closer values are more similar.
• Sex: The similarity value is 1 for identical sex values and 0 otherwise.
• Occupation: The similarity is calculated according to (2) for similarity measure-

ment on the ontology.
• Zipcode: ZIP codes are numbered with the first digit representing a certain group

of U.S. states, the second and third digits together representing a region in that
group (or perhaps a large city) and the fourth and fifth digits representing a group
of delivery addresses within that region. We assign similarity values of 1, 0.75,
0.5 to the same delivery address, region, and state group respectively.

• Movie genre: The similarity is calculated using (2) to measure similarity on the
ontology.

Our baseline is the Pearson algorithm [17] which relies on Pearson correlation
coefficient to produce a correlation metric between users. This correlation is then
used to weigh the rating of each relevant user. The Pearson correlation between
users A and B is defined as:

PA,B =
∑

m
i=1 (RA,i− R̄A)× (RB,i− R̄B)

σA×σB
(8)

where m is the number of movies that both users rated. RA,i is the rating, user A
gave to movie i. R̄A is the average rating user A gave to all movies, and σA is the
standard deviation of those ratings. Once the Pearson correlation between a user and
all other users is obtained, the predicted movie rating is calculated as:

RA,i = R̄A +
∑

n
U=1 (RU,i− R̄U )×PA,U

∑
n
u=1 |PA,U |

(9)
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Algorithm 4.1: CONTEXT MANAGEMENT FRAMEWORK(test set, training set)

main
global casebase,similarity
comment: Build “casebase” from the training set and “queries” from the test set

similarity[1..size(casebase)]← 0
comment: “similarity” array stores similarity measures between the query and the cases

for each query ∈ queries

do


neighbors← REMEMBER(query,casebase)
predicted rating← REUSE(neighbors)
LEARN(query, predicted rating)
predicted set← predicted set ∪ predicted rating

EVALUATE(test set, predicted set)

procedure REMEMBER(query)
for each case ∈ casebase

do

sim← SIMILARITY(query,case)
if sim >= T HRESHOLD

then similarity[case]← sim
return (ten most similar cases)

procedure REUSE(neighbors)
predicated opinion← (0,0,1)
for each ncase ∈ neighbors

do

similarity opinion← (similarity[ncase],0,1− similarity[ncase])
new opinion← similarity opinion⊗ncase.rating
predicted opinion← predicted opinion⊕new opinion

return (predicted opinion)

procedure LEARN(query, predicted rating)
new case← query.user∪query.movie∪ predicted rating
casebase← casebase∪new case

procedure EVALUATE(test set, predicted set)
coverage← fraction of predicted ratings
f cp← fraction of correct predictions
mae←mean absolute error of predictions
rmse← root mean squared error of predictions
output (coverage, f cp,mae,rmse)
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Algorithm 4.2: SIMILARITY(query,case)

procedure SIMILARITY(query,case)
userq← query.user
userc← case.user
age sim← 1− ageq−agec

agemax−agemin
if sexq == sexc

then sex sim← 1
else sex sim← 0

occupation sim← ONTOLOGYSIM(occupationq,occupationc)
comment: “OntologySim” calculates contextual similarity according to (2)

if zipcodeq(1) == zipecodec(1)

then



if zipcodeq(2,3) == zipecodec(2,3)

then



if zipcodeq(4,5) == zipecodec(4,5)

then

{
zipcode sim← 1
comment: the same delivery address

else

{
zipcode sim← 0.75
comment: the same region

else

{
zipcode sim← 0.5
comment: the same state group

else zipcode sim← 0
movie sim← ONTOLOGYSIM(movieq.genre,moviec.genre)
total sim← 0.2 ·age sim+0.15 · sex sim+0.1 ·occupation sim
+0.05 · zipcode sim+0.5 ·movie sim
return (total sim)

Use of the Pearson correlation coefficient is quite common in the field of col-
laborative filtering, and results obtained with this method will be used to gauge the
performance of other algorithms. Moreover, the Pearson algorithm uses only the rat-
ing information while our method use situational information to do the prediction.

4.3 Discussion of the Obtained Results

In table 1, we present the final results of the evaluation. We start by commenting the
row “Coverage”. The coverage becomes an important issue on a very sparse dataset
that contains a large portion of cold-start users since many trust values become
hardly predictable [18]. The results (Coverage ≈ 0.45%) indicate that our model
is able to predicate approximately one rating from each two ratings. For the Pear-
son algorithm the coverage is not perfect merely because not all movies in the test
dataset have a rating in the training dataset. The second important result is the frac-
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tion of correct predictions (FCP) is 0.34 which shows that from each 10 predicted
ratings between 3 and 4 ratings are predicted with exact values. Further, the predic-
tion errors (MAE and RMSE) for the other ratings that are not predicted exactly (
between 6 and 7 ratings from each 10 predicted ratings) are small in comparison
with the Pearson method (MAE ≈ 0.12 & RMSE ≈ 0.20).

Table 1 Final evaluation results

Metric Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Average Pearson
CC

Coverage (%) 43.82 43.88 44.94 45.42 45.06 44.62 99.83
FCP 0.3629 0.3497 0.3299 0.3345 0.3417 0.3437 0.1993
MAE 0.1605 0.1600 0.1656 0.1648 0.1626 0.1627 0.3049
RMSE 0.2742 0.2717 0.2757 0.2739 0.2724 0.2736 0.3804

All-in-all, the results of the evaluation lead to the expectation that our approach
provides an improvement over the Pearson algorithm and this implies that situa-
tional information is useful in making predictions.

5 Related Research

CMF is a knowledge-intensive CBR which is designed to extend situational infer-
ence capabilities of trust management models. More precisely, the aim is to reuse
the available trust information (direct experiences and recommendations) in similar
situations for the current problem and we use semantic (ontology-based) similarity
measures. Although CBR techniques are extensively used for recommender sys-
tems [1, 24] and there are some works which use CBR to build more trust through
providing explanations [21, 22, 16], to the best of our knowledge this proposal is
quite new. In this section, we briefly explain the related researches which are based
on context-aware trust management and thus more closely resemble our goal.

According to the literature, the extension of a trust model with context repre-
sentation can reduce complexity in the management of trust relationships [20], im-
prove the recommendation process [20], help to infer trust information in context
hierarchies [9], improve performance [25], help to learn policies/norms at runtime
[25, 29], and provide protection against changes of identity and first time offenders
[25]. Context related information has been represented as Context-aware domains
[20], Intensional Programming [31], Multi-dimensional goals [8], Clustering [25],
and Ontologies [29].

[26] provides a survey of different approaches to model context for ubiquitous
computing. In particular, numerous approaches are reviewed, classified relative to
their core elements and evaluated with respect to their appropriateness for ubiqui-
tous computing. The authors conclude that the most promising assets for context
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modeling of ubiquitous computing environments can be found in the ontology cate-
gory in comparison with other approaches like key-value models, mark-up scheme
models, graphical models, object-oriented models, and logic based models. This
selection is based on the six requirements dominant in pervasive environments: dis-
tributed composition, partial validation, richness and quality of information, incom-
pleteness and ambiguity, level of formality, and applicability to existing environ-
ments.

We present a state-of-the-art survey of context representation for trust manage-
ment in [28]. In the rest of this section ontology-based approaches to this problem
are examined in more details.

Golbeck et al. [6] propose an ontology for trust. In [5] the authors consider a
model using context-specific reputation by assigning numeric ratings to different
types of connections based on context of the analysis. In [29] rules to describe how
certain context-sensitive information (trust factors) reduces or enhances the trust
value have been specified for this trust ontology.

In [29] contextual information (i.e., context attributes) is used to adjust the output
of a trust determination process. Each attribute can adjust the trust value positively
or negatively according to a specified weight. As an illustration, if t is the trust value
and ω is the weight of the context property then the adjusting function can be tω for
decrease or ω

√
t for increase. A context ontology connects the context attributes with

each other in an appropriate manner, enabling the utilization of context attributes
which do not exactly match the query, but are “close enough” to it.

In [2], cases where a truster does not have enough information to produce a trust
value for a given task, but she knows instead the previous partner behavior perform-
ing similar tasks, are considered. This model estimates trust using the information
about similar tasks. The similarity between two tasks is obtained from the compari-
son of the task attributes.

6 Conclusion and Future Directions

To sum up, we propose a framework based on the case-based reasoning paradigm
and the representation of deep knowledge to make existing trust management mod-
els situation-aware. This framework has been validated for the Subjective Logic trust
management model as an example and evaluated using a real large-scale dataset. It
can also be considered as an inference mechanism which deals with the sparsity and
cold-start problems of a web of trust.

The original Subjective Logic can be applied to determine transitivity only if
the subject of the trust relations along the entire path is the same. However, trust
relations with the same subject are not always available. Our proposal opens up
the possibility to draw transitivity also when the subject (situation) of the available
trust relations are not the same but are similar. First, the trust relations with sim-
ilar situations with the current problem are retrieved from the casebase using the
ontology and the similarity measurement algorithm (remembering past similar trust
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experiences). Next, they are converted (using (4) and (5)) to equivalent trust rela-
tions in the current problem by solution transformation module (reusing the trust
information from the past similar trust experiences). Then, the transitive trust path
is formed and final trust is calculated according to the Subjective Logic (1). Solution
of the current problem is stored as a new case in the casebase (the learning process
of CBR).

In the future, we aim to add a Risk Management Module to this framework. Risk
evaluation becomes important in inferring trust values among situations especially
when the trustworthiness of some principal is completely unknown and no recom-
mendation information is available. The intuitive idea behind such a risk assessment
can be to look up the in the casebase to see if there are any similar previous interac-
tions, i.e., if we have previously encountered an entity with similar trust attributes
and similar risk attributes in the same situation. The ontology part should be able
to describe the level of situational risk, whereby the higher the risk of negative out-
come, the higher the level of precision that must be captured.
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