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Abstract. We study the Λµ-calculus, extended with explicit substitution, and

define a compositional output-based translation into a variant of the π-calculus

with pairing. We show that this translation preserves single-step explicit head

reduction with respect to contextual equivalence. We use this result to show op-

erational soundness for head reduction, adequacy, and operational completeness.

Using a notion of implicative type-context assignment for the π-calculus, we also

show that assignable types are preserved by the translation. We finish by showing

that termination is preserved.

Introduction

Over the last two decades, the π-calculus [24] and its dialects have proven to give an

interesting and expressive model of computation. Encodings of variants of the pure λ-

calculus [14, 11] started with [24], which quickly led to more thorough investigations

in [29, 31, 10] and also in the direction of object oriented calculi [21, 31].

For these encodings, over the years strong properties have been shown like sound-

ness, completeness, termination, and full abstraction. The strength of these results has

encouraged the investigation of encodings into the π-calculus of calculi that have their

foundation in classical logic, as done in, for example, [22, 8, 15]. From these papers it

might seem that the encoding of such calculi comes at a great price; for example, to

encode typed λµ [25], [22] needs to consider a version of the π-calculus that is not

only strongly typed, but, moreover, allows reduction under guard and under replication;

[8] shows preservation of reduction in X [9] only with respect to ⊑c, the contextual

ordering; [15] defines a non-compositional encoding of λµµ̃ [17] that strongly depends

on recursion, and does not regard the logical aspect at all.

In this paper, we will show that it is possible to define a intuitive, natural, logical

encoding of λµ into the pure π-calculus that satisfies all the good properties. Although

one could justifiably argue that calculi like X and λµµ̃ are more expressive and, through

their direct link to Gentzen’s LK [18], more elegantly deal with negation and classical

logic, they are also both symmetric in nature, which makes an accurate treatment in the

π-calculus more intricate, as can be observed in [8, 15]. Moreover, as argued in [6, 5,

7], only for λµ is it possible to define a filter semantics, which seems to strengthen the

case for that calculus even more.



Reduction in λµ is confluent and non-symmetric; in fact, the main reduction rule

(and the only cause for non-termination, for example) is the β-reduction rule of the

λ-calculus. In addition to that rule, λµ has structural rules, where elimination takes

place for a type that is not the type of the term itself, but rather for one that appears

in one of the alternative conclusions of the shape α:A, where the Greek variable is the

name given to a sub-term. For the naming feature, λµ adds [α]M to the syntax which

expresses that α serves as a pointer to the term M, and pairs this with a notion of µ-

abstraction µα.M, which is used to redirect operands (terms) to those called α. It is this

naming feature, together with the structural rules, that make λµ difficult to reason over;

this is reflected in [20] and [9], where the encoding of λµ into λµµ̃ and X , respectively,

does not respect normal reduction. In contrast, through our translation we will show that

it is possible to give a process semantics for λµ that very clearly shows that the context

switch µα.[β]M is, essentially, just a variant of application.

For the construction of our translation, we will start with that defined in [10], that

interprets terms under output rather than under input, by giving a name to the anony-

mous output of λ-terms; we will combine this with the inherent naming mechanism of

λµ. To accurately define the notion of reduction that is modelled by our translation, we

will define untyped Λµx, a version with explicit substitution [1, 12] of the Λµ-calculus

[19], itself a variant of λµ, together with a notion of explicit head reduction1, where re-

duction is also allowed under abstraction. We will define a new compositional semantic

translation of Λµx into the π-calculus, and show that it fully respects each individual

explicit head reduction step.

Perhaps surprisingly, we do not need to extend the kind of process calculus at all

to accomodate our translation, but can build that directly on the standard π-calculus;

in particular, the naming and µ-binding features of λµ are dealt with by the naming

feature of the translation, and renaming, respectively. The only noteworthy change is

that, when representing application MN, the communication needs to be replicated;

the translation of application and structural substitution is almost identical.

The advantage of considering explicit substitution rather than the standard implicit

substitution as considered in [31] has been strongly argued in [10]. That paper showed

that communication in the π-calculus has a fine semantic level of granularity that ‘faith-

fully mimics’ explicit substitution, and not the implicit one; we stress this point again

with the results presented in this paper.

1 The Λµ calculus

The λµ-calculus is a proof-term syntax for classical logic, expressed in Natural Deduc-

tion, defined as an extension of the Curry type assignment system for the λ-calculus;

we focus on de Groote’s Λµ, a variant that splits the naming from the µ-binding. We

will define in particular Λµx, a variant of Λµ with explicit substitution à la λx [12],

and show our results for Λµx; since Λµx implements Λµ-reduction, this implies that

we also show some of our results for normal reduction (with implicit substitution).

1 Called spine reduction in [10], and head spine-reduction in [32]; we prefer to use the termi-

nology head reduction from [33].



Definition 1 (Syntax of Λµ). The Λµ-terms we consider are defined over the set of

term variables represented by Roman characters, and names, or context variables, rep-

resented by Greek characters, through the grammar:

M, N ::= x | λx.M | MN | µα.M | [β]M
variable abstraction application context abstraction naming

The notion of free and bound names is defined as can be expected, taking both λ
and µ as binders, and we assume Barendregt’s convention.

Simple type assignment for Λµ is defined as follows:

Definition 2 (Types, Contexts, and Typing). 1. Types are defined by:

A, B ::= ϕ | ⊥ | A→B (A 6= ⊥)

where ϕ is a basic type of which there are infinitely many.

2. A context of inputs Γ is a mapping from term variables to types, denoted as a finite

set of statements x:A, such that the subjects of the statements (x) are distinct. We

write Γ1, Γ2 for the compatible union of Γ1 and Γ2 (if x:A1 ∈ Γ1 and x:A2 ∈ Γ2,

then A1 = A2), and write Γ, x:A for Γ, {x:A}.

3. Contexts of outputs ∆, and the notions ∆1, ∆2 and α:A, ∆ are defined similarly.

4. Type assignment for Λµ is defined by the following natural deduction system.

(Ax) :
Γ, x:A ⊢ x : A | ∆

(µ) :
Γ ⊢ M :⊥ | α:A, ∆

Γ ⊢ µα.M : A | ∆
(⊥) :

Γ ⊢ M : A | β:A, ∆

Γ ⊢ [β]M :⊥ | β:A, ∆

(→I) :
Γ, x:A ⊢ M : B | ∆

Γ ⊢ λx.M : A→B | ∆
(→E) :

Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ MN : B | ∆

In Λµ, reduction of terms is expressed via implicit substitution; as usual, M[N/x]
stands for the substitution of all occurrences of x in M by N, and M[N·γ/α], the

structural substitution, stands for the term obtained from M in which every sub-term of

the form [α]M′ is replaced by [γ](M′N).
We have the following rules of computation in λµ:

Definition 3 (Λµ reduction). Λµ has two computational rules:

logical (β) : (λx.M)N → M[N/x]
structural (µ) : (µα.M)N → µγ.M[N·γ/α] γ fresh

as well as the simplification rules:

renaming : µα.[β]µγ.M → µα.M[β/γ]
erasing : µα.[α]M → M if α does not occur in M.

(which are added mainly to simplify the presentation of results), and the contextual

rules. We use →βµ for this reduction, and →∗
βµ for its reflexive and transitive closure.

[26] has shown that typeable terms are strongly normalisable. It also defines exten-

sional rules, that we do not consider here: the model we present through our translation

is not extensional, and we can therefore not show that those rules are preserved by the

translation. That this notion of reduction is confluent was shown in [28].



2 The synchronous π-calculus with pairing

The notion of π-calculus that we consider in this paper is similar to the one used also

in [2], and is different from other systems studied in the literature [21] in that it adds

pairing, and uses a let-construct to deal with inputs of pairs of names that get distributed.

As already argued in [10], the main reason for the addition of pairing [2] lies in

preservation of (implicate, or functional) type assignment; therefore data is introduced

as a structure over names, such that not only names but also pairs of names can be sent.

Definition 4 (Processes). Channel names and data are defined by:

a, b, c, d, x, y, z names p ::= a | a,b data

Notice that pairing is not recursive. Processes are defined by:

P , Q ::= 0 | P |Q | ! P | (νa)P | a(x).P | a〈p〉. P | let x,y = p in P

A context C[·] is a process with a hole [ ]; we call a (x) and a〈p〉 guards, and call P

in a(x). P and a〈p〉. P a process under guard.

We abbreviate a(x). let y,z = x in P by a(y,z). P , as well as (νm) (νn)P by (νmn)P ,

and write a〈p〉 for a〈p〉. 0, and a〈c,d〉.P for a〈 c,d 〉. P . Notice that let x,y = a in P

(where a is not a variable) is stuck.

Definition 5 (Congruence). The structural congruence is the smallest equivalence re-

lation closed under contexts defined by the following rules:

P | 0 ≡ P

P | Q ≡ Q | P

! P ≡ P | ! P

! P ≡ ! P | !P

(P | Q) | R ≡ P | (Q | R)
(νn)0 ≡ 0

(νm) (νn)P ≡ (νn) (νm)P

(νn) (P | Q) ≡ P | (νn)Q if n 6∈ fn(P)
let x,y = a,b in P ≡ P [a/x, b/y]

As usual, we will consider processes modulo congruence and modulo α-convergence:

this implies that we will not deal explicitly with the process let x,y = a,b in P , but

rather with P [a/x, b/y]. We write a b for the forwarder [31] a(x). b〈x〉.
Computation in the π-calculus with pairing is expressed via the exchange of data.

Definition 6 (Reduction). The reduction relation over the processes of the π-calculus

is defined by the following (elementary) rules:

a〈p〉. P | a(x).Q →π P | Q [p/x]
P →π P

′ ⇒ (νn)P →π (νn)P
′

P →π P
′ ⇒ P | Q →π P

′ | Q

P ≡ Q & Q →π Q
′ & Q

′ ≡ P
′ ⇒ P →π P

′

As usual, we write →+
π for the transitive closure of →π, and →∗

π for its reflexive and

transitive closure; we write →π (a) if we want to point out that a synchronisation took

place over channel a, and write →π (=α) if we want to point out that α-conversion has

taken place during the synchronisation.

Notice that a〈b,c〉 | a(x, y).Q →π Q [b/x, c/y] .



Definition 7. 1. We write P ↓ n and say that P outputs on n (or P exhibits an output

barb on n) if P ≡ (νb1) . . . bm(n〈p〉 | Q) for some Q , where n 6= b1 . . . bm.

2. We write P ⇓ n (P may output on n) if there exists Q such that P →∗
π Q and Q ↓ n.

3. We write P ∼C Q (P and Q are contextually equivalent) if, for all C[·], and for all

n, C[P ]⇓ n if and only if C[Q ]⇓ n.

4. We write ∼G (called garbage collection) when we ignore a process because it is

contextually equivalent to 0; notice that ∼G ⊂ ∼C.

The following is a well-known result.

Proposition 8. Let P , Q not contain a, then

(νa) (a〈b〉. P | a(x). Q) ∼C P | Q [b/x]
(νa) (!a〈b〉. P | a(x). Q) ∼C,∼G Q [b/x]

The π-calculus is equipped with a rich type theory [31], from the basic type system

for counting the arity of channels [27] to sophisticated linear types in [22]. The notion

of type assignment we use here is the one first defined in [8] and differs from systems

presented in the past in that types do not contain channel information, and in that it ex-

presses implication, i.e. has functional types and describes the ‘input-output interface’

of a process.

Definition 9 (Context assignment for π [8]). Functional type assignment for the π-
calculus is defined by the following sequent system:

(0 ) :
0 : Γ ⊢ ∆

(!) :
P : Γ ⊢ ∆

! P : Γ ⊢ ∆

(ν) :
P : Γ, a:A ⊢ a:A, ∆

(νa)P : Γ ⊢ ∆

(|) :
P : Γ ⊢ ∆ Q : Γ ⊢ ∆

P | Q : Γ ⊢ ∆

(W ) :
P : Γ ⊢ ∆

(Γ′ ⊇ Γ, ∆
′ ⊇ ∆)

P : Γ
′ ⊢ ∆

′

(in) :
P : Γ, x:A ⊢ x:A, ∆

a(x).P : Γ, a:A ⊢ ∆

(out) :
P : Γ, b:A ⊢ b:A, ∆

(a 6= b)
a〈b〉. P : Γ, b:A ⊢ a:A, b:A, ∆

(pair-out) :
P : Γ, b:A ⊢ c:B, ∆

(b 6∈ ∆; a, c 6∈ Γ)
a〈b,c〉.P : Γ, b:A ⊢ a:A→B, c:B, ∆

(let) :
P : Γ, y:B ⊢ x:A, ∆

(y, z 6∈ ∆; x 6∈ Γ)
let x,y = z in P : Γ, z:A→B ⊢ ∆

We adjust the system for the type constant ⊥ by allowing that only in right-hand

contexts. We write P : Γ ⊢π ∆ if there exists a derivation using these rules that has this

expression in the conclusion.

We should perhaps stress that it is not known if this system has a relation with logic.

The following rule is derivable:

(pair-in) :
P : Γ, y:B ⊢π x:A, ∆

(y, a 6∈ ∆, x 6∈ Γ)
a(x, y). P : Γ, a:A→B ⊢π ∆

The soundness result is stated as:

Theorem 10 (Witness reduction [8]). If P : Γ ⊢π ∆ and P →π Q , then Q : Γ ⊢π ∆.



3 Context and background of this paper

In the past, there have been several investigations of encoding from the λ-calculus [11]

into the π-calculus [24, 29]. Research in this direction started by Milner’s encoding

·M · of λ-terms [24]; Milner’s encoding is input based and the translation of closed

λ-terms respects large-step lazy reduction →L [3] to normal form up to substitution.

Standard operational soundness result hold for this translation, and full abstraction has

been shown by in [29] for an (input-based, as Milner’s) encoding H · 〈·〉, of the lazy

λ-calculus into the higher-order π-calculus (where in synchronisation not names are

sent, but processes).

In [10], we presented a logical, output-based translation · S · that interprets abstrac-

tion λx.M not using input, but via an asynchronous output which leaves the translation

of the body M free to reduce. That translation is defined as:

x S a =
∆ x(w). a〈w〉

λx.M S a =
∆ (νxb) ( M H b | a〈x,b〉)

MN S a =
∆ (νc) ( M H c | c(v,d). (! N H v | d a))

M〈x := N〉 S a =
∆ (νx) ( M H a | ! N H x)

For this translation, [10] showed (using ↑ to denote non-termination)

1. M ↑ ⇒ M S a ↑, and M →xH N ⇒ M S a →∗
π∼C N H a.

2. Γ ⊢ M : A ⇒ M S a : Γ ⊢π a:A.

As argued in [10], to show the above result, which formulates a direct step-by-step

relation between β-reduction and the synchronisation in the π-calculus, it is necessary

to make the substitution explicit. This is a direct result of the fact that, in the π-calculus,

λ’s implicit substitution gets ‘implemented’ one variable at the time, rather than all in

one fell swoop. Since we aim to show a similar result for Λµ, we will therefore define

a notion of explicit substitution. Although termination is not studied in that paper, it

is easily achieved through restricting the notion of reduction in the π-calculus by not

allowing reduction to take place inside processes whose output cannot be received, or

by placing a guard on the replication as we do in this paper.

A natural extension of this line of research is to see if the π-calculus can be used

to interpret more complex calculi as well, as for example calculi that relate not to intu-

itionistic logic, but to classical logic, as λµ, λµµ̃, or X . There are, to date, a number

of papers on this topic. In [22] an interpretation of Call-by-Value λµ is defined that is

based on Milner’s. The authors consider typed processes only, and use a much more

liberal notion of reduction on processes by allowing reduction under guards, making

the resulting calculus very different from the original π-calculus. Types for processes

prescribe usage of names

In [8] an interpretation into π of the sequent calculus X is defined that enjoys

the Curry-Howard isomorphism for Gentzen’s LK [18], which is shown to respect re-

duction. However, this result is only partial, as it is formulated as “if P →X Q, then

P c⊒ Q ”, allowing P to have more observable behaviour than Q . Although in

[8] it is reasoned that this is natural in the context of non-confluent, symmetric sequent

calculi, and is shown that the interpretation preserves types, it is a weaker result than

could perhaps be expected.



An encoding of λµµ̃ is studied in [15]; the interpretation defined there strongly

depends on recursion, is not compositional, and preserves only outermost reduction; no

relation with types is shown.

4 Λµ with explicit substitution

One of the main achievements of [10] is that it establishes a strong link between reduc-

tion in the π-calculus and step-by-step explicit substitution for the λ-calculus, by for-

mulating a result not only with respect to explicit head reduction and the spine encoding

defined there, but also for Milner’s encoding with respect to explicit lazy reduction.

In view of this, we decided to study a variant of Λµ with explicit substitution as

well, and present here Λµx. Explicit substitution treats substitution as a first-class oper-

ator, both for the logical and the structural substitution, and describes all the necessary

steps to effectuate both.

Definition 11 (Λµx). 1. The syntax of the explicit Λµ calculus, Λµx, is defined by:

M, N ::= x | λx.M | MN | M 〈x := N〉 | µα.M | [β]M | M 〈α := N·γ〉

We call a term pure if it does not contain explicit substitution.
2. The reduction relation →x on terms in Λµx is defined as the compatible closure of

the rules (we only show the important ones):
(a) Main reduction rules:

(λx.M)N → M 〈x := N〉 N pure

(µα.M)N → µγ.M 〈α := N·γ〉 N pure

µβ.[β]M → M if β 6∈ fn(M)
µβ.[δ]µγ.M → µβ.M[δ/γ]

(b) Term substitution rules, like

x 〈x := N〉 → N
M 〈x := N〉 → M x 6∈ fv (M)

(c) Structural rules, like

([α]M) 〈α := N·γ〉 → [γ](M 〈α := N·γ〉)N
([β]M) 〈α := N·γ〉 → [β](M 〈α := N·γ〉) α 6= β

M 〈α := N·γ〉 → M α 6∈ fn(M)

(d) Contextual rules, like

M → N ⇒















ML → NL

LM → LN

M 〈x := L〉 → N 〈x := L〉

L 〈α := M·γ〉 → L 〈α := N·γ〉
3. We define →:= as the notion of reduction where the main reduction rules are not

used, and =x as the smallest equivalence relation generated by →x.

Notice that this is a system different from that of [4], where a version with explicit

substitution is defined for a variant of λµ that uses de Bruijn indices [13].

Explicit substitution describes explicitly the process of executing a βµ-reduction,

i.e. expresses syntactically the details of the computation as a succession of atomic

steps (like in a first-order rewriting system), where the implicit substitution of each βµ-

reduction step is split up into reduction steps. Thereby the following is straightforward:



Proposition 12 (Λµx implements Λµ-reduction). 1. M →βµ N ⇒ M →∗
x N.

2. M ∈ Λµ & M →x N ⇒ ∃ L ∈ Λµ [N →∗
:= L ].

The notion of type assignment on Λµx is a natural extension of the system for the

Λµ-calculus of Def. 2 by adding rules (T-cut) and (C-cut).

Definition 13. Using the notion of type assignment in Def. 2, type assignment for Λµx

is defined by adding:

(T-cut) :
Γ, x:A ⊢ M : B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ M 〈x := N〉 : B | ∆

(C-cut) :
Γ ⊢ M : C | α:A→B, γ:B, ∆ Γ ⊢ N : A | γ:B, ∆

Γ ⊢ M 〈α := N·γ〉 : C | ∆

We write Γ ⊢µx M : A for judgements derivable in this system.

We also consider the notion of head reduction;

Definition 14. 1. We define head reduction →H as a restriction of →βµ by removing

the contextual rule M → N ⇒ LM → LN .

2. The Λµ and Λµx head-normal forms are defined through the grammar:

H ::= xM1· · ·Mn (n ≥ 0) | λx.H | [α]H
| µα.H (H 6= [α]H ′ & α 6∈ H ′, H 6= [β]γ.H ′)

3. The head variable of M, hv(M), and head name hn (M) are defined as expected.

The following is straightforward:

Proposition 15 (→H implements Λµ’s head reduction). If M →∗
βµ N with N in head-

normal form, then there exists L in →H-normal form such that M →∗
H L, and L →∗

βµ N,

and none of these last steps are reductions in →H .

Notice that λ f .(λx. f (xx))(λx. f (xx)) →H λ f . f ((λx. f (xx))(λx. f (xx))) and

this last term is in head-normal form, and in →H-normal form.

In the context of head reduction, we can economise further on how substitution is

executed, and perform only those replacements of variables by terms that are essential

for the continuation of reduction. We will therefore limit substitution to allow it to only

replace the head variable or name of a term. We will show that this is exactly the kind

of reduction that the π-calculus naturally encodes.

Definition 16 (Explicit head reduction cf. [10]). We define explicit head reduction

→xH on Λµx as →x, but for:

1. To avoid looping unnecessarily, application of all term substitution (resp. struc-

tural) rules on M 〈x := N〉 (resp. M 〈α := N·γ〉) is only allowed if hv(M) = x
(resp. hn (M) = α); the only exception are the garbage collection rules, i.e. when

x 6∈ fv (M) (α 6∈ fn(M)).



2. We change two cases:

(PQ) 〈x := N〉 → (P 〈x := N〉 Q) 〈x := N〉 (x = hv(P))
(PQ) 〈α := N·γ〉 → (P 〈α := N·γ〉 Q) 〈α := N·γ〉 (α = hn (P))

3. We add two substitution rules:

M 〈x := N〉 〈y := L〉 → M 〈y := L〉 〈x := N〉 〈y := L〉 (y = hv(M))
M 〈α := N·γ〉 〈β := L·δ〉 → M 〈β := L·δ〉 〈α := N·γ〉 〈β := L·δ〉 (α = hn (P))

4. We remove the contextual rules:

M → N ⇒







LM → LN

L 〈x := M〉 → L 〈x := N〉

L 〈α := M·γ〉 → L 〈α := N·γ〉

Notice that, for example, in case 2, the first of the two clauses postpones the substi-

tution 〈x := N〉 on Q until such time that an occurrence of the variable x in Q becomes

the head-variable. It is straightforward to show that this notion of reduction is confluent;

remember that in M 〈x := N〉 and M 〈α := N·γ〉, N is a pure term.

The following proposition states the relation between explicit head reduction, head

reduction, and explicit reduction.

Proposition 17. 1. If M →∗
H N, then there exists L such that M →∗

xH L and N →∗
:= L.

2. If M →∗
H N and N is in →H-normal form, then there exists L such that M →∗

xH L
and N →∗

x L.

3. If M →∗
xH N with M∈Λµ and N is in →xH-normal form, then there exists L∈ Λµ

such that N →:= L, and L is in Λµ head-normal form.

This result gives that we can show our main results for Λµx for reductions that

reduce to head-normal form, that are naturally defined as follows:

Definition 18 (cf. [23]). The normal forms with respect to →xH are defined through:

N ::= xM1· · ·Mn (n ≥ 0) | λx.N | [α]N
| µα.N (N 6= [α]N ′ & α 6∈ N ′, N 6= [β]γ.N ′)
| N 〈x := M〉 (hv(N) 6= x)
| N 〈α := M·γ〉 (hn (N) 6= α)

Notice that, for example, under head reduction, any term of the shape (λx.P)Q in one

of the Mi in xM1· · ·Mn is not considered a redex.

5 A logical translation of Λµx to π

We will now define our logical, output-based translation · · of the Λµx-calculus into

the π-calculus. The main idea behind the translation, as in [10], is to give a name to the

anonymous output of terms; it combines this with the inherent naming mechanism of

Λµ. In the definition below, for readability, we use the symbol • as a channel name to

represent an output that cannot be received from.

Definition 19 (Logical translation of Λµx terms). The translation of Λµx terms into

the π-calculus is defined in Fig. 1.



x a =
∆ x(u). ! u a

λx.M a =
∆ (νxb) ( M b | a〈x,b〉)

MN a =
∆ (νc) ( M c | ! c(v,d). ( v :=N | ! d a))

M 〈x := N〉 a =
∆ (νx) ( M a | x :=N )

x := N =
∆

! (νw) (x〈w〉. N w)

µγ.M a =
∆ (ν•) (( M •)[a/γ])

[β]M a =
∆ M β

M 〈β := N·γ〉 a =
∆ (νβ) ( M a | β := N·γ )

α := N·γ =
∆

! α(v, d). ( v :=N | ! d γ)

Fig. 1. The logical translation

We would like to stress that. although inspired by logic, our translation does not

depend on types at all; in fact, we can treat untypeable terms as well, and can show that

(λx.xx)(λx.xx) a (perhaps the prototype of a non-typeable term) runs to itself (this

already holds for · H · of [10]).

Notice that, as is the case for Milner’s translation and in contrast to the interpre-

tation of [10], a guard is placed on the replicated terms. This is not only done with

an eye on proving preservation of termination, but more importantly, to make sure

that (νx) ( x :=N ) ∼C 0 : since a term can have named sub-terms, the translation

will generate output not only for the term itself, but also for those named terms, so

(νx) ( x := N ) can have observable behaviour, in contrast to [10], where this process

is equivalent to 0 .

We could have avoided the implicit renaming in the case for µ-abstraction and de-

fined µγ.M a = (ν•γ) ( M • | ! γ a), which is operationally (contextually) the

same as (ν•) (( M •)[a/γ]), but then we could not show that terms in head-normal

form are translated to processes in normal form (Lem. 24). There is a strong relation

between this encoding and the abstract machine defined in [16], but for the fact that that

only represents lazy reduction.

Notice that µγ.[β]M a =
∆ (ν•) (( M β)[a/γ]), so had we considered to just

encode λµ, we could have defined

µγ.[β]M a =
∆ (ν•) (( M β)[a/γ]) = M[a/γ] β

so λµ’s binding-and-naming has no representation in π.

Moreover, notice the similarity between

MN a = (νc) ( M c | !c(v,d). ( v :=N | !d a))
M 〈β := N·γ〉 a = (νβ) ( M a | ! β(v,d). ( v :=N | !d γ))

The first communicates N via the output channel c of M, whereas the second com-

municates with all the sub-terms that have β as its output name2. This very elegantly

expresses exactly what the structural substitution does: it ‘connects’ arguments with

the correct position in a term; it also allows us to write (νc) ( M c | c := N·a ) for

MN a. This stresses that the π-calculus constitutes a very powerful abstract machine

indeed: although the notion of structural reduction in λµ is very different from normal

β-reduction, no special measures had to be taken in order to be able to express it; the

2 A similar observation can be made for the encoding of λµ in X ; see [9].



component of our encoding that deals with pure λ-terms is almost exactly that of [10]

(ignoring for the moment that substitution is modelled using a guard, which affects also

the interpretation of variables), but for the use of replication in the case for application.

In fact, the distributive character of structural substitution is dealt with entirely by con-

gruence; see also Ex. 23. As standard in the literature [30], we say that a name a occurs

in the output subject position of a process P if P⇓ a.

Lemma 20. 1. Assume that a is only used for output R , Q . Then:

(νa) (!a(x). P | Q | R) ∼C (νa) (! a(x). P | Q) | (νb) (!b(x). P | R [b/a])
2. Assume that a is only used for input in R , Q . Then:

(νa) (!a〈p〉. P | Q | R) ∼C (νa) (!a〈p〉. P | Q) | (νb) (!b〈p〉. P | R [b/a])
3. (νa) ( P a | ! a(p). Q) ∼C (νa) ((νb) ( P b | ! b(p). Q) | ! a(p). Q)

To underline the significance of our results, notice that the translation is not trivial,

since λy.y and λyz.y are interpreted by, respectively, the processes (νyb) (y(u). !u b |
a〈y,b〉) and (νyb) ((νzb) (y(u). !u b | b〈z,b〉) | a〈y,b〉), that differ under ∼C.

It is straightforward to show that typeability is preserved:

Theorem 21 (Type preservation). If Γ ⊢µx M : A | ∆, then M a : Γ ⊢π a:A, ∆.

PROOF. By induction on the structure of derivations in ⊢µx; we only show one case:

(C-cut) Then M = P〈α := Q·γ〉 and we have both Γ ⊢µx P : C | α:A→B, ∆ and Γ ⊢µx

Q : A | γ:B, ∆ for some B. By induction, there existD1 :: P a : Γ ⊢π a:C, α:A→B, ∆

and, since a is fresh, D2 :: Q w : Γ ⊢π w:B, ∆, and we can construct

D1

P a : Γ ⊢ a:B→A, ∆

D2

Q w : Γ ⊢ w:B, ∆
(out)

b〈w〉. Q w : Γ ⊢ b:B, w:B, ∆
(ν)

(νw)(b〈w〉. Q w) : Γ ⊢ b:B, ∆
(!)

! (νw)(b〈w〉. Q w) : Γ ⊢ b:B, ∆

(0 )
0 : w:A ⊢ w:A

(out)
γ〈w〉 : w:A ⊢ γ:A, w:A

(in)
d γ : d:A ⊢ γ:A

(!)
!d γ : d:A ⊢ γ:A

(|)
b :=Q | !d γ : Γ, d:A ⊢ γ:A, b:B, ∆

(pair-in)
α(b,d). ( b :=Q | !d γ) : Γ, α:B→A ⊢ γ:A, ∆

(!)
! α(b,d). ( b :=Q | ! d γ) : Γ, α:B→A ⊢ γ:A, ∆

(|)
P a | !α(b,d). ( b :=Q | ! d γ) : Γ, α:B→A ⊢ γ:A, ∆

(ν)
(να) ( P a | α := Q·γ ) : Γ ⊢ γ:A, ∆

and (να) ( P a | α := Q·γ ) = P〈α := Q·γ〉 a .

We will now show that our translation fully respects the explicit reduction→x, mod-

ulo contextual equivalence, using renaming of output and garbage collection. Renaming

is defined and justified via the following lemma.

Lemma 22 (Renaming lemma). 1. (νa) (!a e | M a) ∼C M[e/a] e.

2. (νa) (!a e | M b) ∼C M[e/a] b.

We will use ∼R if we want to emphasise that two processes are equivalent just using

renaming and write →∼ ∗
π for the relation →∗

π ∪ ∼G ∪ ∼R.

Using this lemma, we can show the following:



(λx.x)(µα.[α](λq.q)(µβ.[α]λy.y)) a =
∆

(νc) ((νxb) ( x b | c〈x,b〉) | ! c(v,d). ( v :=µα.[α](λq.q)(µβ.[α]λy.y) | ! d a)) → (c)

(νxb) ( x b | x :=µα.[α](λq.q)(µβ.[α]λy.y) | ! b a) | (νc) (! c(v, d). · · ·) ≡,=
∆

,∼G

(νxb) (x(u). ! u b | ! (νw) (x〈w〉. µα.[α](λq.q)(µβ.[α]λy.y) w) | ! b a) → (x)

(νwb) (! w b | µα.[α](λq.q)(µβ.[α]λy.y) w | ! b a) | (νx) (! (νw) (x〈w〉. · · ·)) =
∆

,∼G ,=α

(ναb) (! α b | (ν•) ( [α](λq.q)(µβ.[α]λy.y) •) | ! b a) =
∆

,≡

(ναb) (! α b | (νc) ((νqb1) ( q b1 | c〈q,b1〉) |

! c(v, d). ( v :=µβ.[α]λy.y | !d α)) | ! b a) → (c),∼G,=
∆

(ναb) (! α b | (νqb1) (q(u). ! u b1 |

! (νw) (q〈w〉. µβ.[α]λy.y w) | ! b1 α) | ! b a) → (q),∼G ,=
∆

,≡

(ναb) (! α b | λy.y α | ! b a) =
∆

,∼R ,∼G (νyb) ( y b | a〈y, b〉)

Fig. 2. The translation of a term with double output

Example 23. The translation of a β-redex reduces as:

(λx.P)Q a =
∆

(νc) ((νxb) ( P b | c〈x,b〉) | ! c(v,d). ( v :=Q | ! d a)) →π (c)
(νbx) ( P b | ! b a | x := Q ) | (νc) (!c(v,d). ( v :=Q | !d a)) ∼G

(νbx) ( P b | ! b a | x := Q ) ∼R (22)
(νx) ( P a | x :=Q ) =

∆ P〈x := Q〉 a

This implies that β-reduction is implemented in π by at least one π-reduction.

On the other hand, µ-reduction consists of a reorganisation of the structure of a term

by changing its applicative structure. Since application is essentially modelled through

parallel composition, this implies that the translation of a µ-redex is essentially dealt

with by congruence and renaming. For example,

(µβ.[β]P)Q a =
∆

(νc) ((ν•) (( P β)[c/β]) | ! c(v,d). ( v :=Q | !d a)) ∼C (=α)
(νβ) ( P β | ! β(v,d). ( v :=Q | !d a))

We can show, using Lem. 20, this last process is contextually equivalent to

(νγ) ((νβ) ( P γ | ! β(v,d). ( v :=Q | !d a)) | !γ(v,d). ( v :=Q | ! d a))

=
∆ P〈β := Q·a〉Q a

(notice that we have separated out the outside name of the term P, being β, which we

renamed to γ; this leaves two context substitutions, one dealing with the occurrences of

β inside P, and one with γ3).

Translations of terms in →xH-normal form are in normal form as well.

Lemma 24. N is a →xH-nf implies N a is irreducible.

To illustrate the expressiveness of our translation, we give some examples:

Example 25. 1. In Fig. 2 we run (λx.x)(µα.[α](λq.q)(µβ.[α]λy.y)) a,

3 This corresponds to the behaviour of rule ( †imp-outs) in X .



as an example of a term that generates two outputs over α, and highlights the need

for the repeated use of replication.

2. PQR a =
∆ ,≡ (νcc′) ( P c′ | ! c′(v,d). ( v :=Q | ! d c) |

!c(v,d). ( v :=R | !d a))
so components of applications are placed in parallel under the translation. Similarly,

M〈α := N·β〉〈γ := L·δ〉 a = (νγα) ( M a | α := N·β | γ := L·δ )

so repeated structural substitutions are also placed in parallel under the translation

and can be applied independently.

6 Soundness, completeness, and termination

As in [24, 31], we can now show a reduction preservation result for explicit head re-

duction for Λµx, by showing that · · preserves →xH up to →∼ ∗
π . Since reduction in

interpreted terms takes place over hidden channels exclusively, by Lem. 8, →∼ ∗
π ⊆∼C,

so we could have shown the following result using ∼C as well, but the current formula-

tion is more expressive; notice that we do not require the terms to be closed.

Theorem 26 (Soundness). M →xH N ⇒ M a →∼ ∗
π N a.

PROOF. We show only the interesting cases.

x 〈x := N〉 → N : x〈x := N〉 a =
∆

(νx) ( x a | x :=N ) ≡
(νx) (x(u). !u a | (νw) (x〈w〉. N w) | x :=N ) →π (x)
(νw) (!w a | N w) | (νx) ( x :=N ) ∼R,∼G N a

(PQ) 〈x := N〉 → (P 〈x := N〉Q) 〈x := N〉, x = hv(P) : (PQ)〈x := N〉 a =
∆

(νx) ((νc) ( P c | ! c := Q·a ) | x :=N ) ∼C (20)
(νx) ((νc) ((νx) ( P c | x :=N ) | ! c := Q·a ) | x :=N ) =

∆

(νx) ((νc) ( P 〈x := N〉 c | ! c := Q·a ) | x :=N ) =
∆ ,≡

(νx) ( P 〈x := N〉Q a | x :=N ) =
∆

(P 〈x := N〉Q)〈x := N〉 a

(µβ.M)N → µγ.M 〈β := N·γ〉, γ fresh : (µβ.M)N a =
∆

(νc) ((ν•) (( M •)[c/β]) | !c(v,d). ( v :=N | !d a)) =α

(νβ) ((ν•) ( M •) | ! β(v,d). ( v :=N | !d a)) ≡,=
(ν•) (((νβ) ( M • | ! β(v,d). ( v :=N | !d γ)))[a/γ]) =

∆

µγ.M〈β := N·γ〉 a

([α]M) 〈α := N·γ〉 → [γ](M 〈α := N·γ〉)N : ([α]M)〈α := N·γ〉 =
∆

(να) ( M α | !α(v,d). ( v :=N | !d γ)) ∼C (20)
(νc) ((να) ( M c | !α(v,d). ( v :=N | !d γ)) |

! c(v,d). ( v :=N | ! d γ)) =
∆

(νc) ( M 〈α := N·γ〉 c | !c(v,d). ( v :=N | !d γ)) =
∆

[γ]M〈α := N·γ〉N

The main soundness result is formulated as:



Theorem 27 (Operational Soundness for →xH). 1. M →∗
xH N ⇒ M a →∼ ∗

π N a.

2. M ↑xH ⇒ M a ↑π.

Since →∼ ∗
π ⊆ ∼C, which is symmetric, Thm. 27 gives that · · preserves =xH up to

∼C.

Corollary 28 (Adequacy). M =xH N ⇒ M a ∼C N a.

This result states that our encoding gives, in fact, a semantics for the explicit head

reduction for Λµ. As for a full abstraction result, note that we cannot show the reverse of

Cor. 28, since different unsolvable terms like (λx.xx)(λx.xx) and (λw.www)(λw.www)
are not equivalent under =xH , but are contextually equivalent under · · , i.e. have the

same observable behaviour, as is illustrated by the fact that their translations never ex-

hibit an output.

We can also show operational completeness for →xH.

Theorem 29 (Operational completeness for →xH). If M a →π P then there exists

N such that P →∼ ∗
π N a, and M →xH N.

This in turn can be used to show:

Lemma 30. 1. Let M be a term in Λµx. If M a →∗
π N a then M →∗

xH N.

2. Let M ∈ Λµ, i.e. a (pure) Λµ-term. If M a →π P then there exists N ∈ Λµx and

L ∈ Λµ such that P ∼C N a, and M →∗
xH N and N →∗

:= L.

We can show the following termination results:

Theorem 31 (Termination). 1. If M →∗
xH N, with N in explicit head-normal from,

then M a ↓π.

2. If M →∗
βµ N, with N in head-normal from, then M a ↓π.

3. Let M ∈ Λµ. If M a ↓π then there exists N ∈ Λµx and L in →λµ-head normal

form such that M a ∼C N a, and M →∗
xH N and N →∗

:= L.

Notice that, in the first case, the normal form of M a need not be N a; a similar

observation can be made with respect to Milner’s encoding. Notice also that this result

is stronger than the formulation of the termination result for Milner’s encoding in [31],

since it models reduction to head-normal form, not just normal form. However, since

terms that have a normal form have a head-normal form as well, Thm. 31 immediately

leads to:

Corollary 32. If M ↓βµ, then M a ↓π.

Conclusions

We have defined an output based, logic inspired translation of untyped Λµ with explicit

substitution into the π-calculus and shown that it respects step-by-step head-reduction,

assignable types, head-conversion, and termination. We conjecture that we can show

the results shown above also for head reduction with implicit substitution; for this we



would need to show that, if M →∗
:= N, then M a ∼C N a. It seems that the approach

via Levy-Longo trees is more suitable for that.

There are many alternatives to the approach we have chosen to follow here; espe-

cially our choice for contextual equivalence (inspired by λ-calculus semantics) could

be replaced by branching semantics, or a bisimulation-like equivalence. The natural

question is then, which of our properties would be affected? Would branching and non-

branching equivalences to coincide, maybe by exploiting some confluence properties?

We leave these issues for future work.
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