
Deconstructing behavioural theories of mobility⋆

Julian Rathke and Pawe!l Sobociński

ECS, University of Southampton

Abstract. We re-examine the standard structural operational semantics of
the π-calculus with the view that both process structure and contextual obser-
vational power should play roles in describing the behavioural theory. To that
end we provide a decomposition of the operational semantics of π which al-
lows for a systematic definition of labelled transitions. These are derived from
the calculus’ underlying reduction rules by following the contexts-as-labels
philosophy while being presented using the structural approach. Our novel
transition system refines to a composite description of the standard early lts.
We generalise our technique to higher-order and asynchronous variants.

Introduction

The π-calculus [6,14] is a foundational model for the study of mobile processes.
It has become one of the most well-known and widely studied process calculi
and extensions of it are now beginning to be used in a variety of application
areas. Each of these applications is typically based on specialising the π-calculus
to the particular domain; usually by extending one or more features of the
language. However, a weak point of this approach is that with each change, the
behavioural theory of the language must be reworked in order to accommodate
the new language features. This can be a non-trivial task and often leads to ad
hoc solutions based upon a tailor-made lts. This is an undesirable situation
and our goal is thus to develop methods by which suitable labelled transition
systems for general process languages can be systematically defined based upon
both structural rules [15] and contextual observable power [12]. This will be
difficult to achieve in general but in this paper we take our first step by showing
our approach to the problem as it applies to some π-calculus variants.

It may seem churlish of us to re-examine the well-established and finely
crafted labelled transition semantics of the π-calculus [14] but we believe a
deconstructive reading of these will deepen the understanding of ltss more
generally. In particular, we challenge the notion that structure is paramount in
giving operational semantics (cf. Plotkin’s sos [15]) and argue that if observa-
tional power is also taken in to consideration when building labelled transition
systems then the transition systems can be defined in a systematic manner such
that the resulting bisimulation equivalences are better suited for characterising

⋆ Research partially supported by EPSRC grant EP/D066565/1.

507

508 J. Rathke, P. Sobociński

contextually defined equivalences. In this paper we support this argument by
first considering the π-calculus without matching.

Traditional presentations of the lts of the π-calculus emphasise the struc-
tural approach while neglecting observational power. To exemplify this, consider
the standard early labelled transition rule for output actions:

a!b.P a!b−−→ P

From a purely structural point of view this rule is perfectly sensible. But, if we
consider the underlying reduction rule of π-calculus:

a!b.P ∥ a?x.Q→ P ∥ Q[b/x] (1)

we see that the specific name b is parametric in this rule and does not genuinely
play a structural role in the transition labelled a!b – any context that provides an
input on a enables the passing of any other name. Indeed, in a π-calculus without
name-equality tests there actually is no context that justifies the observation of
the specific name b being communicated and the standard ‘structural’ rule is
inappropriate. This makes it untenable for us to accept the standard label above
as a canonical labelled transition of the π-calculus. However, we can resolve this
by focusing on the structure of the underlying reduction rule: we decompose
the rule in to structure provided by the process and parameters to the rule
provided by the context. In the case for output, the former of these provides a
(partial) labelled transition of the form:

a!b.P a!−→ λX.(P ∥ X(b))

in which the communication, but no further non-structural information, is rep-
resented. Here, the contribution from the context (process Q) is abstracted
away. The complete labelled transition is then obtained by allowing the context
to supply the missing parameters by applying the resulting abstraction above
to an arbitrary process. Doing this may or may not subsequently ascertain the
identity of b, depending on the power of the contexts of the language. Such out-
put transitions do not rely on subtle observational powers regarding matching
– they are generated from the reduction rule alone. A similar approach can be
taken for input transitions and thus an entire lts can be derived systematically
thereby avoiding ad hoc solutions.

The focus on the relationship of an lts with an underlying reduction sys-
tem is clearly shared with previous work on systematically deriving transition
systems from reductions [11, 12, 20, 21]. Indeed, the labels of our derived lts
have corresponding contexts which justify them from the point of view of the
contexts-as-labels approach. This does not hold for the standard early lts as
for instance there is no context that accounts for the bound-output label.

In the above-mentioned approaches, labels are defined to be contexts which
trigger reduction. However, while tied closely to observability, they suffer from

Deconstructing behavioural theories of mobility 509

a lack of a structural presentation. Our lts enjoys the best of both approaches
as it is presented structurally yet satisfies the contexts-as-labels criteria.

Related work We use a meta-syntax based on the simply-typed λ-calculus in
order to denote terms that have a context-component as a result of an interac-
tion. The technically related approaches in the literature include [4, 22] which
use variants of the λ-calculus as a metasyntax. The difference in approaches
arises from different underlying goals: the aforementioned works use the meta-
syntax to study systems of sos rules a posteriori, we are interested in defining
new ltss.

Milner’s [13] approach to capturing the late semantics of π using abstractions
and concretions is closer to our approach in spirit. Abstractions and concretions
are syntactic entities that arise as a result of the complementary roles of inputs
and outputs in π. In contrast to Milner, we do not need to define a special
notion of application and substitution for abstractions and concretions because
our ‘concretions’ retain structural information from the reduction rules which
enables us to use the standard notion of capture-avoiding substitution.

Structure In §1 we introduce our base-calculus, a typed version of π with-
out choice or matching, together with the meta-syntax for expressing partial
interactions. In §2 we give the sos rules which define our lts and show that
ordinary bisimilarity agrees with contextual equivalence. In §3 we show that the
sos methodology can be used also to define the standard early lts. In §4 we
show that the technique naturally generalises to higher-order and asynchronous
settings.

1 A simply-typed π-calculus (without matching)

Here we revisit the syntax, structural congruence and the reduction semantics
of π in a typed setting. We study a core language without choice and without
name equality testing as this serves to demonstrate our point well.

The syntax, the types and the axioms of structural congruence are given in
Fig. 1. A significant departure from the π-calculus is the inclusion of simply-
typed λ-terms and applications in the language. These features are not to be
considered as an extension of π-calculus, rather as a meta-language. λ-bindings
are used as meta-syntax for manipulating terms.

The type system, presented in the upper section of Fig. 2 is very simple: there
are three base types; a name type Nm and a process type Pr and a unit type
1. Our type system is used only in order to formalise the meta-syntax and is
simpler than usual π-calculus type systems based on channel types [18, Part III].
We will consider only typeable terms.

A type context consist of a finite set of names ∆ together with a finite map
Γ from variables to types. We use the notation Γ, x : σ to mean the context Γ
extended with the mapping x !→ σ; implicitly it is always assumed that x is not

510 J. Rathke, P. Sobociński

σ ::= Nm | Pr | 1 | σ→σ

M ::= x | a | 0 | M∥M | M!MM | M?xM | νaM | rp(M) | 1 | λx:σ.M | M(M)

(P∥Q)∥R ≡P∥(Q∥R) P∥Q ≡Q∥P P∥0≡ P

νaνbP ≡ νbνaP νa0≡ 0 νa(P∥Q)≡ P∥νaQ (a/∈P) νaP ≡ νbP [b/a] (b/∈P)

rp(P)≡P∥rp(P) rp(P∥Q)≡ rp(P)∥rp(Q) rp(0)≡ 0

k?xP ≡ k?yP [y/x] (y /∈fr(P)) (λx:σ.M)(N)≡M[N/x] λx:σ.M ≡λy:σ.M[y/x] (y /∈fr(M))

Fig. 1 Types, syntax and structural congruence.

a∈∆

(:Name)
∆;Γ ⊢ a:Nm

Γ (x)=σ

(:Var)
∆;Γ ⊢ x:σ

(:Null)
∆;Γ ⊢ 0:Pr

(:Unit)
∆;Γ ⊢ 1:1

∆;Γ ⊢ k:Nm ∆;Γ ⊢ l:Nm ∆;Γ ⊢ P :Pr

(:OutPref)
∆;Γ ⊢ k!lP :Pr

∆;Γ ⊢ k:Nm ∆;Γ,x ⊢ P :Pr

(:InPref)
∆;Γ ⊢ k?xP :Pr

∆,a;Γ ⊢ P :Pr

(:Nu)
∆;Γ ⊢ νaP :Pr

∆;Γ ⊢ P :Pr ∆;Γ ⊢ Q:Pr

(:Par)
∆;Γ ⊢ P∥Q:Pr

∆;Γ ⊢ P :Pr

(:Rep)
∆;Γ ⊢ rp(P):Pr

∆;Γ,X:σ ⊢ M:σ′

(:λ)
∆;Γ ⊢ λX:σ.M:σ→σ′

∆;Γ ⊢ M:σ→σ′ ∆;Γ ⊢ N :σ

(:App)
∆;Γ ⊢ M(N):σ′

Fig. 2 Type rules of first-order π.

already in the domain of Γ . Similarly, for names, ∆, a = ∆+ {a}. We assume a
countable supply of variables of each type in addition to a separate countable
supply of name constants. We shall use the syntactic convention of a, b for name
constants, k, l for terms of name type (either constants or variables), x, y for
variables of name type, X, Y for variables generally, P, Q for terms of process
type and M, N for general terms.

A closed term V is a typeable term that does not contain free variables –
i.e. there exist ∆,σ such that ∆;∅ ⊢ V :σ (we will often write just ∆ ⊢ V :σ).

Structural congruence ≡ is the smallest relation over terms that satisfies
the axioms and is closed under all the syntactic features of the calculus: the
output prefix, the input binder, the ν binder, the λ-binder and the parallel
composition. Exhibiting the non-computational role of the meta-language, β-
reduction is part of structural congruence. Our language contains three binders.
Substitution within the β-rule is the usual capture-avoiding notion with respect
to all three. Structurally congruent terms have the same type.

Definition 1 (Indexed transition system) An indexed transition system
T has states comprising pairs of a set of names ∆ and a closed term V which
has its free names in ∆; i.e. the states are contained in the set { (∆, V) |
∃σ. ∆ ⊢ V :σ }. We shall use the notation ⟨∆◃ V ⟩ to refer to a state. Our transi-
tion systems are presented in the structural style. We make one non-standard
assumption: we work with abstract syntax and thus assume the implicit pres-
ence of the rule:

Deconstructing behavioural theories of mobility 511

P ′≡P ⟨∆◃ P ⟩
α−→⟨∆′ ◃ Q ⟩ Q≡Q′

(StrCng)
⟨∆◃ P ′ ⟩

α−→⟨∆′ ◃ Q′ ⟩
.

The choice of including the rule (StrCng) in our transition system for the
full structural congruence is a technical convenience rather than necessity and
greatly reduces the number of rules required. This allows us to concentrate on
the more interesting cases and not on the rather standard “structural” rules.
The price is that proofs based on structural induction over terms become less
straightforward. The bare minimum we require in (StrCng) is a congruence which
contains the axioms for alpha- and beta-equivalence. To implement our lts in
the absence of the full ≡ relation one would need to include symmetric rules for
parallel composition and suitable versions of the exisiting rules for replicated
processes. Notably, though, no extra rules for scoping are required as no scope
extrusion is performed in our lts.

Our first transition system is the reduction semantics for the π-calculus: rule

⟨∆◃ a!bP∥a?xQ ⟩→⟨∆◃ P∥Q[b/x] ⟩

and rules which close the relation under parallel composition and the ν binder.
Subject reduction is easily shown using a straightforward induction on the
derivation of the transition.

We can give an alternative definition of the reduction relation as the re-
duction relation of a reactive system [11, 12]; this style of definition makes the
parametric nature of π-reductions more explicit.

We shall first need to define a general notion of context. Contexts are con-
structed in two stages. Firstly, for each type σ, we add σ-typed holes −σ and
n-tuples (for any n ∈ N) to the syntax, together with two additional type rules,
given below. We refer to a term (V1, . . . , Vn) as a pre-context.

M ::= ... | −σ | (M,...,M) (:Hole)
∆;Γ ⊢ −σ:σ

∆ ⊢ V1:σ1 ... ∆ ⊢ Vn:σn (n∈N)
(:Tup)

∆ ⊢ (V1,...,Vn):[σ1...σn]
.

Secondly, given a pre-context of type [σ1 . . .σn] which contains m holes, we
replace each hole symbol with a unique integer from 1 to m. Such a numbering
uniquely determines a word over the set of types; the ith-letter being the type
σ′

i of the ith-numbered hole. We say that the resulting tuple (V ′
1 , . . . , V ′

n) is
a [σ′

1 . . .σ′
m] → [σ1 . . .σn] context. Each hole appears exactly once, thus the

contexts are linear.
Note that ordinary closed terms of type σ are in 1-1 correspondence (and can

be identified with) the [] → [σ] contexts. A π-context is a [Pr] → [Pr] context
that does not contain elements of the meta-language – i.e. does not contain λ-
terms or applications. An evaluation context is a π-context in which the process
hole does not appear within the scope of a prefix. Substitution is syntactic: given
a [−→σ1] → [−→σ2] context g and a [−→σ2] → [−→σ3] context f , f ◦ g is the [σ1] → [σ3]
context obtained by substituting the ith component of g for the ith hole of

512 J. Rathke, P. Sobociński

f . Context substitution may involve free names of g being captured by name
restrictions of f . The input-binder cannot capture because, by construction,
contexts do not contain free variables. A λ-term of type σ′ → σ is inherently
different from a context [σ′] → [σ], since the former is possibly non-linear and
in the latter the substitution is not capture-avoiding.

In order to consider π as a reactive system, we start with a set of name-
indexed reduction rules: pairs la, ra of [Nm, Pr, Nm→Pr]→[Pr] contexts defined

la
def= a!1Nm.2Pr ∥ a?y.3Nm→Pr(y) and ra

def= 2Pr ∥ 3Nm→Pr(1Nm).

We construct the reduction relation as follows: ⟨∆◃ P ⟩→ ⟨∆◃ P ′ ⟩ iff there exist
a name a, a []→ [Nm, Pr Nm→ Pr] context p (the parameters) and an evalua-
tion context d such that P ≡ d◦ la ◦p and P ′ ≡ d◦ ra ◦p. The transition system
defined is the same relation as given by the inductive, structural presentation.

The reduction semantics naturally leads to a notion of contextually-defined
equivalence, the barb-congruence; defined here in the dynamic style [9]. Al-
though the results of [19] suggest that this rendering of contextual equivalence
does not coincides with that in [18] say, it is useful to point out that the results
in [19] depend crucially upon the blurring of the distinction between names
and variables and hence, as suggested in [7], we believe the two approaches to
barbed congruence to coincide in our setting.

We use the notion of strong barb: the ability to immediately input or output
on a particular channel a, denoted↓a. The natural notion of equivalence relation
on states of a typed transition system is an indexed relation.

Definition 2 (Indexed relation) A name-indexed relation R is a set of
triples (∆, P, Q) where ∆ is a finite set of names and P and Q are closed
terms typeable in ∆ (∆;∅ ⊢ P,Q:σ). We write PR∆Q for (∆, P, Q) ∈ R.

Definition 3 (Reduction barbed congruence) Barb-congruence, denoted ≃,
is the largest symmetric relation that, for any P ≃∆ Q is:

(i) Reduction-preserving: if ⟨∆◃ P ⟩ → ⟨∆◃ P ′ ⟩ then there exists a reduction
⟨∆◃ Q ⟩→ ⟨∆◃ Q′ ⟩ such that P ′ ≃∆ Q′;

(ii) Barb-preserving: if ⟨∆◃ P ⟩↓a then ⟨∆◃ Q ⟩↓a;
(iii) A congruence: for all π-contexts ∆′ ⊢ C:[Pr]→[Pr] we have C◦P ≃∆∪∆′ C◦Q.

2 A structured LTS

In this section we shall describe our approach to endowing the π-calculus with
an lts. We split a labelled transition which corresponds to an interaction of
a term with a context into a process-view of the interaction (Fig. 3) and a
context-view (Fig. 4). The complete lts is obtained by combining the two (Fig.
5). We emphasise that this lts is obtained systematically from the underlying

Deconstructing behavioural theories of mobility 513

(In)
⟨ ∆ ◃ a?xP ⟩

a?−−→⟨ ∆ ◃ λx:Nm. P ⟩
(Out)

⟨ ∆ ◃ a!MP ⟩
a!−→⟨ ∆ ◃ λX:Nm→Pr. P∥X(M) ⟩

⟨ ∆ ◃ P ⟩
a!−→⟨ ∆ ◃ T ⟩ ⟨∆ ◃ Q ⟩

a?−−→⟨ ∆ ◃ U ⟩
(Tau)

⟨ ∆ ◃ P∥Q ⟩
τ−→⟨ ∆ ◃ λ·:1. T (U) ⟩

⟨ ∆ ◃ P ⟩
α−→⟨ ∆ ◃ V ⟩

(Par)
⟨ ∆ ◃ P∥Q ⟩

α−→⟨ ∆ ◃ λX. V (X)∥Q ⟩

⟨ ∆,a ◃ P ⟩
α−→⟨ ∆,a ◃ V ⟩ a/∈α

(Res)
⟨ ∆ ◃ νaP ⟩

α−→⟨ ∆ ◃ λX. νaV (X) ⟩

Fig. 3 Process-view fragment (C).

∆⊆∆′ ∆′ ⊢ N :σ

(Inst)
⟨ ∆ ◃ λx:σ.M ⟩

N−→⟨ ∆′ ◃ (λx:σ.M)(N) ⟩

Fig. 4 Canonical context actions (A).

⟨ ∆ ◃ P ⟩
α−→C⟨ ∆ ◃ V ⟩ ⟨ ∆ ◃ V ⟩

β−→A⟨ ∆′ ◃ P ′ ⟩
(Comb)

⟨ ∆ ◃ P ⟩
αβ−−→⟨ ∆′ ◃ P ′ ⟩

Fig. 5 Combined system of complete actions (CA).

reduction rule of the π-calculus and, as such, may appear less elegant than an
optimised or ad hoc system for the same language.

We begin with the process-view lts C, with its structural rules given in Fig.
3. Here and henceforward we shall use the syntactic convention of writing T for
terms of type (Nm→Pr)→Pr and U for terms of type Nm→Pr and omit the types of
variables where they are clear from context. First, we focus on output transi-
tions: a process a!MP offering an output on a channel a, matches a subterm
of the source of the single π-calculus reduction rule. Thus, in some context,
it can engage in an interaction to evolve into (according to the target of the
same reduction rule) a process consisting of its continuation P , in parallel with
the continuation of the interacting context, Q, say. Furthermore, Q, has been
passed the communicated name M . In the process-view, the interacting context
is left unspecified and the target of the transition is a λ-abstraction that binds
a variable of type Nm→ Pr (cf (Out)).

On the other hand, a process offering an input on a channel a can interact
and obtain some unspecified name – the result is a λ-abstraction that binds
a variable of type Nm (cf (In)). A process with both capabilities can perform
the synchronisation by itself – the abstractions are combined via an application
(cf (Tau)). Note that the subtleties of scope extrusion are dealt with cleanly by
leveraging the capture-free substitution of the λ-calculus metalanguage. The re-
maining rules ((Par) and (Res)) account for interaction within evaluation contexts
and are purely structural.

514 J. Rathke, P. Sobociński

Transitions which arise from process terms, as presented in Fig. 3, represent
the part of the interaction which is controlled by the process. In fact, if the sole
purpose of the lts were to structurally define the reduction relation we could
stop here as Fig. 3 fulfills this role. However, in order to characterise a contextu-
ally defined equivalence as a bisimilarity we need to account for the interactions
with arbitrary contexts. The transitions which arise from λ-abstracted terms,
presented in Fig. 4, represent these parts of interactions controlled by the con-
text. Combining the process and context views allows us to completely describe
behaviour in π. We do this in Fig. 5 by a simple conjunction of the two views
of the interaction. The labels γ here are composite actions (αβ) consisting of
both the structural process contribution α and contextual contribution β. The
context-view transitions take a very simple form, that is, applicative labels car-
rying any well-typed process. This quantification may appear rather crude but
it does at least provide a robust means of defining the context contribution
of parameters to the completed labelled transition which is insensitive to sub-
tleties in observational power of the underlying calculus. The same cannot be
said of the standard semantics of π-calculus in which the identities of trans-
mitted names are directly observed. We return to this point in §3 where we
refine CA by limiting the contextual contributions β to a more tractable class
of terms.

Owing to the construction of the lts, there are contexts which witness the
labels of CA in the sense that they induce a reduction with the same result;
moreover they are parametric in the context component provided in A. Let
µa?

def= 1Pr ∥ a!2Nm and µa!
def= 1Pr ∥ a?y.2Nm→Pr(y).

Lemma 4 (Witness contexts)

(i) If ⟨∆◃ P ⟩
αβ−−→CA⟨∆′ ◃ P ′ ⟩ then ⟨∆′ ◃ µα◦(1Pr,β)◦P ⟩→ ⟨∆′ ◃ P ′ ⟩ (α ∈ {a?, a!});

(ii) if ⟨∆◃ P ⟩
τ1−→CA⟨∆◃ P ′ ⟩ then ⟨∆◃ P ⟩→ ⟨∆◃ P ′ ⟩. ⊓&

The converse of the the first part of above lemma does not hold; the context
which triggers a reduction may provide redundant parts not vital to the actual
interaction with the term. However, a converse relationship between reductions
and labels from CA can be established provided the context can be forced to
interact with a term; this is done with the aid of a fresh auxiliary name constant
to provide a barb. This relationship is used in order to prove that contextual
equivalence is contained in bisimilarity (completeness) and in general does not
follow from our systematic derivation.

Lemma 5 (Characterising contexts) Given a name constant u fresh for P ,
let χu(a?b) def= a!b.u!, χu(a!U) def= a?x.u!.U(x) and χu(τ1) def= u!. If

⟨∆◃ P∥χu(γ) ⟩→ ⟨∆◃ P ′′ ⟩ with ⟨∆◃ P ′′ ⟩↓u

and
⟨∆◃ P ′′∥u? ⟩→ ⟨∆◃ P ′ ⟩ with ⟨∆◃ P ′ ⟩ ̸ ↓u

Deconstructing behavioural theories of mobility 515

M ::= . . . | M↑
∆;Γ ⊢ k:Nm

(:Lk)
∆;Γ ⊢ k↑:Pr

∆⊆∆′ a∈∆′

(InstNm)
⟨ ∆ ◃ λx.M ⟩

a−→⟨ ∆′ ◃ (λx.M)(a) ⟩

⟨ ∆ ◃ λX.M(λx.x↑) ⟩
α↑−−→⟨∆′ ◃ P ⟩

(InstPr)
⟨ ∆ ◃ λX.M ⟩

α−→⟨ ∆′ ◃ P ⟩

(InstUn)
⟨ ∆ ◃ λ·.P ⟩

1−→⟨ ∆ ◃ P ⟩
(Lk)

⟨ ∆ ◃ a↑ ⟩
a↑−−→⟨ ∆ ◃ 0 ⟩

⟨ ∆,a ◃ P ⟩
a↑−−→⟨ ∆,a ◃ P ′ ⟩

(Fr)
⟨ ∆ ◃ νa.P ⟩

(a)↑−−−→⟨ ∆,a ◃ P ′ ⟩

⟨ ∆ ◃ P ⟩
α↑−−→⟨ ∆′ ◃ P ′ ⟩

(∥Lk)
⟨ ∆ ◃ P∥Q ⟩

α↑−−→⟨ ∆′ ◃ P ′∥Q ⟩

⟨ ∆,b ◃ P ⟩
α↑−−→⟨ ∆′,b ◃ P ′ ⟩

(νLk)
⟨ ∆ ◃ νb.P ⟩

α↑−−→⟨ ∆′ ◃ νb.P ′ ⟩

Fig. 6 Refined context actions: syntax and rules (R).

then ⟨∆◃ P ⟩
γ−→ ⟨∆◃ P ′ ⟩. The converse of this also holds. ⊓$

Given the lts generated by CA, we can make use of the standard notion
of (strong) bisimilarity which we denote by ∼CA. The close relationship of CA
with the underlying reduction system means that it is straightforward to prove
that bisimilarity is a congruence.

Proposition 6 ∼CA is preserved by all π-contexts. ⊓$
These propositions and the fact that bisimilarity is barb-preserving are sufficient
to establish soundness (∼CA implies ≃). The conclusion of Lemma 5 also lets
us demonstrate completeness (≃ implies ∼CA) because every label of CA can
be simulated as a barb-sensitive reduction.

Theorem 7 ∼CA = ≃. ⊓$
The reader may like to compare this with a related result in [2] in which so-
phisticated mappings of extruded names are required in the definition of the
lts. Although the result there captures the equivalence using a more tractable
lts, our approach captures the same equivalence in a systematic way which
extends immediately to π-calculus with matching and further variants. It is the
robustness of our technique which is of value here.

3 Refining context actions

In the calculus above we did not include a choice operator and test for name
equality. It can be shown that in this setting standard early bisimilarity does
not agree with barbed congruence [2]. However, bisimilarity on our novel lts
does (cf. Theorem 7). More significantly though, the proof of this theorem does
not rely on the ability to compare names and remains true in the presence of
matching.

516 J. Rathke, P. Sobociński

As is well known, when name equality is present in the π-calculus, standard
early bisimilarity does happen to provide a labelled characterisation of barbed
congruence. In this section we shall show that the early lts for π can itself be
decomposed into our process and context views analogously to the presentation
of CA. Although we do not derive this refinement in a systematic manner, it
turns out that the standard lts can still usefully be construed as combination
of the base structural rules C and a refinement of the context-view transitions
A. We include the standard early lts S in Appendix 5 for reference.

Technically the refinement is achieved by introducing a new part of the meta-
language – a term k↑ of process type where k is a term of name type; the syntax
and the additional type rule are presented in the upper section of Fig. 6. This
meta-term interacts with the syntactic features of π as shown by rules (Lk), (∥Lk),
(νLk) and (Fr) in the lower part of Fig. 6. The label k↑ is an abbreviation for the
observation of a successful interaction of a context that tests the identity of the
name k, while the label (x)↑ is an abbreviation for the observation of a fresh
name. Thus, the rule (Fr) is related to the (Open) rule in S but, unlike (Open), this
rule is divorced from the underlying communication rules. Instead of allowing
an instantiation by an arbitrary process as we find in A, (InstPr) simply relays
the observation of the meta-process λx.x↑; name bindings are dealt canonically,
as shown by (InstNm).

We shall consider the system CR that is obtained by combining the C system
with the refined system R, analogously to how the system CA was obtained via
the rules presented in Fig. 5. Using structural analysis it is not difficult to
prove that CR and S are equal in the sense that (up to minor relabeling on τ
transitions) exactly the same transitions are derived.

Theorem 8 CR = S. ⊓#

As an immediate corollary of Theorem 7 (with matching), Theorem 8 and the
known result that standard early bisimilarity ∼S coincides with ≃ we obtain:

Corollary 9 ∼S = ∼CR = ∼CA = ≃. ⊓#

4 Modular variants of the π-calculus

We believe that splitting an lts into a process-view and a context-view, based on
the underlying reductions, naturally leads to more modular and robust theories.
In order to justify this belief, we now apply these ideas to two variants of the π-
calculus: the higher-order π-calculus and the asynchronous π-calculus. For the
former, it should be of no surprise that this can be done as the original ltss for
the higher-order π-calculus are presented using concretions and abstractions and
so avoid difficulties with scope extrusion [17]. For the asynchronous language
only the communication fragment differs and thus we expect to isolate any
changes to the lts to that for the process-view C.

Deconstructing behavioural theories of mobility 517

∆;Γ ⊢ M :Pr ∆;Γ ⊢ k:Nm ∆;Γ ⊢ R:Pr

(:OutPref)
∆;Γ ⊢ k!RM:Pr

∆;Γ,x:Pr ⊢ M :Pr ∆;Γ ⊢ k:Nm

(:InPref)
∆;Γ ⊢ k?xM:Pr

Fig. 7 Type rules for second-order.

(InstTr)
⟨ ∆ ◃ λx.M ⟩

Tr−→⟨ ∆,a ◃ (λx.M)(a↑) ⟩

(InstAb)
⟨ ∆ ◃ λX.M ⟩

Ab−−→⟨ ∆,a ◃ (λX.M)(λy.a↓(y)) ⟩

(TrOut)
⟨∆ ◃ a↑ ⟩

a↑−−→⟨ ∆ ◃ 0 ⟩
(TrIn)

⟨ ∆ ◃ a↓(P) ⟩
a↑−−→⟨ ∆ ◃ P∥a↓(P) ⟩

⟨ ∆ ◃ P ⟩
a↑−−→ ⟨ ∆ ◃ P ′ ⟩

(∥Tr)
⟨ ∆ ◃ P∥Q ⟩

a↑−−→ ⟨ ∆ ◃ P ′∥Q ⟩

⟨ ∆,b ◃ P ⟩
a↑−−→ ⟨ ∆,b ◃ P ′ ⟩

(νTr)
⟨ Γ ◃ νbP ⟩

a↑−−→ ⟨ Γ ◃ νbP ′ ⟩

Fig. 8 Refined context actions: second-order (Rso).

4.1 The higher-order π-calculus

Following [17], to simplify the presentation we will actually present the lts for
the second-order π-calculus In order to define the second-order π-calculus we
simply need to modify the type system in Fig. 2 to allow the communication of
process terms rather than names. The new type rules for input and output are
given in Fig. 7.

Now, remarkably, modulo types, the rules of Fig. 3 need no modifications
whatsoever. That is, up to typing, the ccs style communication core is identical
for both first and higher-order languages. Perhaps more remarkably, the rules
in Fig. 4 and Fig. 5 need no modifications either. The differences between the
first- and second-order languages are dealt with using types alone.

In essence, the notion of bisimilarity yielded by CA for the second-order
language is Sangiorgi’s context bisimilarity [17]. It is therefore interesting to
note by analogy that ∼CA provides a definition of context bisimulation for the
first-order π-calculus. As for the first-order case though, context bisimulation
is unattractive due to its reliance upon context actions containing arbitrary
(typed) process terms. It is known [10, 17] that context bisimulation can be
refined to so-called ‘normal’ bisimulation, much in the same way as the CA
system is refined to R by using a limited form of context action. We give the
rules for the second-order refined system Rso, in Fig. 8. In this case however,
we need to adjust the completed actions system, CA, to include the rule

⟨∆◃ P ⟩
a↑−→Rso ⟨∆◃ P ′ ⟩

(CTr)

⟨∆◃ P ⟩
a↑−→ ⟨∆◃ P ′ ⟩

518 J. Rathke, P. Sobociński

and by combining C and Rso using this augmented CA, we obtain the refined
system CRso for second-order π-calculus.

In order to present the refined system, again we introduce an augmented
meta-language. This takes the form of processes a ↑ : Pr and process abstrac-
tions a ↓ : Pr→ Pr. These are entirely analogous to the triggers and abstractions
of [17]. The behaviour of the ‘trigger’ process a ↑ is simply to announce itself
whenever it is executed and the ‘abstraction’ a ↓ (P) will repeatedly allow
copies of P to be accessed by calling on the name a. We know from [10, 17]
that these syntactic gadgets actually have real syntactic counterparts in the
second-order language and are in effect just macros. We also know from [10,17]
that bisimulation equivalence generated by this refined lts (∼CRso) coincides
with context bisimilarity over second-order processes (∼CA).

4.2 The asynchronous π-calculus

There is an established [3, 8] presentation of the variant of the π-calculus in
which all communication is done asynchronously. This involves simply restrict-
ing the syntax of the language such that the residual of any output prefix is the
nil process. The obvious effect of this is such that no process can be blocked
waiting on a send of data. A less obvious effect is that this language restric-
tion actually impacts upon the behavioural theory of the language considerably
and makes inputs unobservable. This is well-accounted for in the literature [1],
but here we show that a simple modification to the combined module CA only
can also account for the change in behavioural theory. We think of the CA
transitions as observations that an interacting process can make. We include an
additional rule which allows one to make an artificial a?b observation predicated
upon some unobservable activity in P when offered a!b by the context.

To obtain an lts appropriate for the asynchronous language we define the
system CAa by adding the following rule to CA:

⟨∆◃ P ⟩
τ−→C⟨∆◃ P ′ ⟩ ⟨∆◃λx. P ′∥a!x ⟩

b−→A⟨∆′ ◃ P ′′ ⟩
(aIn)

⟨∆◃ P ⟩
a?b−−→CA⟨∆′ ◃ P ′′ ⟩

This CAa system can also be used to combine the R system with C to yield the
corresponding system CRa and the techniques described above can easily be
applied to the asynchronous variant of the language also to establish analogous
results.

Deconstructing behavioural theories of mobility 519

Conclusion and future work

We have provided a new way of understanding the well-trodden labelled transi-
tion semantics of the π-calculus. Our approach attempts to combine the struc-
tural approach to semantics with the contexts-as-labels approach in order to
obtain systematically defined labelled transition systems for process calculi. In
this paper we have shown that this approach works very well for the π-calculus
and we believe that the technique is robust and widely applicable. We have
applied our approach to the ambient calculus [5] for which we have obtained a
new, systematically derived, labelled transition system along with a sound and
complete context-bisimilarity for that language [16]. Furthermore we plan to
develop a general setting for our approach to pursue the synthesis of labelled
transition systems from reduction rules in the spirit of [11, 12, 20, 21].

References

1. R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous pi-
calculus. Theoretical Computer Science, 195(2):291–324, 1998.

2. M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without matching. In
IEEE Symposium on Logic in Computer Science LiCS, 1998.

3. G. Boudol. Asynchrony and the π-calculus. Technical Report 1702, INRIA, Sophia-
Antipolis, 1991.

4. R. Bruni and U. Montanari. Cartesian closed double categories, their lambda-notation,
and the Pi-calculus. In IEEE Symposium on Logic in Computer Science LiCS, 1999.

5. L. Cardelli and A. Gordon. Mobile ambients. In Foundations of Software Science and
Computation Structures, FoSSaCS, LNCS. Springer-Verlag, 1998.

6. U. Engberg and M. Nielsen. A calculus of communicating systems with label passing.
Technical Report DAIMI PB-208, University of Aarhus, May 1986.

7. C. Fournet and G. Gonthier. A hierarchy of equivalences for asynchronous calculi. In
International Colloquium on Automata, Languages and Programming ICALP, volume
1443 of LNCS. Springer-Verlag, 1998.

8. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
European Conference on Object-Oriented Programming ECOOP, 1991.

9. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

10. A.S.A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revis-
ited. Logical Methods in Computer Science, 1(1:4), 2005.

11. B. Klin, V. Sassone, and P. Sobociński. Labels from reductions: towards a general theory.
In Conference on Algebra and Coalgebra in Computer Science Calco, volume 3629 of
LNCS, pages 30–50. Springer, 2005.

12. J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems. In
International Conference on Concurrency Theory Concur, volume 1877 of LNCS, pages
243–258. Springer, 2000.

13. R. Milner. Communicating and Mobile Systems: the π-calculus. CUP, 1999.
14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II. Information

and Computation, 100(1):41–77, 1992.
15. G. D. Plotkin. A structural approach to operational semantics. Technical Report FN-19,

DAIMI, Computer Science Department, Aarhus University, 1981.

520 J. Rathke, P. Sobociński

16. J. Rathke and P. Sobociński. Deriving structural labelled transitions for mobile ambients,
2008. Submitted for publication.

17. D. Sangiorgi. Bisimulation for higher-order process calculi. Information and Computa-
tion, 131(2):141–178, 1996.

18. D. Sangiorgi and D. Walker. The π-calculus. CUP, 2001.
19. D. Sangiorgi and D. Walker. Some results on barbed equivalences in pi-calculus. In

International Conference on Concurrency Theory CONCUR, volume 2154 of LNCS.
Springer-Verlag, 2001.

20. V. Sassone and P. Sobociński. Locating reaction with 2-categories. Theoretical Computer
Science, 333(1-2):297–327, 2005.

21. Peter Sewell. From rewrite rules to bisimulation congruences. Theoretical Computer
Science, 274(1–2):183–230, 2002.

22. A. Ziegler, D. Miller, and C. Palamidessi. A congruence format for name-passing calculi.
In Workshop on Structural Operational Semantics SOS, volume 156 of ENTCS, pages
169–189, 2006.

5 Standard early labelled transitions, typed (S)

For reference purposes, we list below the standard early labelled transition
system semantics for the π-calculus. They have been adapted to our typed
setting but remain substantially the same as can be found in say, [18].

∆⊆∆′ b∈∆′

(In)
⟨∆◃ a?xP ⟩

a?b−−→⟨∆′ ◃ P [b/x] ⟩
(Out)

⟨∆◃ a!bP ⟩
a!b−−→⟨∆◃ P ⟩

⟨∆◃ P ⟩
a!b−−→⟨∆◃ P ′ ⟩ ⟨∆◃ Q ⟩

a?b−−→⟨∆◃ Q′ ⟩
(Comm)

⟨∆◃ P∥Q ⟩
τ−→⟨∆◃ P ′∥Q′ ⟩

⟨∆,b ◃ P ⟩
a!b−−→⟨∆,b ◃ P ′ ⟩ (a̸=b)

(Open)
⟨∆◃ νbP ⟩

a!(b)−−−→⟨∆,b ◃ P ′ ⟩

⟨∆◃ P ⟩
a!(b)−−−→⟨∆,b ◃ P ′ ⟩ ⟨∆◃ Q ⟩

a?b−−→⟨∆,b ◃ Q′ ⟩
(Close)

⟨∆,b ◃ P∥Q ⟩
τ−→⟨∆◃ νb(P ′∥Q′) ⟩

⟨∆◃ P ⟩
α−→⟨∆′ ◃ P ′ ⟩

(Par)
⟨∆◃ P∥Q ⟩

α−→⟨∆◃ P ′∥Q ⟩

⟨∆,a ◃ P ⟩
α−→⟨∆′,a ◃ P ′ ⟩ a/∈α

(Res)
⟨∆◃ νaP ⟩

α−→⟨∆′ ◃ νaP ′ ⟩

