
Trust Management in P2P systems using
Standard TuLiP

Marcin Czenko, Jeroen Doumen, and Sandro Etalle

Abstract In this paper we introduce Standard TuLiP - a new logic based Trust Man-
agement system. In Standard TuLiP, security decisions are based on security cre-
dentials, which can be issued by different entities and stored at different locations.
Standard TuLiP directly supports the distributed credential storage by providing a
sound and complete Lookup and Inference AlgoRithm (LIAR). In this paper we fo-
cus on (a) the language of Standard TuLiP and (b) on the practical considerations
which arise when deploying the system. These include credential encoding, sys-
tem architecture, system components and their functionality, and also the usability
issues.

1 Introduction

In the context of the I-Share project [7] we are developing a security infrastruc-
ture for secure content sharing in P2P networks, and for secure internet TV. The
underlying idea is that users of a P2P system organise themselves in so-called vir-
tual communities [10] sharing tastes, interests, or business objectives. These virtual
communities need a highly decentralised yet fine-grained policy enforcement sys-
tem to protect data from undesired disclosure. Traditional approaches based on ac-
cess control are not adequate as they expect that the system entities can be statically

Marcin Czenko
Department of Computer Science
University of Twente, The Netherlands , e-mail: marcin.czenko@utwente.nl

Jeroen Doumen
Department of Computer Science
University of Twente, The Netherlands, e-mail: jeroen.doumen@utwente.nl

Sandro Etalle
Eindhoven University of Technology and
University of Twente, The Netherlands, e-mail: s.etalle@tue.nl

enumerated and assigned the appropriate privileges in advance. In virtual commu-
nities the users often do not know each other and need to have reason to trust other
peers before taking an action. It was shown [8] that trust is a significant factor in the
success of such systems.

The obvious choice was to have a policy specification and enforcement system
based on Trust Management [4, 5, 12, 15], in which security decisions are based on
security credentials. In Trust Management a credential represents a permission or
a capability assigned by the credential issuer to the credential subject. Credentials
can be simple facts assigning a specific permission or a role to a specific user, or
they can express more sophisticated rules describing roles of groups of users with-
out enumerating their members. An important feature of Trust Management is that
credentials can be issued by different authorities and stored at different locations.
The user can access a resource if it can be proven that she has a certain role. This is
done by evaluating a chain of credentials.

In the setting of our project, the trust management system has to meet the fol-
lowing (rather common) requirements: First, the policy language should be sim-
ple (possibly based on a well-known language), extensible (e.g. by interfacing it
with external components, like constraint solvers), it should allow calculations and
should be able to express complex policies. Secondly, the underlying architecture
should be completely decentralised; in particular, the credential storage should be
not only decentralised, but one should be able to determine whether a credential
should be stored by the issuer or by some other entity (e.g. the so-called subject of
the credential), like in the RT [13] trust management system. Thirdly, the system
should enjoy a sound and complete decision algorithm, i.e. an algorithm which - in
spite of the decentralised storage of the credentials - will always be able to make the
appropriate decision and deliver the correct chain of credentials supporting it, if one
exists (more about this later).

Present TM systems do not satisfy all three conditions; RT [13, 12] comes very
close by satisfying the second and third requirements, but at the cost of a syntax
which is too inflexible for our purposes (see our [6] for a discussion on this). Other
systems either do not support decentralised storage or do not enjoy a sound and
complete decision algorithm (see the Related Work section for the details).

To meet all requirements, we have developed a new trust management system:
Standard TuLiP. Standard TuLiP is based on the theoretical basis laid in Core TuLiP
[6], i.e. on the same concept of credential storage system and on a similar deci-
sion algorithm (which in turn is inspired by the architecture of RT [13]). But while
Core TuLiP is more or less a theoretical exercise based on a very restricted syntax,
Standard TuLiP is a full fledged Trust Management system with not only a more
flexible syntax, but with the support of a whole distributed infrastructure, with APIs
for the specification, the validation and the storage of the credentials, APIs for inter-
rogating the decision procedure and a number of changes w.r.t. Core TuLiP which
make it amenable for a practical deployment (to mention one, the choice of includ-
ing the mode in the credential specification, which allows to reduce dramatically the
workload of the lookup algorithm).

2 M. Czenko et al.

In this paper we present the Standard TuLiP system. In particular, we concentrate
on the practical issues related to its deployment and use. We start with Sect. 2 where
we introduce the XML syntax of Standard TuLiP credentials and policies and how
they are represented in the logic programming form. In Sect. 3 we show how we can
specify the credential storage by using modes. We introduce the notion of traceable
credentials in order to guarantee that all required credentials will be found later
when needed in a proof. Section 4 deals with the architecture of Standard TuLiP.
We introduce basic components, show their functionality and also say how they
communicate with each other. In particular we show how credentials are stored and
how we find them. Then, in Sect. 5 we show the system from the user perspective:
we answer questions like how to write credentials, send queries, and we also discuss
the problem of credential and user identifier revocation. We finish the paper with
Related Work in Sect. 6 and Conclusions and Future Work in Sect. 7.

2 Policies

Standard TuLiP is a credential-based, role-based Trust Management system. Infor-
mally, a credential is a signed statement determining which role can be assigned to
an entity. A role can then be further associated with permissions, capabilities, or ac-
tions to be performed. For example, the University of Twente may issue a credential
saying that Alice is a student of it, which directly or indirectly may give Alice a
certain set of permissions (like buying a book in an online store at a discount price).
Here, the University of Twente is called the issuer of the credential, Alice is called
its subject, and student is the role name. A credential is always signed by its issuer,
as it is the issuer who has the authority of associating certain rights with the subject.
A credential can also contain additional information about the subject. For instance,
a student usually has a student number, she belongs to a certain department, etc. This
information is stored in the properties section of a credential. Standard TuLiP uses
XML [21] as a language for credential representation. The use of XML is conve-
nient for several reasons. Firstly, XML is a widely accepted medium for electronic
data exchange and is widely supported by many commercial and free tools. Sec-
ondly, the use of XML namespaces [22] can help in avoiding name conflicts and
facilitates the definition of common vocabulary.

We distinguish two types of credentials: the basic credential, and the conditional
credential. The first is just a direct role assignment (e.g. “Alice is a student”), while
the latter can express role assignments under some constraints.

Basic credentials. Figure 1 shows the XML encoding of a basic Standard TuLiP
credential, which consists of a single credential XML element. The credential XML
element, in turn, contains a single permission XML element, which consists of a role
name, mode, issuer, subject, and optionally properties XML elements. The meaning
of the mode XML element will be explained later in this paper. The issuer element
consists of a single entityID element which contains a public identifier of the creden-
tial issuer. Similarly, the subject element contains the entityID element containing

Trust Management in P2P Systems Using Standard TuLiP 3

1 <?xml version="1.0" encoding="UTF−8"?>
<credential xmlns="urn:ewi:namespaces:tulip"

3 notBefore="2007−02−12T20:00:00" notAfter="2008−02−12T20:00:00">
<permission>

5 <rolename>student</rolename>
<mode>oi</mode>

7 <issuer><entityID>ut−pub−key</entityID></issuer>
<subject><entityID>alice−pub−key</entityID></subject>

9 <properties>
<studentid>0176453</studentid>

11 <department>ewi</department>
<study>cs</study>

13 </properties>
</permission>

15 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>

17 . . .
<Reference URI="">

19 . . .
<DigestValue>5WlwStu5ouu94nb5rwQ6BhFOPWc=</DigestValue>

21 </Reference>
<SignedInfo>

23 <SignatureValue>signature−value</SignatureValue>
</Signature>

25 </credential>

Fig. 1: A basic Standard TuLiP XML credential.

the public identifier of the subject. The optional properties XML element can in-
clude arbitrary XML content describing additional properties of the issuer and/or
the subject. Every credential includes the time period in which it is considered
valid - this is done by using the notBefore and notAfter attributes of the “creden-
tial” XML element. Each Standard TuLiP credential is signed by the issuer’s private
key. Standard TuLiP uses public (RSA) keys as public identifiers. By doing this,
every credential can be immediately validated without the need for an external PKI
infrastructure. The signature is contained in the Signature XML element. We use the
enveloped XML signature format [20] (more precisely, a digest value is computed
over the top-level element, which is then included in the DigestValue element of the
SignedInfo element of the signature, and then the signature is made of the Signed-
Info element and included in the SignatureValue element). Notice also the use of
the urn:ewi:namespaces:tulip namespace in the top level credential XML element.
This is required for every valid Standard TuLiP credential. By using namespaces,
Standard TuLiP credentials can be easily distinguished from other credential for-
mats and this even allows for different credential formats to be mixed in a single
XML document.

Conditional credentials. Sometimes we need more sophisticated types of state-
ment: consider an online store which gives a discount to students of the University

4 M. Czenko et al.

of Twente. Instead of giving each student a basic credential granting the discount, it
is much more efficient to associate the discount role to everyone who has a student
role at the University of Twente, using a variable as subject.

Conditional Standard TuLiP credentials contain an additional provided XML el-
ement. This element includes one or more condition elements which specify addi-
tional conditions that must be satisfied before the specified role name can be associ-
ated with the credential subject. A condition XML element is similar to the permis-
sion XML element in that it also contains the role name, mode, issuer, subject and
optional properties XML elements. In the condition XML element, the issuer, sub-
ject, and properties XML elements can contain variables referring to the elements
from the preceding conditions and/or to the subject and properties elements from the
permission XML element. Notice that the credential issuer cannot contain a variable
as the issuer of the credential must always be known (otherwise one would not be
able to verify the credential signature). The provided part of the credential can also
contain a constraint which in turn can refer to built-in functions (to manipulate val-
ues taken by the variables). The presence of variables allows us to interface easily
with external functions (e.g. arithmetic solvers, constraint solvers, programs writ-
ten in other languages). The only requirement is that these calls should respect the
input-output flow dictated by the mode of the credential; modes are discussed later
and it is beyond the scope of this paper to explain in detail how the interfacing with
external functions takes place.

A Standard TuLiP security policy is defined by a set of credentials.

Queries. When eStore wants to check if alice is a student of the University of
Twente it sends a query to the University of Twente. In Standard TuLiP, queries
are also encoded as XML documents. The structure of an XML representation of
a query is very similar to that of the provided part of a Standard TuLiP XML cre-
dential. The top-level element is the query XML element. It consists of a one or
more condition XML elements each of which contains the role name, mode, is-
suer, subject, and optionally the properties XML elements. If a query contains only
one condition element we call it a basic query. Besides the query conditions, every
query reports the public identifier of the entity making the query. Each Standard
TuLiP query also contains a unique ID and IssueInstant attributes inside the top-
level query XML element. The ID attribute allows the system to check whether the
received response corresponds to the earlier issued query. The IssueInstant attribute
carries the time and date of the request which allows the responding entity to filter
out erroneous requests (like the ones with the time in the future), or to check whether
the time matches the validity of the credentials used in answering the query.

A query is always about a specific set of permissions. However, they can be of
different types. For instance “Is alice a student of the University of Twente?” and
“Give me all the students of the University of Twente” are queries of different type.
In Standard TuLiP the policy writer can restrict the type of queries one can ask by
using modes. We discuss this in Sect. 3.

Semantics. In order to give Standard TuLiP credentials formal meaning they are
translated to the equivalent logic programming form. In this representation every

Trust Management in P2P Systems Using Standard TuLiP 5

credential is represented by a definite clause containing one or more the so called
credential atoms and/or built-in constraints.

Definition 1 (credential atoms,credentials,queries). A credential atom is a predi-
cate of the form:

rolename(issuer,subject,properties).

A credential is a definite clause of the form P ← C1, . . . ,Cn, where P is a credential
atom, and C1, . . . ,Cn are credential atoms or built-in constraints. The credential atom
P in the head of the clause corresponds to the permission XML element and every
credential atom or built-in constraint Ci in the body of the clause corresponds to a
condition in the provided part of the corresponding XML credential encoding. A
query is represented by a sequence of credential atoms and/or built-in constraints
C1, . . . ,Cn, where each Ci corresponds to a query condition.

The var XML elements are straightforwardly mapped to logical variables. For space
reasons, we do not show the actual mapping from the content of the properties XML
element to the corresponding logic programming term.

A policy is a logic program containing one or more credentials.

Example 1. The policy modelling the scenario presented above is represented by the
following logic program:

student(ut-pub-key,alice-pub-key,properties). (1)

discount(eStore-pub-key,X ,Y) ← student(ut-pub-key,X ,Y). (2)

Here credential (1) is a direct translation of credential shown in Fig. 1 and properties
is the Prolog term representing the content of the corresponding “properties” XML
element.

Given a role name p, the set of all credentials having p as a role name of the creden-
tial atom occurring in the head is called the definition of p. Every credential from
the definition of p is called a defining credential of p. For any given credential atom
A, we denote the issuer of A by issuer(A) and the subject of A by subject(A).

We will often refer to the logic programming representation of the credentials
as it makes the notation easier. For sake of clarity, we will sometimes write the
credential atoms without the last argument.

Expressiveness. Standard TuLiP is expressive enough to model complex policies
like thresholds and separation of duty. Below we show examples of a threshold
and separation of duty policy. In order to emphasise relative simplicity of Standard
TuLiP, below we first show the policy encoded in RT T (in fact we use a dialect of
RT called RT T

1 as we also use arguments) and then its equivalent in Standard TuLiP.

Example 2. Threshold Policy: A says that an entity is a member of role A.r and has
the properties A1 and A2 if one member of B.s and one member of C.t say the same
(in RT “?” denotes a variable).

6 M. Czenko et al.

RT T
1 : A.r(?A1,?A2)← A.r1.r(?A1,?A2)

A.r1← B.s�C.t

Standard TuLiP : r(a,X ,prop : [p1 : A1, p2 : A2]) :− s(b,Y), t(c,Z),

r(Y,X ,prop : [p1 : A1, p2 : A2]),r(Z,X ,prop : [p1 : A1, p2 : A2]).

Example 3. Separation of Duty Policy: A says that an entity is a member of role A.r
and has the properties A1 and A2 if two different entities - one being a member of
B.s and the second being a member of C.t - say the same.

RT T
1 : A.r(?A1,?A2)← A.r1.r(?A1,?A2)

A.r1← B.s⊗C.t

Standard TuLiP : r(a,X ,prop : [p1 : A1, p2 : A2]) :− s(b,Y), t(c,Z),Y 6= Z.

r(Y,X ,prop : [p1 : A1, p2 : A2]),r(Z,X ,prop : [p1 : A1, p2 : A2]).

RT T is a member of the RT Trust Management Framework [12]. In order to handle
policies like those presented in Example 2 and Example 3, RT T introduces the so
called manifold roles, which allow not only entities but also sets of entities to be
members of a role. With Standard TuLiP, we have the same syntax and the same
semantics for all sorts of supported policies. Notice also, that Standard TuLiP can
be easily extended to a general purpose logic programming language by relaxing
the restriction on the number of arguments in the credential atoms and their corre-
sponding modes values (though at the cost of limited flexibility of the distributed
storage in some cases).

3 Storage and Modes

The content of this section is not new in the sense that the results we report here are
a natural extension of the material we present in [6] for Core TuLiP. Nevertheless,
we include them for sake of completeness. Standard TuLiP is a distributed system
in which credentials are stored by various peers (not necessarily by those issuing
the credential). The following standard example shows that the location where the
credentials are stored can affect the efficiency and the correctness of the whole TM
system.

Example 4. We extend the example presented in Sect. 2. Now, eStore gives a dis-
count to any student from any university accredited by accBoard. This is modelled
as follows (logic notation):

discount(eStore-pub-key,X) ← accredited(accBoard-pub-key,Y),student(Y,X). (1)

accredited(accBoard-pub-key,ut-pub-key). (2)

student(ut-pub-key,alice-pub-key). (3)

Now, suppose that credential (1) is stored by eStore, credential (2) by the accBoard,
and credential (3) by alice: if one wants to know whether alice can have a discount
at eStore, then one needs to evaluate the following query: ← accredited(accBoard

Trust Management in P2P Systems Using Standard TuLiP 7

-pub-key,Y),student(Y,alice). The most efficient way of answering this query is first
to fetch credential (3) from alice. From credential (3), we immediately know that
alice is a student of ut. Now, it is sufficient to check if ut is an accredited university.
This can be done by either fetching credential (2) from accBoard, or from ut. Notice
however, that if we store both credential (2) and (3) at the ut then we would not be
able to find them. In this case contacting alice would not help as alice does not store
any related credentials. Similarly, querying accBoard will not bring us any closer,
as accBoard lets universities store the accreditation credentials.

Standard TuLiP uses the notion of mode to handle distributed storage. In logic pro-
gramming, the mode of a predicate indicates which predicate arguments are input
and which are output arguments. An input argument must be ground (completely in-
stantiated) when atom is evaluated. In Standard TuLiP modes are assigned directly
to role names and there are only three possible mode values: ii, io, or oi, where i
stands for ”input” and o for ”output”. Here, the first character points to the issuer
and the second to the subject. For instance, if role name r has mode oi, it means that
- in order to be able to find a credential of the form r(issuer,subject,properties) -
“subject” must be known. The most common mode is io, but oi is also useful to be
able to store a credential in a place different from the issuer. The mode value oo is
not allowed because this would allow queries in which both the issuer and subject
are unknown, and we would not know where to start looking.

To be precise, in Standard TuLiP modes determine three things: (1) the storage lo-
cation of the credentials defining a given role name, (2) the types of queries in which
the role name can be used, and (3) they guarantee the soundness and completeness
of the method of credential discovery. We now illustrate these three aspects.

Storage. The mode of a role name p indicates where the credentials defining the cor-
responding credential atom should be stored. Standard TuLiP introduces the notion
of a depositary to be the entity which should store the given credential.

Definition 2 (depositary). Let p be a role name and let c = P ← C1, . . . ,Cn be a
credential defining p. Then:

• if mode(p)∈{ii, io} then the depositary of c is the credential issuer (= issuer(P)).
• if mode(p) = oi then the depositary of c is the credential subject (= subject(P)).

There are exceptions: with mode oi it is also possible to store the credential at an
entity other than the credential issuer or the subject. For details we refer the reader
to [6].

Example 5. Referring to Example 4, assume that we have the following mode as-
signments: mode(discount) = ii, mode(accredited) = io, and mode(student) = oi.
According to Definition 3, credential (1) should be stored by eStore, credential (2)
by accBoard, and credential (3) by alice.

Queries. Recall that a Standard TuLiP query is a sequence of one or more credential
atoms, each of which can be seen as a basic query itself. In Standard TuLiP we
identify three types of (basic) queries:

8 M. Czenko et al.

Type 1: “Given two entities a and b, check if b has role name p as said by a.”
This query can be answered for any valid mode assignment for p.
Type 2: “Given entity a and role name p, find all entities b such that b has role
name p as defined by a.” This query can be answered only if mode(p) = io.
Type 3: “Given entity b and role name p find all entities a such that a says that b
has role name p.” This query can be answered if mode(p) = oi.

One can also consider a more general form of the query of Type 3: “Given entity
b find all role names b has.” This query is not supported in Standard TuLiP. The
reason for this is purely of syntactic nature as we explain in [6].

The classification above is of purely syntactical nature, and one still has to guar-
antee that given a supported query, it can be answered. Basically, a query can be an-
swered - either positively or negatively - if all the related credentials can be found.
We guarantee this by the soundness and completeness of the credential discovery
method.

Soundness and Completeness. Storing the credentials in the right place does not
yet guarantee their discoverability. To ensure this we require the credentials to be
traceable:

Definition 3 (traceable). We say that a credential is traceable if it is well-moded
and the depositary of the credential is as given by Definition 2.

We use the standard definition of well-modedness as given in [1]. Standard TuLiP
comes with a terminating sound and complete Lookup and Inference AlgoRithm
(LIAR). Assuming that all credentials are traceable and given a well-moded query,
the soundness result guarantees that LIAR produces only true answers. The com-
pleteness results on the other hand guarantees that if there exists an answer to the
query then LIAR will be able to construct the proof of it. In this paper we do not
give the detailed description of LIAR. For a formal description, we refer the reader
to [6].

4 System Architecture

In this section we describe the architecture of Standard TuLiP. First, we present
the system components and their role in the system. Then we show how the sys-
tem components interoperate and we give a concrete example demonstrating this.
Finally, we present the requirements Standard TuLiP has on the underlying infras-
tructure. In particular, we discuss how public identifiers can be mapped to physical
infrastructure nodes.

System Components. In Standard TuLiP we identify the following components: (a)
the LIAR engine, (b) the credential server (c) the User Client application, and (d)
the mode register (see Fig. 2).

By default, every system user should run an instance of the LIAR engine, but
other approaches are also possible. For instance, there can be a preselected set of

Trust Management in P2P Systems Using Standard TuLiP 9

Fig. 2: Components of Standard TuLiP.

nodes having LIAR functionality, or there can even be only one instance of LIAR
serving the whole community. The LIAR algorithm is implemented using YAP Pro-
log [14] with the external interface written in Python. This makes deployment of
LIAR easier but allows us to preserve the original logic programming formalism in
the “reasoning” part of the system. LIAR operates as an HTTP server when answer-
ing the queries and as a client when fetching credentials from credential servers. We
give a more detailed functional description of LIAR later in this section.

Every user who wants to store her own credentials must run an instance of the
credential server. The credential server responds to requests coming from LIAR
engines and returns credentials satisfying the request. The credential server is im-
plemented as a simple HTTP server (written in Python) and is internally connected
to a credential store, which stores all user’s credentials.

The User Client is a GUI application (written in Flash and Python) and provides
user-friendly interface to other Standard TuLiP system components. In particular,
the User Client is used for: generating the user private-public key pair, setting up and
maintaining the location of the user’s credential server, importing user credentials,
and querying the Standard TuLiP system. Optionally, additional applications in the
form of plugins can be provided. For instance one could provide a plugin having
a graphical credential editor functionality. Notice that the User Client application
itself does not allow the user to perform any action on a remote resource. Its main
purpose is to let the user query the system.

Another important component of Standard TuLiP is the mode register, which is a
centralised service where all the allowed role names in use and their corresponding
modes are stored. The mode register is implemented as an HTTP server with a user-
friendly web-interface. The role names and the associated modes are provided as
Security Assertion Markup Language (SAML) assertions [16]. The mode register
responds to SAML attribute queries. The answer is returned in the form of an SAML
response [16] containing one or more assertions, each of which corresponds to the

10 M. Czenko et al.

credential atom and its associated mode(s). The mode register uses version 2.0 of
the SAML standard [18].

LIAR. The basic functionality of LIAR is to wait for queries and respond to them.
Recall that Standard TuLiP queries are themselves XML documents.

When LIAR receives a query from the User Client it first checks the signature
on it and then is starts the evaluation process. Every time additional credentials are
needed, LIAR fetches them from the location indicated by the mode information
obtained by combining the information on the query and the mode register. Actually,
by embedding the mode information in the credentials and the queries, the mode
register does not have to be contacted in order to determine the storage location
for the credentials defining a given role name. The credentials are fetched from the
corresponding credential server by sending a so called credential request. Credential
requests are XML documents specifying which credentials should be fetched. LIAR
validates the received credentials by checking the signatures and validity intervals.

After evaluating the query, LIAR sends to the User Client the so called Stan-
dard TuLiP response (XML) document containing all answers, i.e. all instances of
the query conditions satisfying the query. The top-level element of the Standard
TuLiP response is the response XML element. Besides the unique ID and IssueIn-
stant XML attributes it also contains InResponseTo XML attribute containing the
value of the ID XML attribute from the corresponding query.

The following example demonstrates the system behaviour in the response to a
concrete query.

Example 6. Assume we have the following set of credentials (logic notation):

discount(ii,eStore-pub-key,X) ← accredited(io,accBoard-pub-key,Y),student(oi,Y,X). (1)

accredited(io,accBoard-pub-key,ut-pub-key). (2)

student(oi,ut-pub-key,alice-pub-key). (3)

This is the same set of credentials as in Example 4 but now including the mode argu-
ment indicating the mode of the corresponding role name. Figure 3 presents the steps
performed by LIAR during evaluation of the query ← discount(ii,eStore-pub-key,
alice-pub-key)). In Fig. 3 the rounded rectangles represent the (credential servers
of) entities, the arrows represent the messages being sent, and numbers above the
arrows represent their order. Below, the flow of the algorithm is presented for the
given query.

We assume that the instance of the LIAR algorithm is run by a user Jeroen with
the public identifier jeroen-pub-key. In message 1 LIAR receives the query in
which the query issuer (Jeroen) asks whether the user with public id alice-pub-key
has a discount at the internet store identified by eStore-pub-key. The query is signed
by the query issuer. Before evaluating the query, LIAR checks the signature on the
query, then it checks the mode of the atom discount(ii,eStore-pub-key,alice-pub-
key). As the mode associated with role name discount is ii, LIAR knows that it
should try to fetch credentials matching this query from eStore. This is done in mes-
sages 2 and 3 . After receiving the matching credentials, LIAR validates each of
them, which means that it checks the signatures and the validity intervals, and then
every successfully validated credential rule is instantiated by unifying its head with

Trust Management in P2P Systems Using Standard TuLiP 11

the query atom. In our case only one credential is fetched (credential (1)) and the
resulting instance is:

discount(ii,eStore-pub-key,alice-pub-key) ←
accredited(io,accBoard-pub-key,Y),student(oi,Y,alice-pub-key).

We see that in order to prove the initial query, now LIAR has to evaluate the fol-
lowing one:

← accredited(io,accBoard-pub-key,Y),student(oi,Y,alice-pub-key).

In evaluating this (sub) query, LIAR checks the mode associated with role name
accredited and notices that the associated mode value is io, meaning that the related
credentials (if any) should be stored by accBoard. The accBoard is queried in mes-
sage 4 , resulting in the fact that credential (2) is fetched with message 5 , it is val-
idated, and then its instance - accredited(io,accBoard-pub-key,ut-pub-key) - is used.
As the body of credential (2) is empty, the query reduces to← student(oi,ut-pub-key,
alice-pub-key). The mode of role name student is oi which means that the defining
credentials should be stored by their subject: alice in this case. Alice is contacted by
LIAR with message 6 , and asked for all oi credentials she stores. In the response,
in message 7 , credential (3) is returned and then validated. This credential unifies
with student(oi,ut-pub-key,alice-pub-key) and at this point the original query has
been evaluated successfully. The information about successful evaluation, contain-
ing only one condition corresponding to the discount(ii,eStore-pub-key,alice-pub-
key)) credential atom, is sent to the User Client in message 8 .

Fig. 3: Credential Discovery with LIAR

Public Identifiers. Recall that Standard TuLiP uses public keys as (public) identi-
fiers of the users. In Example 6 we have silently assumed that there exists a map-
ping between public identifiers and concrete network addresses. Indeed, Standard
TuLiP requires an underlying service to map public identifiers to concrete network
addresses.

12 M. Czenko et al.

Distributed Hash Tables (DHT) [19] represent a class of overlay P2P systems
with key-based routing functionality. They provide a look up service similar to a
hash table. In DHT systems, a network location of a resource is determined by a
global unique name of that resource.

Standard TuLiP can be built on top of a DHT system or an another overlay P2P
network providing lookup service based on global unique identifiers. We assume
that every underlying infrastructure node stores one or more user records contain-
ing at the least the current network address of the user, and the network address of
the user’s credential server. The user should be able to securely change the network
address of her credential server. The user’s current network address should be syn-
chronised with the actual network address of the User Client application acting in
the name of the user.

5 Using Standard TuLiP

In using the Standard TuLiP Trust Management system we can distinguish the fol-
lowing actions that may be performed by the user: (1) issuing credentials, (2) send-
ing the queries and receiving the responses, and (3) revoking credentials and user
public identifiers. Below we briefly summarise issues raised by these actions.

Writing Credentials. When issuing credentials one must be sure that any new
credential is traceable. The User Client application helps in writing credentials by
checking that the credentials are traceable. Before accepting the credential, it checks
if for every mode value of the credential head there exists a permutation of the cre-
dential atoms occurring in the credential body and the corresponding mode values
such that the credential is traceable. If this is not the case, the credential is refused.
If for a mode value of the head there exists more than one valid mode assignment
for the credential atoms in the body, the user will be allowed to choose a preferred
one.

The User Client application determines the modes of the credential atoms by
querying the mode register. The selected modes are then embedded into the actual
credentials so that the mode register does not have to be referred to during query
evaluation later. Recall that the assigned modes determine the actual credential stor-
age location. The User Client application automatically uploads the new credentials
to the suitable credential server (as given by the user record associated with the
given public id).

When a user introduces a credential with a new role name, it has to be registered
with the mode register. The mode register can be accessed through the TuLiP home-
page, or by using a dedicated application. Each user can request the registration
of additional role names and the corresponding modes by requesting it through the
TuLiP web-site.

Writing Queries. Every Standard TuLiP query must be well-moded. Therefore,
before sending a query, the User Client application checks for well-modedness. If

Trust Management in P2P Systems Using Standard TuLiP 13

some credential atoms in the query have more than one mode value, it is possible
that there will be more than one variant of mode assignment that makes the query
well-moded. In such a case, the User Client lets the user to select the preferred mode
assignment (e.g. the one that is likely to yield the correct answer most efficiently).
The User Client application sends the query to the LIAR engine associated with the
user issuing the query and presents the received response.

Revoking Credentials and Public Identifiers. Recall that in Standard TuLiP, the
user’s public identifier is the user’s public key. The use of public keys as user identi-
fiers is convenient as everyone can create her public identifier by simply generating
a new key pair. Additionally one can sign the credentials and queries using the cor-
responding private key. This makes the validation possible without the need for any
external public key infrastructure. When using public keys as user identifiers, how-
ever, one has to deal with the problems of key revocation. Notice that when the user’s
private key becomes compromised, it is not sufficient to revoke all the credentials
issued by this user, but the user’s public identifier should not be used anymore. Cur-
rently, Standard TuLiP does not support any revocation mechanisms other than the
validity period specified in each credential. In the future, we plan to extend LIAR,
so that it checks if the selected credential is not revoked. Instead of revoking all
the user’s credentials, it is also possible to revoke the user id. This can be done by
issuing an id revocation certificate which would state that the given public identifier
cannot be trusted any longer to sign the credentials. A comprehensive revocation
framework for Standard TuLiP is our future work.

6 Related Work

The first trust management systems, PolicyMaker [4], KeyNote [3], and SDSI/SPKI
[5], as well as e.g. [11, 9] focus on the language design without fully supporting
credential distribution. In most systems, public keys are used as the identifiers of
the users. This is in contrast to the traditional authorisation mechanisms based on
identity-based public-key systems like X.509. The RT family of Trust Management
Languages [13, 12] is the first in which the problem of credential discovery is given
an extensive treatment. In particular, in [13], a type system is introduced in order to
restrict the number of possible credential storage options. In [23] Winsborough and
Li identify the features a “good” language for credentials should have, one of those
being the support for distributed storage. As we show in [6], our system is at least
as flexible as RT and all storage possibilities given by RT can be replicated here.

PeerTrust [15] is a Trust Negotiation language where the problem of the dis-
tributed storage is also taken into account. PeerTrust is based on first order Horn
clauses of the form lit0 ← lit1, . . . , litn, where each liti is a positive literal. PeerTrust
supports distributed storage by allowing each literal in a rule to have an additional
Issuer argument: liti @ Issuer. Issuer is the peer responsible for evaluating liti. The
Issuer arguments do not, however, say where a particular credential should be stored
but only who is responsible for evaluating it. It means that PeerTrust makes a silent

14 M. Czenko et al.

assumption that the credentials are stored in such a way that Issuer can find the
proof, but it gives no clue of how this should be done. PeerTrust considers only the
first two requirements mentioned in the introduction.

From the more practical approaches (but with very strong theoretical foundation
as well), Bertino et al. developed Trust-X - a trust negotiation system [2]. Trust-X
uses the X -TNL trust negotiation language for expressing credentials and disclo-
sure policies. Trust-X certificates are either credentials or declarations. Credentials
state personal characteristics of the owner and are certified by a Credential Author-
ity (CA). Declarations also carry personal information about its owner but are not
certified. Trust-X does not deal with the problem of distributed credential storage
and discovery. It means that the second and third requirement is not supported.

The eXtensible Access Control Markup Language (XACML) [17] supports dis-
tributed policies and also provides a profile for the role based access control
(RBAC). However, in XACML, it is the responsibility of the Policy Decision Point
(PDP) – an entity handling access requests – to know where to look for the missing
attribute values in the request. The way missing information is retrieved is applica-
tion dependent and is not directly visible in the supporting language. Thus, XACML
does not support the second and the third requirement presented in Section 1.

7 Conclusions and Future Work

In this paper we presented the architecture of Standard TuLiP - a logic based Trust
Management system. Standard TuLiP follows the Trust Management approach in
which security decisions are based on security credentials which are issued by dif-
ferent entities and stored at different places. Standard TuLiP basic constituents are
the Standard TuLiP Trust Management language, the mode system for the credential
storage, and a terminating sound and complete Lookup and Inference AlgoRithm
(LIAR) which guarantees that all required credentials can be found when needed.

Standard TuLiP is decentralised. Every user can formulate his/her own secu-
rity policy and store credentials in the most convenient and efficient way for him-
self. Standard TuLiP does not require a centralised repository for credential storage,
nor does it rely on any external PKI infrastructure. Standard TuLiP credentials are
signed directly by their issuers so that no preselected Certification Authority (CA)
is needed.

With this we show that it is possible to design and implement a Trust Manage-
ment system that is theoretically sound yet easy and efficient to deploy and use.
Future Work. Standard TuLiP can be extended in several directions. Firstly, we
plan to extend expressiveness of the Standard TuLiP Trust Management language,
so that it can be used to express non-monotonic policies. Although Standard TuLiP
can already be used as a Trust Negotiation language, we also plan to add a direct
support to Trust Negotiation at the language level.

Trust Management in P2P Systems Using Standard TuLiP 15

References

1. K. R. Apt and I. Luitjes. Verification of logic programs with delay declarations. In AMAST,
volume 936 of LNCS, pages 66–90. Springer, 1995.

2. E. Bertino, E. Ferrari, and A. C. Squicciarini. Trust-X : A Peer-to-Peer Framework for Trust
Establishment. IEEE Trans. Knowl. Data Eng., 16(7):827–842, 2004.

3. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust-Management
System, Version 2. IETF RFC 2704, September 1999.

4. M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In Proc. 17th IEEE
Symposium on Security and Privacy, pages 164–173. IEEE Computer Society Press, May
1996.

5. D. Clarke, J.E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Certificate Chain
Discovery in SPKI/SDSI. Journal of Computer Security, 9(4):285–322, 2001.

6. M. R. Czenko and S. Etalle. Core TuLiP - Logic Programming for Trust Management. In Proc.
23rd International Conference on Logic Programming, ICLP 2007, Porto, Portugal, volume
4670 of LNCS, pages 380–394, Berlin, 2007. Springer Verlag.

7. Freeband Communication. I-Share: Sharing resources in virtual communities for storage,
communications, and processing of multimedia data.
URL: http://www.freeband.nl/project.cfm?language=en&id=520.

8. S. L. Jarvenpaa, N. Tractinsky, and M. Vitale. Consumer Trust in an Internet Store. Inf. Tech.
and Management, 1(1-2):45–71, 2000.

9. T. Jim. SD3: A Trust Management System with Certified Evaluation. In Proc. IEEE Sympo-
sium on Security and Privacy, pages 106–115. IEEE Computer Society Press, 2001.

10. F. Lee, D. Vogel, and M. Limayem. Adoption of informatics to support virtual communi-
ties. In HICSS ’02: Proc. 35th Annual Hawaii International Conference on System Sciences
(HICSS’02)-Volume 8, page 214.2. IEEE Computer Society Press, 2002.

11. N. Li, B. Grosof, and J. Feigenbaum. Delegation Logic: A Logic-based Approach to Dis-
tributed Authorization. ACM Transactions on Information and System Security (TISSEC),
6(1):128–171, 2003.

12. N. Li, J. Mitchell, and W. Winsborough. Design of a Role-based Trust-management Frame-
work. In Proc. IEEE Symposium on Security and Privacy, pages 114–130. IEEE Computer
Society Press, 2002.

13. N. Li, W. Winsborough, and J. Mitchell. Distributed Credential Chain Discovery in Trust
Management. Journal of Computer Security, 11(1):35–86, 2003.

14. LIACC/Universidade do Porto and COPPE Sistemas/UFRJ. YAP Prolog, April 2006.
15. W. Nejdl, D. Olmedilla, and M. Winslett. PeerTrust: Automated Trust Negotiation for Peers

on the Semantic Web. In Secure Data Management, pages 118–132, 2004.
16. OASIS. Assertions and Protocols for the OASIS: Security Assertion Markup Language

(SAML) V2.0, March 2005.
17. OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0

URL: http://www.oasis.org, Feb 2005.
18. OASIS. SAML V2.0 Executive Overview, April 2005.
19. S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-

addressable network. In SIGCOMM, pages 161–172, 2001.
20. W3C. XML-Signature Syntax and Processing, Feb 2002.
21. W3C. Extensible Markup Language (XML) 1.1 (Second Edition), Sep 2006.
22. W3C. Namespaces in XML 1.0 (Second Edition), Aug 2006.
23. W. H. Winsborough and N. Li. Towards Practical Automated Trust Negotiation. In POLICY,

pages 92–103. IEEE Computer Society Press, 2002.

16 M. Czenko et al.

