
The AI Hardness of CAPTCHAs does not imply
Robust Network Security

Allan Caine and Urs Hengartner

University of Waterloo, Canada
{adcaine, uhengart}@cs.uwaterloo.ca

Abstract. A CAPTCHA is a special kind of AI hard test to prevent
bots from logging into computer systems. We define an AI hard test to
be a problem which is intractable for a computer to solve as a matter of
general consensus of the AI community. On the Internet, CAPTCHAs
are typically used to prevent bots from signing up for illegitimate e-
mail accounts or to prevent ticket scalping on e-commerce web sites. We
have found that a popular and distributed architecture for implementing
CAPTCHAs used on the Internet has a flawed protocol. Consequently,
the security that the CAPTCHA ought to provide does not work and
is ineffective at keeping bots out. This paper discusses the flaw in the
distributed architecture’s protocol. We propose an improved protocol
while keeping the current architecture intact. We implemented a bot,
which is 100% effective at breaking CAPTCHAs that use this flawed
protocol. Furthermore, our implementation of the improved protocol
proves that it is not vulnerable to attack. We use two popular web
sites, tickets.com and youtube.com, to demonstrate our point.

1 Introduction

A CAPTCHA is a special kind of AI hard test used to prohibit bots from gain-
ing unauthorized access to web sites and computer systems. Using a definition
similar to von Ahn et al. [1], we say that an AI problem is hard if it is the
general consensus of the AI community that the problem is intractable when
using a computer to solve it. CAPTCHAs are used by Yahoo! [2] to prevent bots
from signing up for illegitimate e-mail accounts. Similarly, e-commerce web sites
like the Minnesota Twins Major League Baseball Club [3] use CAPTCHAs to
prevent ticket scalping by bots.

The word CAPTCHA stands for Completely Automated Public Turing
test to tell Computers and Humans Apart. Its basic operation is illustrated
in Fig. 1. The central idea is simple: it is assumed that only humans can solve
CAPTCHAs; bots cannot. There are two principals involved: the prover and
the verifier. The verifier is an automated system. It generates a CAPTCHA
image and evaluates the prover’s response. If the prover’s response is correct,
the prover is admitted to the next step of the authentication process. If the
prover’s response is incorrect, the verifier bars the prover from proceeding any

2 Allan Caine and Urs Hengartner

Fig. 1. The verifier issues a visual test to the prover. In general, only human provers
can solve CAPTCHAs.

further. If the prover is a human, the prover will generally succeed in solving
the CAPTCHA; if the prover is a bot, the bot will generally fail.

There exists a popular architecture used by web sites that use CAPTCHAs
for security. In this architecture, the security task is distributed amongst two
servers: the Sales Server and the CAPTCHA Server. The Sales Server is re-
sponsible for the conduct of the e-commerce sales transaction; the CAPTCHA
Server for generating the CAPTCHA image. This distributed approach is used
so that many Sales Servers can utilize a single CAPTCHA Server.

In this paper,

– we show that the current protocol used in this architecture is insecure;
– we propose an improved and secure protocol while preserving the current

distributed architecture;
– using a bot that we implemented, we prove that the current protocol is indeed

insecure and subject to attack; and
– we prove that our implementation of our proposed protocol is indeed effective

against the same attack.

The authors von Ahn et al. [1] suggest that a good CAPTCHA must be AI
hard. Our research shows that their suggestion must be qualified. True, an AI
hard CAPTCHA is a necessary condition but it is not a sufficient condition for
robust network security. If the protocol is set up improperly, the CAPTCHA can
be broken by an attacker with greater ease all things being equal. The problem
rests with what we call a repeating CAPTCHA. Repeating CAPTCHAs are
discussed in Sect. 2.

Our paper is organized as follows: Sect. 2 discusses the popular architecture
and its insecure protocol. We show that the insecurity is the result of a repeat-

The AI Hardness of CAPTCHAs does not imply Robust Network Security 3

ing CAPTCHA. Section 3 discusses the attack, which exploits the insecurity
identified in Sect. 2.

In Sect. 4 we propose a new and secure protocol. Our proposed protocol
eliminates the repeating CAPTCHA. However, the current architecture is pre-
served.

Our experimental results are given in Sect. 5. It consists of three major sub-
sections: the experimental results from our bot’s attack on e-commerce web sites
using a major U.S. ticket selling agent as our example; a demonstration of our
implementation of our proposed protocol; and a discussion of youtube.com’s
insecure protocol.

Section 6 discusses related work, and Sect. 7 sets out our conclusions.

2 Current Protocol

The current protocol is given in Fig. 2. It is used by web sites that employ
CAPTCHAs for security and it involves three entities: the Sales Server, the
CAPTCHA Server, and the Client. We learned of this protocol by examin-
ing HTML source code using tickets.com and youtube.com as our primary
examples.

Sales Server : Chooses random solution s (2.1)

Sales Server → Client : Ec

�
s||ID||MACh(s||ID)

�
(2.2)

Client → CAPTCHA Server : Ec

�
s||ID||MACh(s||ID)

�
(2.3)

CAPTCHA Server : Generates CAPTCHA image with solution s (2.4)

CAPTCHA Server → Client : CAPTCHA image (2.5)

Client → Sales Server : s′, Ec

�
s||ID||MACh(s||ID)

�
(2.6)

Sales Server : Proceed if s = s′ ∧ ∃ ID (2.7)

Fig. 2. The current and popular protocol

The Sales Server is responsible for processing the sale, selecting a solution for
the CAPTCHA image, and evaluating the Client’s response. The CAPTCHA
Server is responsible for generating the CAPTCHA image. The Client is the
purchaser. The servers share a secret called c, which is used in a symmetric en-
cryption function Ec(·) such as AES in CBC mode with a random initialization
vector; and a shared secret h, which is used in a message authentication code
MACh(·) such as HMAC [4]. There is a pre-existing session identifier ID. The
servers trust each other, because the introduction of any distrust between the
servers would undermine their effectiveness in providing the intended security.
Finally, we note that the session ID is encrypted; otherwise, an attacker could

4 Allan Caine and Urs Hengartner

build a database that would map IDs to CAPTCHAs and their solutions with
the view to an on-line attack on the Sales Server.

If s = s′, the Sales Server allows the sale to proceed; otherwise, the sale is
prohibited. The sale is also prohibited if the message from the Client to the Sales
Server has expired. The message expires when the session ID expires. Fig. 3
shows the protocol graphically. The numbers correspond to the transaction
numbers in Fig. 2.

Fig. 3. Diagram of the current protocol

There is a flaw in message (2.3). An attacker can repeatedly send the message
to the CAPTCHA Server, because the CAPTCHA Server does not keep state.
The CAPTCHA Server is unaware that it has previously seen message (2.3).
Each time the CAPTCHA Server receives message (2.3) from the Client, the
CAPTCHA Server responds with a new CAPTCHA image.

Repeatedly sending message (2.3) generates a set of similar CAPTCHAs.
We say that two CAPTCHAs are similar if they have the same solution, but
they differ in terms of the transformation used. Fig. 4 illustrates two similar
CAPTCHAs. The CAPTCHAs in Figs. 4(a) and 4(b) both have the solution
8370193, but each is rendered in a different font and a different background.
We define a CAPTCHA Server which can be made to produce a set of similar
CAPTCHAs a repeating CAPTCHA. We show in Sect. 3 that a repeating
CAPTCHA places the attacker in a very advantageous position.

(a) First instantia-
tion of 8370193

(b) Second instanti-
ation of 8370193

Fig. 4. Two similar CAPTCHAs.

The AI Hardness of CAPTCHAs does not imply Robust Network Security 5

3 Attack

There are two steps in the attack: 1) collecting a representative sample of the
characters used in the CAPTCHA and; 2) downloading a set of similar CAPT-
CHAs by repeatedly sending message (2.3) to the CAPTCHA Server and look-
ing for patterns across that set of images.

We take tickets.com, a major U.S. ticket agent, as our example. They use
CAPTCHAs to prevent ticket scalping by bots. The characters that are used
in their CAPTCHAs are the digits zero to nine. Before we start running our
attack, we download a number of CAPTCHAs and cut out the digits until a
representative for each digit is found. Such a set is depicted in Fig. 5. These
representative digits are called templates. Fig. 5 shows the templates after the
noise has been removed by visual inspection on a commercially available photo
editor. The templates are said to be clean. The templates are stored for re-use.

Fig. 5. Clean Templates

Once clean templates have been generated, the attack itself can begin. The
bot downloads from the CAPTCHA Server a CAPTCHA image such as the
one depicted in Fig. 4(a). Using a heuristic, the bot crops back the image as
shown in Fig. 6(a). Next, the digits need to be segmented from each other.

(a) The cropped image.
It reads 8370193.

Target

Position 1 2 3 4 5 6 7

(b) The seven target images produced from Fig. 6(a)

Fig. 6. The character segmentation process.

Since the digits are proportionally spaced, it is not possible to segment the
digits by simply dividing up the image shown in Fig. 6(a) into equal segments
along its width. Rather, the segmentation is done using k-means clustering [5]

6 Allan Caine and Urs Hengartner

with the centroids equally spaced across the width of the image in Fig. 6(a).
This segmentation produces seven target images as shown in Fig. 6(b).

The last step is to use the normalized cross correlation [5] to recognize the
digit itself. We apply the normalized cross correlation, which gives us a score,
S, each time we compare a template to a target image. The score is computed
as

S = max
(u,v)

{ ∑
x,y

(
I(u − x, v − y) − Īu,v

)
T̂ (x, y)∑

x,y

(
I(u − x, v − y) − Īu,v

)2 ∑
x,y T̂ (x, y)2

}
(3.1)

where T̂ is the template, I is the target, and Ī(u,v) is the local average. The
local average means the average of all of the pixels of I falling under T̂ taking
(u, v) as the upper left-hand corner of the template.

For example, if we compare the ten templates against a target image that
actually contains a six, we get the scores shown in the bar chart of Fig. 7. As
can be seen, template six obtains the best score. So, the target image would be
judged to be a six.

Fig. 7. The correlation scores for matching each of the templates 0 to 9 against a
target known to contain a 6.

Yet, this method is not perfect. Sometimes a target image may be misin-
terpreted. For example, 3’s are similar to 8’s; 1’s are similar to 7’s; and 5’s are
similar to 6’s. Also as can be seen in Fig. 6(b), the target images contain noise,
which may adversely affect the correlation results.

Even so, the attack is not thwarted. By sending Ec

(
s||ID||MACh(s||ID)

)
to

the CAPTCHA Server again, a similar CAPTCHA image can be downloaded
as illustrated in Fig. 4(b). Through every iteration, tallies are kept of the best
interpretations. A sample final result is given in Fig. 8. Voting for more than
one possibility in any given character position is evidence of occasional misin-
terpretation. For example, in the Position 1 histogram given in Fig. 8, we can
see voting for the 6 and the 7, although most of the votes were given to the
6 — the correct interpretation. Since there is a clear favorite interpretation in

The AI Hardness of CAPTCHAs does not imply Robust Network Security 7

each of the seven positions, an attacker can determine the correct solution to
the CAPTCHA. In Fig. 8, the correct solution is 6674846.

Fig. 8. The voting results on CAPTCHA “6674846”

4 Proposed Protocol

Essentially, the current protocol has one major downfall: the CAPTCHA Server
depends upon the Sales Server to determine the solution to the CAPTCHA
image. The attacker exploits this by sending message (2.3) repeatedly to the
CAPTCHA Server. The attacker collects a set of similar CAPTCHA images,
which she uses to break the CAPTCHA. The problem is cured by reassigning
responsibilities. The CAPTCHA Server determines the solution instead of the
Sales Server. Our proposed protocol is given in Fig. 9.

Sales Server → Client : Ec

�
ID||MACh(ID)

�
(4.1)

Client → CAPTCHA Server : Ec

�
ID||MACh(ID)

�
(4.2)

CAPTCHA Server : Chooses solution s, and generates a CAPTCHA

image with that solution (4.3)

CAPTCHA Server → Client : CAPTCHA image, Ec

�
s||ID||MACh(s||ID)

�
(4.4)

Client → Sales Server : s′, Ec

�
s||ID||MACh(s||ID)

�
(4.5)

Sales Server : Proceed if s = s′ ∧ ∃ ID (4.6)

Fig. 9. Our Proposed Protocol.

8 Allan Caine and Urs Hengartner

We make largely the same assumptions as we do in Sect. 2: there is a symmet-
ric encryption function Ec(·) using a shared secret c; a message authentication
code MACh(·) using a shared secret h. The variable s is the chosen solution; s′

is the Client’s attempt at the solution. There is a pre-existing session identifier.
To determine if the client has passed or failed the CAPTCHA test, the

Sales Server confirms the message’s authenticity and integrity. If s = s′ and
the Session ID returned by the CAPTCHA Server is the same as the current
Session ID, then the Client passes the CAPTCHA test; otherwise, the Client
fails. For the sake of clarity, we show the protocol in diagrammed form with the
numbers in Fig. 10 corresponding to the message numbers in Fig. 9.

Fig. 10. Diagram of the proposed protocol

As pointed out earlier in Sect. 2, it is imperative that the ID be encrypted.
Otherwise, the attacker can off-line query the CAPTCHA server for CAPT-
CHAs, solve them, build a database that maps IDs to CAPTCHAs and their
solutions, and use this database in an on-line attack on the Sales Server

5 Experimental Results

This section consists of three major subsections. The first subsection discusses
our attack. We prove that the security vulnerability in Sect. 2 truly exists.
The second subsection demonstrates our implementation of our proposed pro-
tocol mentioned in Sect. 4 to show that the attack can be defeated. The third
subsection discusses youtube.com’s repeating CAPTCHA and the security vul-
nerability it implies.

5.1 Attacking tickets.com

In our experiments designed to attack tickets.com, we wanted to find the
answers to the following questions:

The AI Hardness of CAPTCHAs does not imply Robust Network Security 9

1. Is the attack as mentioned in Sect. 3 a realistic way of attacking CAPT-
CHAs?

2. Can the attack be conducted with a high probability of success?
3. If the attack is largely successful, does it place all of the clients of tickets.

com in jeopardy or just some of them?

We built a bot to test our ability to break tickets.com’s CAPTCHA. We
found that

1. It took on average 9.89 seconds and 7.2 queries to the CAPTCHA Server
to break the CAPTCHA.

2. The attack was 100% successful.
3. All of the clients of tickets.com are at risk.

Setup of the Experiment For ethical reasons, we did not actually attack
tickets.com’s clients directly over the Internet. Rather, we downloaded 20
different CAPTCHAs with identical solutions for each of the 40 experiments
we conducted. As it turned out, downloading 20 images for each experiment
was generally more than necessary. On average, only the first 7.2 images were
needed by the bot to break the CAPTCHA.

The images were stored on our computer. Each image was given an index
number reflecting the image’s download order. Our bot strictly obeyed this
ordering when fetching the images for processing.

Our bot ran on a Pentium 4 running at 3.2 GHz. The bot was written in
the Matlab programming language. We used MATLAB Version 7.0.4.365 (R14)
Service Pack 2 together with the statistics and image processing toolboxes. We
used the statistics toolbox to have access to the k-means function, and the
image processing toolbox for access to the image read function. The data we
used can be found on our web page [6]. This web page periodically refreshes to
reveal a new set of similar CAPTCHAs.

Our Bot’s Success Rate and Running Time We ran 40 simulated attacks.
They were all successful taking an average of 7.2 queries to the CAPTCHA
Server. The minimum number of queries was 4; the maximum 20. Our results
are summarized in Fig 11(a). It shows the average number of correct characters
in all 40 attacks versus the number of queries made to the CAPTCHA Server.
After one query, the bot knows 5.4 characters on average. After ten queries, the
bot knows 6.925 characters on average with 38 out of the 40 experiments solved
correctly. After examining 15 CAPTCHAs, our bot has determined the solution
in all cases but the 11th. In retrospect, our bot had actually determined the
correct answer in experiment 11 after examining 15 CAPTCHA images but it
decided to increase its confidence in its answer by examining the remaining five
CAPTCHAs.

While we were impressed with the bot’s 100% success rate, we wanted to
ensure that the bot was breaking the CAPTCHA in a reasonable period of time.
It is the case that tickets.com allows the client only 60 seconds to solve the
CAPTCHA. Our bot must break the CAPTCHA within that time limit.

10 Allan Caine and Urs Hengartner

(a) Average number of characters determined ver-
sus number of CAPTCHAs examined.

(b) Time to download and process images

Fig. 11. Experimental Results N = 40

The bot’s average processing time is 7.85 seconds implying that 52.2 seconds
are left to download on average 7.2 images. Each image is about 2.3 kB. Based
on downloading 800 images, our experimental results show that it takes on
average 0.2836 seconds to download one image. So, it would take 2.0419 seconds
on average to download 7.2 images, which is far less time than the 52.2 seconds
available.

Finally, we took the actual time reported by the bot to process the images
and added 0.2836 seconds for each image that the bot reported having had
processed. Our results are illustrated in Fig. 11(b). The average time to both
download and process the images is 9.89 seconds, well within the 60-second time
limit. Even in the worst case, the total time taken in experiment 11, including
an estimate of network time, is 27.51 seconds. We claim that if the average

The AI Hardness of CAPTCHAs does not imply Robust Network Security 11

download time of 0.2836 seconds per image prevails in an actual direct attack,
our bot would succeed in breaking every CAPTCHA.

Risk to ticket.com’s Clients Our experiments show that when a Client is
making a purchase through tickets.com, the Client always calls a script lo-
cated at http://pvoimages.tickets.com/buy/NVImageGen to fetch the CAPT-
CHA image. Our data set [6] is quite broad. It covers Major League baseball
games, rock concerts, circuses, and children’s entertainment to name a few.
While it is true that the name of the e-commerce web site is passed to the
CAPTCHA Server through the URL, this information is not used in determin-
ing the CAPTCHA image. As illustrated in Fig. 4(a), tickets.com’s CAPT-
CHAs are always characterized by a seven-digit number written in some font
with a mesh of lines behind it. It is our view that our attack would succeed
against any e-commerce web site supported by tickets.com.

5.2 Implementation of our Proposed Protocol

To demonstrate that our proposed protocol works, we implemented it as if it
were being used on an e-commerce web site with anti-scalping security. We
assumed that the Client had already selected her purchases and was ready to
place her order.

We wrote two scripts in php: SalesServer.php and CAPTCHAserver.php.
Each script emulates the roles of the Sales Server and CAPTCHA Server re-
spectively. To avoid confusing the client as she moves from server to server, we
used an embedded frame (iframe). In HTML, an iframe is essentially a browser
within the Client’s main browser window. The servers’ output is directed to the
iframe — not to the main browser window itself. Consequently, as the servers
take turns responding to the Client’s input, the change in servers is not reflected
in the Client’s address bar. From the Client’s perspective, she would see herself
as always being on the Sales Server’s web page albeit with dynamic content. On
the other hand, we admit that if the Client’s browser does not support iframes,
then the Client would be able to see the change in her browser’s address bar.

Fig. 12(a) shows the opening page on wrapper.html [7]. At this point, mes-
sage (4.1) of Fig. 9 is sent. The text inside the beveled border is actually code
produced by SalesServer.php within the iframe. In practice, the beveled bor-
der would not normally be visible to the Client. The beveled border is being
shown for the sake of clarity.

When the Client clicks on the BUY!!! button shown in Fig. 12(a), mes-
sages (4.2), (4.3), and (4.4) of Fig. 9 are sent. In Fig. 12(b), the HTML form
shown within the beveled border is produced by the CAPTCHAserver.php script.
Yet, the Client’s address bar indicates that she is still on wrapper.html. So,
while we have preserved the distributed architecture, we made it invisible to
the Client.

The client enters her response to the CAPTCHA image and clicks on the
SEND SOLUTION button shown in Fig. 12(b). With this mouse click, mes-
sage (4.5) of Fig. 9 is sent. As illustrated in Fig. 12(c), if the Client enters the

12 Allan Caine and Urs Hengartner

(a) Sales Server Page (b) CAPTCHA Server Page

(c) Success (d) Failure

Fig. 12. The HTML Pages from our implementation of our proposed protocol

correct solution, she receives an affirmative message and credit card information
would now be taken from the Client. If the Client enters the wrong solution,
the Client receives a negative indication from the Sales Server as in Fig. 12(d).
Of course, in an actual implementation, the Sales Server would do more than
simply post pass or fail messages in the window of the Client’s browser.

If the Client should attempt to run the CAPTCHA Server script directly,
the CAPTCHAserver.php script will detect that either message (4.2) is phony
or non-existent. In either case, the script redirects the Client’s browser to
wrapper.html. Since the default of wrapper.html’s iframe is the Sales Server,
the redirect is tantamount to compelling the Client to always go to the Sales
Server first before going the CAPTCHA Server. The Client must follow the pro-
tocol. Unlike the current protocol, steps in our protocol cannot be circumvented
or skipped to the attacker’s advantage. They must be done in order from first
to last.

Alternatively, even if an attacker should succeed in circumventing the mes-
sage authentication, the script unconditionally chooses a new and random so-
lution. The algorithm is given in the right-hand column of Fig. 13. The CAPT-
CHA will never repeat.

The AI Hardness of CAPTCHAs does not imply Robust Network Security 13

As earlier indicated in Sect. 5.1, at least four similar CAPTCHAs are needed
by our bot to defeat tickets.com’s CAPTCHA. Our attack would not suc-
ceed against a non-repeating CAPTCHA. So, our attack has been defeated and
tickets.com’s security vulnerability fixed using our proposed protocol. Yet, it
remains to be seen if their CAPTCHA could be defeated without depending
upon a repeating CAPTCHA; tickets.com’s CAPTCHA may still be vulner-
able to other kinds of attacks.

Figure 13 gives the two php scripts as pseudo code. In the interests of clarity,
we have left out the message authentication steps. We use c for the shared
secret, and ID for the session identifier. The SalesServer.php script keeps
state. Keeping state can be justified because the Sales Server needs keep track
of the merchandise in the Client’s electronic shopping basket anyway. On the
other hand, CAPTCHAserver.php is stateless.

SalesServer.php

– Open the session
– if 6 ∃ ID

– Generate session identifier ID
– Echo out an HTML form with
– Ec(ID) in a hidden field
– a BUY!!! button
– action attribute CAPTCHAserver.php.

– if ∃ ID
– Compute Dc

�
Ec(s)

�

– If s = s′ then admit the client; otherwise
reject.

– The script stops

CAPTCHAserver.php

– Choose a random s
– Compute Ec(s)
– Generate CAPTCHA image
– Echo out an HTML form with

– Ec(s) in a hidden field,
– a text field for the client’s solution (s′),
– the CAPTCHA image,
– a SUBMIT SOLUTION button
– action attribute of SalesServer.php

Fig. 13. Algorithms for SalesServer.php and CAPTCHAserver.php. The HMAC steps
have been omitted.

Hidden fields in the HTML forms are used for aesthetic reasons so that the
form does not show the cypher text in the Client’s browser window and possibly
confuse the Client. It is not a security threat that the Client has a copy of the
cypher text. If the Client attempts to alter the cypher text, the HMAC test of
the server receiving the message will detect the alteration.

The advantage of our solution is that it maintains the existing architecture
as closely as possible. As well, the distributed nature of the architecture is
normally not apparent to the Client. On the other hand, we do admit that
our proposed protocol requires two trips to the CAPTCHA Server: one trip to
fetch the iframe and a second trip to fetch the CAPTCHA image. In the current
protocol, only one trip is necessary. In addition, the CAPTCHA image must
be of the form uniqueName.jpeg; some background process must generate those

14 Allan Caine and Urs Hengartner

unique file names. Also, a background process must periodically clear away any
old image files.

5.3 youtube.com

A new and popular web site for personal video sharing is called youtube.
com. Our research shows that they too have a repeating CAPTCHA. They
leave themselves vulnerable to attack. Their vulnerability seems to stem from
a bug in their CAPTCHA server. To get their CAPTCHA to repeat, it is a
simple matter of clicking on the “Can’t read?” link soon after the sign up page
loads [8]. Clicking the “Can’t read?” link is analogous to sending message (2.3).
Consequently, youtube.com has a repeating CAPTCHA.

Curiously, the window of opportunity eventually closes after a few minutes.
Their CAPTCHA reverts from a repeating CAPTCHA to a non-repeating
CAPTCHA. We suggest that youtube.com needs to examine their CAPTCHA
server with a view to correcting this bug and resolving this security vulnerabil-
ity.

6 Related Work

This paper focuses strictly upon text-based types of CAPTCHAs. However,
there are other types of CAPTCHAs in existence. Examples of these other
types can be found at The CAPTCHA Project [9].

We do not claim to be the first to have ever broken a CAPTCHA. It is
unlikely that we will be the last. An extensive list of broken CAPTCHAs can
be found at PWNtcha [10].

A major criticism of visual CAPTCHAs is that they are difficult if not
impossible for the visually impaired to use. This point is brought up by Fukuda
et al. [11]. From the authors’ report, it does not appear that there currently
exists any adequate solution to this problem without compromising security.

Mori and Malik [12] provide a detailed discussion regarding how they broke
two other CAPTCHAs: GIMPY and EZ-GIMPY. [9] Our approach differs from
theirs in that while they are looking at shape cues, we looking at correlation-
based matching. They used tests to hypothesize the locations of characters while
we used k-means clustering. Since GIMPY and EZ-GIMPY use English words,
Mori and Malik could use that fact essentially as a conditional probability
to determine the likelihood of the existence of a particular letter given the
neighboring letters. On the other hand, we had no such similar advantage.
The appearance of a digit in one location did not suggest the likelihood of a
particular digit appearing in another location.

We also found it interesting that Mori and Malik [12] had a copy of the EZ-
GIMPY and GIMPY software. Consequently, they could generate an unlimited
number of CAPTCHA images. It is our contention that this kind of unlimited
access can be a CAPTCHA’s undoing. Indeed, our attack succeeded in part

The AI Hardness of CAPTCHAs does not imply Robust Network Security 15

because we had virtually unlimited access to the CAPTCHA server at tickets.
com. Yet, for us, we broke tickets.com’s CAPTCHA in spite of not being able
to see their code.

Another ingenious way to solve CAPTCHAs is through free porn [13]. The
user is enticed into the site, but the user’s progress is occasionally blocked.
The site presents the user with a CAPTCHA to be solved. However, the user
is actually solving a CAPTCHA on an unrelated site. The attacker can then
break the CAPTCHA on the other unrelated site.

There is quite a range of opinion on what constitutes success in breaking a
CAPTCHA. The authors von Ahn et al. [14] suggest a success rate nearly as
good as a human, while the W3C suggest a success rate as little as 10% [11].
Mori and Malik [12] declared success over GIMPY, the more difficult version of
EZ-GIMPY, with a success rate of only 33%. We suggest that these differences
in opinion stem from each author’s implied threat model. For example, in our
particular case, we suggest that a scalper needs a success rate near 100%, be-
cause the scalper must be able to buy up tickets quickly as soon as they go on
sale. Otherwise, the scalper may be stuck with a small handful to tickets, which
have not affected the market price and which are worth little more than their
face value.

Finally, we agree fully with von Ahn et al. [14] that researching and breaking
CAPTCHAs is a win-win scenario for both the AI community and for practi-
tioners in network security. For the AI community, this research is profitable in
the study of computer vision and object recognition. For the network security
community, this research is beneficial in terms of designing better access control
measures, which use AI as a means of telling humans and computers apart.

7 Conclusions

In this paper, we have shown that it is a security flaw to make the CAPTCHA
Server dependent upon an outside entity to determine the solution for a CAPT-
CHA. This kind of protocol may lead to a repeating CAPTCHA. A repeating
CAPTCHA may place the attacker in an advantageous position. We have also
shown that it is important that web sites which employ CAPTCHAs ensure
that no bugs exist in their scripts, which might cause the CAPTCHA to repeat
even for a period of time.

We both proposed and implemented a protocol which can resist the outlined
attack. We discovered that the attack is one which can succeed against any cus-
tomer of tickets.com. This happens because all of tickets.com’s customers
use the same CAPTCHA server.

We argue that our results are important in terms of the issues of trust and
assurance. For example, in the context of ticket selling, a seller will not use a web
site if the seller believes that she will expose herself to ticket scalping. Buyers,
on the other hand, will become disillusioned with a web site if all of the best
tickets are generally unavailable for sale. Companies like tickets.com must

16 Allan Caine and Urs Hengartner

protect its principals from ticket scalping through the use of authentication
protocols like CAPTCHAs.

Yet, for a CAPTCHA to be useful, it must be AI hard. In this paper, we
have shown that while AI hardness is a necessary condition, it is not a sufficient
condition for having a good CAPTCHA. A poorly implemented CAPTCHA
can be AI softened; it becomes relatively easy to break. We have shown that a
CAPTCHA that can be made to repeat itself is insecure. The attacker can use
the numerous examples as a kind of sanity check before offering a response.

Acknowledgements

The authors wish to thank the reviewers for their helpful comments and feed-
back. We extend our thanks to Ian Goldberg for his suggestion to use embedded
frames in our implementation, and to Richard Mann for his comments and sug-
gestions regarding the computer vision portion of our paper.

References

1. von Ahn, L., Blum, M., Langford, J.: Telling humans and computers apart auto-
matically. Commnications of the ACM 47(2) (2004) 57 – 60

2. Yahoo! Inc.: Yahoo e-mail sign up. http://www.yahoo.com (2007)
3. Minnesota Twins Major League Baseball: Minnesota twins electronic ticketing.

http://minnesota.twins.mlb.com/ (2007)
4. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message au-

thentication. Internet RFC 2104 (1997)
5. Lewis, J.P.: Fast template matching. Vision Interface (1995) 120 – 123
6. Caine, A., Hengartner, U.: Data set. http://www.cs.uwaterloo.ca/∼adcaine/

php/demo.htm (2007)
7. Caine, A., Hengartner, U.: Implementation of proposed protocol. http://www.

cs.uwaterloo.ca/∼adcaine/php/wrapper.html (2007)
8. Youtube: Sign up page for youtube.com. http://www.youtube.com/signup

(2007)
9. The CAPTCHA Project at Carnegie Mellon University. http://www.captcha.

net/ (2006)
10. PWNtcha captcha decoder. http://sam.zoy.org/pwntcha/ (2006)
11. Fukuda, K., Garrigue, M.A., Gilman, A.: Inaccessibility of CAPTCHA. W3C

(2005)
12. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual

CAPTCHA. In: CVPR. Volume 1. (2003) 134–141
13. Doctorow, C.: Solving and creating captchas with free porn. http://boingboing.

net/2004/01/27/solving and creating.html (2004)
14. von Ahn, L., Blum, M., Hopper, N., Langford, J.: CAPTCHA: Using hard AI

problems for security. Eurocrypt (2003)

