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Abstract Trust in ubiquitous computing is about finding trustworthy part-
ners for risky interactions in presence of uncertainty about identity, moti-
vation, and goals of the potential interactions partners. In this paper, we
present new approaches for estimating the trustworthiness of entities and
for filtering and weighting recommendations, which we integrate in our trust
model, called CertainTrust. We evaluate the robustness of our trust model
using an canonical set of population mixes based on a classification of typical
entity behaviors. The simulation is based on user traces collected in the Real-
ity Mining project. The evaluation shows the applicability of our trust model
to collaboration in opportunistic networks and its advantages in comparison
to a distributed variant of the Beta Reputation System.

1 Introduction

The main driving force behind the idea of ubiquitous computing (UC) is to
support humans in their everyday life. UC environments are expected to be
made up by a huge number of heterogeneous, loosely coupled devices. Thus,
collaboration between devices, e.g., sharing information or resources, is an
indispensable enabler for the evolution of UC.
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Frequent collaboration requires frequent decisions about who to interact
with, demanding for a non-intrusive way of decision making. This can be
done based on certificates or by hard-coded policies, which, e.g., only allow
for the interaction with a set of pre-defined partners. However, in an un-
managed domain we can neither expect pre-defined or certified partners to
be available all the time, nor that all suitable interaction partners are certi-
fied. The shortcomings of both approaches become obvious, when considering
opportunistic [7] or pocket switched networking [8] in which information is
disseminated in absence of an end-to-end connectivity, but rather in an one
hop manner from one mobile node (user) to the next one.

Thus, we favor the approach of selecting interaction partners based on
trust, which is built on experiences from past interactions. Although, one
may be uncertain about the identity, motivation or goals of potential interac-
tion partners, direct experiences from past interactions are a good indicator
whether to interact another time. As direct experiences may be rare, in-
direct experiences (recommendations) need to be considered as additional
information. As recommendations may be more or less accurate, techniques
for filtering and weighting recommendations are important.

In this paper, we show how our trust model improves the selection of
interaction partners, and thus improves the quality of interactions, i.e., pos-
itive outcome and feedback. For that purpose, we evaluate the trust model
against a canonical set of populations with respect to its users’ behaviors and
by varying stability of the users’ behaviors, i.e., varying the adherence of the
users to a behavior. To cope with bad interaction partners and lying recom-
menders we introduce new approaches for calculating the trustworthiness of
entities, and provide a new way to handle recommendations.

The remainder of the paper is structured as follows: First, we present
related work in Sec. 2. Then, we briefly describe the scenario for our analysis,
i.e., content distribution in an opportunistic network (see Sec. 3). In Sec. 4,
we explain the parts of our trust model, called CertainTrust, that are relevant
for the evaluation. In Sec. 5 we introduce our classification of entity behaviors
and derive the possible population mixes. In Sec. 6, we present our simulation
setup and the gained results. We discuss the results and summarize this work
in a conclusion.

2 Related Work

Our scenario is motivated by an application, called musicClouds [7], which
allows for autonomous sharing of music files in opportunistic networks. It fo-
cuses on defining filters for specifying the meta information of files of interest,
but not on the selection of the interaction partner. In [8], Hui et al. argue
for the relevance of pocket switched networking since there are numerous sce-
narios in which local connectivity might be preferred over an internet-based
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connection, due to bandwidth, latency or costs. Although, the authors focus
on analyzing mobility patterns and consequences for data forwarding, they
state that, among other aspects, establishing and maintaining trust relation-
ships, as well as the provision of incentives for participating in the network
are important.

Besides the seminal work on trust in [11], which focuses on modeling trust
for only two agents, and centralized approaches [6], there is a growing number
of trust models which allow for a decentralized computation of trust, being
more suitable for UC (see below).

Distributed trust models usually compute trust based on direct experiences
from past interactions in a certain context and indirect ones (via recommen-
dations) [1, 9, 10, 12]. A few approaches integrate additional knowledge from
similar contexts [2] or related aspects [14], which requires an additional mod-
eling of ontologies expressing the relations between those contexts or aspects.
In this paper, we focus on modeling trust in a single context, as this is the
most appropriate for our scenario.

The trust model in [1] focuses on virtual organizations, and provides a
label-based approach for representing trust, but includes only a rudimental
approach for treating uncertainty. In [12], Quercia et al. provide a trust model
that allows for a discrete, non-binary representation of trust. The model is
capable of expressing the confidence of a trust value, mainly based on the
variance derived from the data about experiences in past interactions, and
the number of past experiences. A general approach to model trust, called
“Subjective Logic”, proposed by Jøsang [9], integrates the Bayesian update
mechanism together with a representation reflecting a human notion of be-
lief, capable of expressing uncertainty. This model also provides a method
for integrating continuous feedback [10]. Both approaches do not allow to
explicitly define how many experiences are necessary to reach the maximal
level of certainty. Thus, they treat (un-)certainty equally for all contexts,
and in a rather static manner. Furthermore, their filtering and weighting
techniques focus on scenarios with a majority of positive recommendations.
The trust model provided by Buchegger in [3] proposes a filtering of rec-
ommendations based on the similarity of the recommendations to the direct
experiences, which may be circumvented if direct experience is missing, or by
a repeated stepwise providing of misleading recommendations. The approach
introduced in [15] is close to our approach, as it uses the past accuracy of
past recommendations per entity for weighting its recommendations. But it
takes a long time until it totally excludes misleading recommendations from
a recommender. Furthermore, it introduces the assumption that it is neces-
sary to learn the trust in recommenders depending on the actual values of
the recommendations.
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3 Scenario

For the evaluation of the impact of our trust model, we choose a scenario in
which humans with mobile devices share music in an opportunistic network.
In the following we refer to users with their mobile devices as entities. As
these entities move, they will meet other entities, and interact with each other,
e.g., they exchange music (mp3 files) or recommendations, in a spontaneous
manner. Due to different goals or motivation, the users will show different
behaviors when providing files to others. The goal of a typical user is to
interact only with trustworthy interactors, i.e., interactors from which he
expects to receive a good file (correct file, no viruses, complete song, and
expected quality).

We assume that a user appreciates the support of a software component
including a trust model, which supports him with information about the
trustworthiness of the available candidates for an interaction, or is even ca-
pable of making decisions and interacting on its own. This will be especially
true, if it allows for increasing the quality of a user’s interactions, i.e., the
number of received good files.

After an interaction, the quality of the interaction is determined by feed-
back. The generation of the feedback does not necessarily require user interac-
tion. In some cases this can also be done automatically, e.g., by scanning the
mp3 file for viruses, checking the size, the bitrate, and noise. This allows the
software component to create histories about interactors and recommenders.

4 Trust Model

In this section, we introduce our system model. For self-containment of
this paper, we briefly describe the representational trust model (for details
see [13]), which defines how trust is modeled. Then, we present our approach
of deriving an expectation value from the collected evidences. Furthermore,
we present a new approach for filtering and weighting recommendations. At
last we introduce the update mechanism based on feedback on past interac-
tions. For an overview of the different steps in establishing trust between
entities and selecting entities based on trust see Fig. 1.

4.1 System Model

The participants in the system are called entities. Entities can be either
active or passive. Active entities can be humans with mobile devices, or
autonomous software components, e.g., web services. Active entities have a
behavior which can be more or less trustworthy. A passive entity is any kind
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Fig. 1 Main steps in establishing trust between entities and selecting entities

of object, which can be rated, but does not have any behavior, e.g., a music
file. For the evaluation in this paper, we only consider active entities.

Furthermore, we define the following roles for an entity (see Fig. 1): ini-
tiator (I), candidate (C), recommender (R). The initiator is an entity
which wants to initiate an interaction. The candidates – sometimes referred
to as interactors – are the potential partners for this interaction. The entities
which pass recommendations about the candidates to the initiator have the
role of the recommenders. The initiators as well as the recommenders will
always be active entities. The candidates may be active or passive.

4.2 Representational Trust Model

The representational trust model of CertainTrust has already been published
in [13]. In general, this trust model can be used for different contexts. How-
ever, for simplifying the notation, we assume there is only one.

Let entities be denoted by capital letters A,B, . . . . The opinion of entity
A about the trustworthiness of entity B as candidate is denoted as oA

b . The
opinion of an entity A about the trustworthiness of B as recommender will
be denoted as oA

B. Furthermore, a parameter, called the maximal number of
expected evidences, expresses how many evidences an entity expects to reach
the maximal certainty of an opinion (see below) and is denoted as e.

Evidence Model: The evidence based representation allows to derive
beta probability density functions from the collected evidence. The beta dis-
tribution, denoted as Beta(α,β ), can be used to model the posteriori proba-
bilities of binary events; typically using α = r + 1 and β = s + 1, where r ≥ 0
and s ≥ 0 represent the number of collected positive and negative evidence,
respectively. The number of collected evidence is represented by r + s. If
an opinion is represented by the parameters r and s, we use the notation
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o = (r,s)rs. This representation allows for easily integrating feedback in the
trust model (see Sec. 4.6).

Human Trust Interface: In the HTI an opinion o is a 2-dimensional
expression, represented by a 2-tuple o = (t,c)HT I ∈ [0,1]× [0,1], where the
superscript refers to the representational model. The opinion oA

b = (tA
b ,cA

b )HT I

expresses the opinion of A about the trustworthiness of entity B as interactor.
The value of tA

b represents the past experience of A with B as interactor,
calculated as relative frequency of good interactions. This value is referred to
as the trust value. The value cA

b is referred to as certainty value. This value
expresses, which certainty the provider of an opinion assigns to the trust
value, e.g., a low certainty value expresses that the trust value can easily
change, whereas a high certainty parameter indicates that the trust value is
rather fixed, and thus will be a good estimate for the future behavior. The
certainty increases with the ratio between the number of collected evidences
and the number of expected evidences. For opinions with certainty cA

b = 0 the
trust value is initialized with tA

b = 0.5. For details of the calculation see [13].

4.3 Expectation Value

The opinion about the trustworthiness of an entity is based on information
collected from past interactions. As the trust model is to support users in
future interactions, we extend our model with new approaches to derive an
expectation from the opinions. The certainty of an opinion is to indicate
whether the trust value is expected to be a good prediction or not; thus,
both values need to be included in the expectation value.

In case that certainty c = 1, the trust value should be used as expectation
value; if the certainty c = 0, i.e., complete uncertainty, the expectation value
should be an appropriate initial value; in-between it seems natural, that the
expectation value moves from this initial value towards the trust value with
increasing certainty. For an opinion o = (t,c)HT I , this can be expressed as:

E(o) = c · t +(1− c) · f ,where 1− c is the uncertainty

The parameter f can be used to determine the initial expectation value in
case of complete uncertainty and influences the expectation value until com-
plete certainty c = 1 is reached. Thus f can be used to express a user’s general
attitude (dispositional trust) or depend on additional knowledge about the
distribution of trustworthy and untrustworthy entities. In the following, we
briefly introduce several strategies to initialize f .

Pessimistic ( f = 0): The pessimistic strategy for calculating an expecta-
tion value uses only the evidences on which the opinion was based. According
to this strategy, the expectation value is 0.0, if there has not been collected
any evidence at all (complete uncertainty). This reflects a user’s attitude like
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“I believe entities are untrustworthy, unless I know the opposite with high
certainty”.

Epessimistic(o) = t · c

Moderate ( f = 0.5): The moderate approach is especially suitable for
binary decisions, in the case that positive and negative results happen with
the same probability. According to this strategy the expectation value is 0.5,
if there has not been collected any evidence at all (complete uncertainty).
This reflects a user’s attitude like “I believe there are as many trustworthy
as untrustworthy entities.”

Emoderate(o) = t · c +(1− c) ·0.5

Optimistic ( f = 1): The optimistic behavior reflects a user’s attitude
like “I believe entities are trustworthy, unless I know the opposite with high
certainty”.

Eoptimistic(o) = t · c +(1− c)

Dynamic Recalculation of f : As an entity’s experiences within a com-
munity grows it might be reasonable that it dynamically updates the pa-
rameter f that expresses its initial believes. To evaluate whether a dynamic
expectation value may have positive effects on the trust model, we designed
an ad-hoc heuristic. We define a new variable community factor c f , that
each entities calculates based on its own experiences and is used as the initial
parameter f .

The basic idea is to derive the community factor from the opinions about
the known entities. For the community factor used for the expectation value
about recommenders we provide the update mechanism in pseudo code:

r = 0; s = 0; f o r ( Entity E: known Recommenders ){
u = trustValue(oA

E) ;
r = r + u ; s = s +(1−u) ; }

oc f = (r,s)r,s ; c f = Emoderate(oc f ) ;

For the interactors the calculation is similar. But due to the fact, that all
entities prefer to interact with good interactors, we adjust the value u in the
pseudo code according to u = trustValue(oA

e )∗ (1− certaintyValue(oA
e )/2).

Comparison with the Mean Value of the Beta Distribution: For
the Beta distribution Beta(r + 1,s + 1) the expectation value (mean) Emean is
defined as (r + 1)/(r + s + 2). This mean value only depends on the number
of collected evidences. It gets closer to the mode of the distribution as the
number of collected evidences grows, but this relation is static. This means,
it does not depend on the number of maximal expected evidences, and thus,
it does not properly integrate the certainty of an opinion in our model.

Our moderate approach for calculating the expectation value produces the
most similar results to Emean. We are currently working on a mapping of our
strategies for determining the expectation value to adequate counterparts
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derived from the Beta distribution. This can be done using α = r + r0 and
β = s+s0, adjusting r0, s0 depending on the value of f , the number of collected
evidences, and the number of expected evidences.

4.4 Computational Trust Model

The task of the computational trust model is trust propagation, i.e., to ag-
gregate the direct and indirect evidences. As proposed in [13] we propagate
trust based on the two operators consensus – summing up several opinions
to a single one – and discounting – weighting recommendations based on the
opinion about the recommender.

Consensus: For the consensus of the opinions oB1
c , ..., oBn

c we use:
consensus(oB1

c , ...,oBn
c ) := ∑

n
i=1 oBi

c := oB1
c ⊕ ...⊕oBn

c := (∑
n
i=1 rBi

c ,∑n
i=1 sBi

c )rs.
Discounting: Let the opinion of entity A about the trustworthiness of

Bi as recommender be oA
Bi

, and oBi
c is B’s recommendation about entity C

as candidate. For the discounting we propose: discounting(oA
Bi

,oBi
c ) := oA

Bi
⊗

oBi
c := (E(oA

Bi
)∗ rBi

c ,E(oA
Bi

)∗ sBi
c )rs. Thus, using the pessimistic strategy for the

expectation value, is equal to the discounting operator defined in [13].

Simple Trust Propagation: Let the direct experience of entity A with
candidate C be oA

c ; furthermore A has collected indirect experiences from the
recommenders B1, ...,Bn. The aggregated opinion of A about C is denoted as
õA

c , and can be calculated as:

õA
c = oA

c ⊕
n

∑
i=1

oA
Bi
⊗oBi

c (1)

This variant of trust propagation has some shortcomings:
1. The opinions of recommenders which are known to provide bad recom-

mendations are still considered.
2. All available recommendations are used. Thus, it would be possible, just

by creating a huge number of “fake” entities to dominate the resulting
opinion, even if the weight of a single recommendation is very low.

More Robust Trust Propagation: For the more robust variant of the
trust propagation we propose a few enhancements to overcome the shortcom-
ings pointed out above. To deal with the first issue, it seems reasonable that
the initiator I only considers recommendations from recommenders which
provided mostly accurate recommendations in the past, i.e., the trust value
of oI

R is greater than or equal to 0.5. Furthermore, we also consider recom-
mendations of unknown recommenders.

To overcome the second issue, we use another feature of our trust model
to limit the considered recommendations. We sort the recommendations de-
scending by the expectation value of calculated by the initiator for the recom-
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menders. Then, we consider only recommendations as long as the certainty
of the aggregated opinion is less or equal to 1. Thus, we only use the best
recommendations, until the sum of direct evidences and weighted indirect
evidences is equal to the number of maximal expected evidences.

These arrangements together are supposed to improve the robustness of
our model to false recommendations (either false praise or false accusation),
since we use only the recommenders which have been known to be the best
recommenders from their past recommendations. Furthermore, in the case
that we have enough direct evidences and good recommendations, this makes
our model also quite robust to sybil attacks [4], since it is no longer possible
to overtake an opinion based on sufficient direct experiences and good recom-
mendations only by providing an arbitrary huge number of recommendations
using specially created recommenders.

Although, it is possible to further increase the robustness to false recom-
mendations and sybil attacks by introducing further criteria for considering
recommendations, e.g., excluding unknown recommenders, we are not going
to extensively evaluate this aspects, since it would be beyond the scope of
this paper.

4.5 Selection of a Candidate

The selection of the most trustworthy candidate for an interaction of a set
of candidates C1, ...,Cn is done based on the expectation value. Let õA

ci
, ..., õA

cn
be the aggregated opinions of A about the candidates. The most trustworthy
candidate is selected as an entity with maximal expectation value. Depending
on the initiator the expectation value is calculated by one of the strategies
proposed above.

4.6 Update Mechanism

After each interaction, the entity that initiated the interaction updates the
opinions about its interaction partner (selected candidate) and the recom-
menders (see Fig. 1). In the case of a dynamical recalculation of the expec-
tation value, the community factor also is updated after an interaction. The
quality of an interaction, which for now is equal to the generate feedback
f b, can be in [−1;1]. Here, −1 is the worst possible feedback, 1 is the best
one. The feedback for an interaction, can be either user generated or by an
external software component.

Update the Opinion for the Selected Candidate: Let the opinion
(direct experiences) of A about the selected candidate C be oA

c = (rA
cold

,sA
cold

)rs;

58          S. Ries et al.



for the feedback f , the direct experiences are updated to (rA
cnew ,sA

cnew)rs using
(with u := f b):

(rA
cnew ,sA

cnew)rs = (rA
cold

+(u + 1)/2),sA
cold

+(1−u)/2)rs (2)

Update the Opinions for the Recommenders: The update of the
opinions about the recommenders is performed according to the accuracy of
their recommendations. For this reason, the trust value of the recommenda-
tion of B about the candidate C is compared with the feedback with which
A rated the interaction. If both have the “same tendency”, then the rec-
ommendation is supposed to be positive and the opinion of A about B as
recommender is updated positively, else there is a negative update.

More formally: If the opinion of A about entity B as recommender was
oA

B = (rA
Bold

,sBold )rs and the recommendation by B about the candidate C was
oB

c = (tB
c ,cB

c )HT I with (cB
c > 0), and A′s feedback for the interaction with C is

f b, we calculate u as:

u :=


1 , if (2∗ tB

c −1)∗ f b > 0
−1 , if (2∗ tB

c −1)∗ f b < 0
0 , else .

(3)

The update of oA
B is done using u in Eq. 2. For example, if the trust

value of the recommendation was in ]0,1] and the interaction was positive
( f > 0), then the recommendation is considered to be good (u = 1), and the
positive evidences of the opinion about the recommender are increased by 1;
the negative evidences are kept unchanged.

In the case the interaction behavior of C depends on the initiator of the
interaction, and C shows different interaction behavior towards R and I, the
recommendations of R will be misleading, and I will negatively update the
recommender trust for R. This is due to the fact that I is not capable of
distinguishing between R is lying and C interaction behavior is interactor
dependent.

Furthermore, we point out that the normalization as described in [13]
introduces an implicit aging of the evidences, if the collected evidences exceed
the maximal number of expected evidences.

5 Basic Types of Behavior and Population Mixes

Entities may be recommenders or interactors. In both roles, an entity can
be good (+) or bad (-). This means a good interactor provides good in-
teractions, leading to positive feedback ( f b = 1), a bad interactor provides
interactions leading to negative feedback ( f b = −1). A good recommender
provides recommendations which reflect its real experiences. The model for
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bad (lying) recommenders is derived from [15]. Bad recommenders try to pro-
vide recommendations with a maximal misleading expectation value, i.e., if
Emean(oB

x ) is the expectation value calculated by recommender B for interactor
x, the recommendation of B would be an opinion with the expectation value
1−Emean(oB

x ). This can be achieved by switching the positive and negative
evidences. Thus, we identified 4 basic types of behaviors, see Fig. 2.

Fig. 2 Basic entity behaviors

Combining these basic types of behaviors,
we can derive 15 canonical population mixes:
h, m, s, w, hm, hs, hw, ms, mw, sw, hms, hsw,
hmw, msw, hmsw. The numbers of entities
with a specific behavior within a population
are set to be equal, e.g., the population mix
h contains only entities with honest behavior,
the population mix hm contains 50% entities
with honest behavior and 50% malicious, and
so on.

Furthermore, we believe that the interaction behavior of an entity may be
unstable, i.e., good interactors may sometimes provide bad interactions and
vice versa. Therefore, we introduce an additional parameter called stability
y. In the case of stability y = 1 an entity totally adheres to its assigned
interaction behavior. In the case the stability of entity is set to 0.9 it adheres
only in 90% of its interactions to the behavior it has been assigned, in the
other 10% it will do the opposite. Knowing the stability of an entity and
its behavior, it is easy to derive the probability for positive interactions with
this entity. For simplicity, we assume stability only influences the interaction
behavior, the recommendations behavior is assumed to be stable.

We use two different settings for the stability factor per population mix.
In the first setting we set the stability factor to 1 for all entities, in the second
one the stability factor is randomly (and uniformly distributed) chosen from
the interval [0.5;1]. In case of the population hm, a stability of 1 leads to a
population in which 50% of all entities provide only good interactions and
50% provide only bad interactions. Using the same population but choosing
the stability factor from the interval [0.5;1] per entity, the probabilities for
good interactions over all entities are uniformly distributed in [0;1].

6 Simulation

The simulation is based on the scenario described in Sec. 3. For having
realistic user traces as mobility model, we use the user traces collected in the
Reality Mining project [5]. The data provides information about 97 users
of mobile phones and their location as the ID of the cell tower the mobile
phones were connected to.
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For our evaluation we choose a single week of this data set, in which a
big number of users were connected to a small number of cell towers; thus,
we expected to have a big number of possible interactions. Based on [7],
we assume that a group of users is in proximity to each other if the users
are connected to the same cell tower within a 15 minute time interval. For
the evaluation, we consider a so-called meeting to happen in intervals in
which six or more users are connected to the same cell tower. The reason
is, that we want to evaluate the trust model’s capabilities in selecting the
most trustworthy candidate from a set of candidates. The set of candidates
is determined randomly as half of the available entities, i.e., an initiator has
at least 3 candidates for an interaction. In the restricted data set, there are
68 distinct users (entities), which met each other in 556 meetings. In average
an entity took part in 59.94 meetings, and met 46.76 distinct entities. The
average number of entities per meeting is 7.33. By repeating the selected
week three times in our simulation, we are able to evaluate the value of direct
experiences as well as indirect ones. Although these assumptions might look
a little simplistic, we believe that using real world user traces allows for a
more realistic evaluation than using artificially created user profiles as a basis
for the simulation.

We do the simulation for all 15 populations, each with stability y = 1
and y ∈ [0.5;1]. Each simulation was repeated 20 times per trust model
and population mix using the same seeds for the comparison of the different
models and baselines.

6.1 Meeting Procedure

Each meeting proceeds as follows. In each meeting each entity has to interact
with one candidate, i.e., each entity is the initiator of one interaction. The
candidates for an interaction are randomly chosen as the half of the entities
which are part of the meeting, i.e., we expect that half of the entities in the
meeting can provide a specific mp3-file. If the trust model includes recom-
mendations, the initiator asks all entities that are part of the meeting for
providing recommendations about the candidates. Then, the initiator evalu-
ates the trustworthiness of the candidates, and selects the most trustworthy
one, i.e., the one with the greatest expectation value. We chose this setting in
contrast to a setting in which each entity has the choice whether to interact
or not, since we want to evaluate the trust model and not the decision making
component. After each interaction, the initiator updates the opinions about
its interaction partner (selected candidate) and the recommenders based on
the outcome of the interaction as described in Sec. 4.6.
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6.2 Baselines and Models

The first baseline is the random strategy (referred to as const 0.5 in Fig. 4).
This strategy selects the partner for the interaction randomly – expecting
positive interactions from any candidate with probability 0.5. Furthermore,
we use the perfect strategy that always selects the best candidate based on
the behavior it has been assigned by the simulation environment. In a way,
this is similar to a “best possible” selection process in a hypothetic world,
in which all entities have labels on their forehead stating the behavior (and
the probability for a positive interaction). We compare the following trust
models in our evaluation:

1. CT M: CertainTrust using the mean as expectation value and e = 20.
2. CT C: CertainTrust using the expectation value based on a dynamically

calculated expectation value and e = 20.
3. BetaRepSys: The beta reputation system was proposed in [10]. Since

the goal of our research is to provide a trust model for UC, we use a
distributed variant of this reputation system in which each entity is its own
reputation centre. The reputation centre stores only direct experiences.
The expectation value (reputation) for an interaction partner is calculated
using the consensus operator for combining the direct experiences with the
available recommendations.

6.3 Evaluation Metrics

The evaluation is based on three metrics.
1. Each entity B is assigned a characteristic probability for providing

good interactions (denoted as pB) at the beginning of the simulation (as
described in Sec. 5). For the first metric, we calculate the mean absolute
error err(A) an entity makes when estimating this probability for all entities
in the population P. For entity A this error is calculated as: err(A) = (∑B∈P |
E(oA

b )− pB |)/ |P |. For the calculation of E(oA
b ) entity A may ask all entities in

P for recommendations. The average error in estimating the trustworthiness
err is defined as: err = (∑A∈P err(A))/ | P |. The average error should be close
to 0.

2. We define the reputation R(A) of an entity A as the average of the
expectation values calculated by each entity B in the population P for entity
A: R(A) = (∑B∈P E(oB

a ))/ | P |. Again, entity A may ask all entities in P for
recommendations. As the average reputation over all entities in the popula-
tion depends on the population mix, we calculate the average only over the
entities belonging to the same behavior.

average R(behaviori) =
∑A is assigned behaviori R(A)
| A is assigned behaviori |

(4)
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Fig. 3 Reputation evaluation over time in population hmsw with stability 1 (order:
CT C, CT M, BetaRepSys)

3. For each interaction, the feedback can be either 1 or −1. The accu-
mulated sum of feedback (acc sum) is calculated for each entity as sum of
the feedback over its past interactions. This value strongly depends on the
population mix. In a population with stability y = 1 and only honest entities
are only positive interactions; in a population with only malicious entities
are only negative ones. Therefore, we define the average percentage of accu-
mulated sum of feedback as the portion of the accumulated sum of feedback
achieved using the considered trust model relative to the accumulated sum
achieved using the perfect strategy :

percentage acc sum(model X) = ∑A∈P acc sum(entity A,model X)
∑A∈P acc sum(entity A, per f ect strategy)

(5)
The average percentage of accumulated sum of feedback is the third metric

for comparing the different trust model. The closer the average percentage
of accumulated sum of feedback is to 1.0, the more positive interactions had
an entity, and the closer is trust model to the perfect selection strategy.

6.4 Results

Reputation Evaluation Over Time: The three diagrams in Fig. 3 show
the evaluation of the reputation over time for the models CT M, CT C, and
the BetaRepSys. As space is limited we provide these diagrams only for
the population hmsw. As we can see from these diagrams both CertainTrust
variants are capable of detecting the different behaviors of the entities. The
true reputation of honest and selfish entities would be 1 and for malicious and
worst entities it would be 0. The BetaRepSys is hardly capable of detecting
differences as 50% of the recommendations are misleading.
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Fig. 4 Average percentage of accumulated sum per population (at the end of the
simulation) - Populations sorted according to the percentage of good recommenders
(the lines are only for ease of reading)

Average Error in Estimating the Trustworthiness: Fig. 4 shows
the results of the error in estimating the trustworthiness at the end of each
simulation (averaged over all runs) per population and stability of behaviors.

From the results we can see that whenever there are 33% or more mislead-
ing recommendations, our CertainTrust variants have a considerable better
performance than the BetaRepSys. Only in case of populations with only
good recommenders the BetaRepSys has slight advantages. The CT C model
produces the best results in populations with only bad recommenders.

For stability in [0.5;1] the absolute numbers for the error are less than
for stability y = 1. This can be explained as in the first case the average
probability of good interactions per entity is in the interval [0.25;0.75] and
in the latter case in the interval [0;1].

Average Percentage of the Accumulated Sum: Fig. 5 shows the
results of the average percentage of the accumulated sum at the end of each
simulation (averaged over all runs) per population and stability of behaviors.
In the populations m, w, and mw the accumulated sum for the perfect strategy
as well as the accumulated sum for all other models is negative. Therefore,
we omitted the results here.

In the case of stability y = 1 the BetaRepSys only produces similar results
as the CT variants in the populations h, s, hs (this is trivial as there are 100%
good interactors), and in the population hm. In the other populations the
CT variants outperform with similar results.

In the case of stability in [0.5;1] the BetaRepSys can only compete in the
populations hm and h. Both CT variants show similar performance.

7 Discussion

In contrast to the simulations in [12,15], our simulation presents results over
a huge set of populations and uses a mobility model as basis for the inter-
actions and recommendations. The population mixes are derived from our
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Fig. 5 Average percentage of accumulated sum per population (at the end of the
simulation) - Populations sorted according to the percentage of good interactors (the
lines are only for ease of reading)

classification of the basic types of behaviors. As we consider all kinds of
combinations the results present an good overview of the performance of the
considered models. The possibilities for interactions and recommendations
between entities are based on real world user trace. This is especially im-
portant as we develop a trust model for opportunistic collaboration and UC
applications.

The results for the average accumulated sum of feedback (see Fig. 5)
show that our trust model achieves good results in all considered populations.
Compared to the perfect selection strategy CT C is capable of achieving more
than 75% of maximally reachable results in 21 of 24 populations. Compared
to the BetaRepSys we see that CertainTrust variants outperform in most
population mixes. This is especially important as a user will evaluate not the
trust models itself, but the improvement of the quality of his interactions.
The reason for the improved overall quality of interactions can be the smaller
error in the estimated trustworthiness (see Fig. 4) for most of the populations.
Furthermore, we have shown that our CertainTrust model CT C using the
dynamically updated community factor may have advantages in estimating
the trustworthiness of interactors.

We learn that the main drawback of the distributed variant of the BetaRep-
Sys is that it does not weight recommendations. The discounting, as proposed
in [10], is based on the assumption that the behavior of an entity as recom-
mender is equal to the behavior of this entity as interactor and may still
be misleading. Furthermore, the discounting would discard the recommen-
dations by unknown interactors. Thus, it heavily depends on direct experi-
ences. The filtering techniques for the BetaRepSys as proposed in [16] will
only work if the majority of recommenders provides good recommendations.
This is also true for the filtering techniques proposed in [12]. As the rep-
resentational model of the BetaRepSys as well as our model are based on
collected evidences, it should be possible to define a mapping between both
representations. Thus, the filtering mechanisms presented in this paper can
easily be transferred to the BetaRepSys and other models based on collected
evidences.
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8 Conclusion

We presented and evaluated new approaches for discounting opinions and es-
timating the trustworthiness of entities. We showed that our trust model al-
lows to significantly improve the quality of interactions especially in presence
of lying recommenders. Furthermore, we showed our trust model’s robustness
over different populations and varying stability of the users’ behaviors. The
dynamical calculation positively influences the trust models’ performance.
We will investigate on this in future work.
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