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Abstract. Equations of the form X = ϕ(X) are considered, where the un-
known X is a set of natural numbers. The expression ϕ(X) may contain the
operations of set addition, defined as S + T = {m + n | m ∈ S, n ∈ T}, union
and intersection, as well as ultimately periodic constants. An equation with
a non-periodic solution of exponential growth is constructed. At the same
time it is demonstrated that no sets with super-exponential growth can be
represented. It is also shown that a restricted class of these equations cannot
represent sets with super-linearly growing complements. The results have di-
rect implications on the power of conjunctive grammars with one nonterminal
symbol.

1 Introduction

Language equations, in which the unknowns are formal languages, have recently
become an active topic of study [5]. Formal languages are typically considered
over an alphabet containing at least two letters. For a unary alphabet Σ =
{a}, they can be regarded as sets of natural numbers. Then the operation of
concatenating such languages turns into pairwise addition of sets: S + T =
{m + n | m ∈ S, n ∈ T }. Language equations accordingly become equations
over sets of numbers. Even in this seemingly simple case they already have
quite surprising properties.

Consider systems of equations of the form

Xi = ϕi(X1, . . . , Xn) (1 ! i ! n), (*)

where the unknowns Xi are subsets of N0 = {0, 1, 2, . . .}, while the right-hand
sides ϕi contain union, addition and singleton constants. These systems are
equivalent to language equations of the same form (*) over a unary alphabet
using the operations of union and concatenation, and accordingly represent
context-free grammars. As it is well-known that all unary context-free languages
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are regular, least solutions of systems (*) over sets of numbers are vectors of
ultimately periodic sets.

Another kind of equations are systems of the form (*) with addition and
complementation. An example of such an equation with a non-periodic solution
was given by Leiss [6]. Later Okhotin and Yakimova [8] established the main
properties of systems of such equations (in the more general case of language
equations) and gave a direct proof that a certain rather simple non-periodic set
is not representable.

Consider systems of the same general form (*), in which the allowed oper-
ations are union, intersection and addition. These systems correspond to an
extension of the context-free grammars, the conjunctive grammars [7], which
are again considered over a unary alphabet. The question of whether conjunc-
tive grammars can generate any non-regular unary languages has been an open
problem for some years [7], until recently solved by Jeż [3], who constructed
a grammar for the language { a4n | n ! 0 }. This grammar can be regarded
as a system (*) of four equations over sets of numbers using union, intersec-
tion and addition, such that one of the four components of its least solution is
{ 4n | n ! 0 }.

The set { 4n | n ! 0 } grows exponentially, so this example left a question
of whether any super-exponentially growing sets are representable. A strong
answer was given by Jeż and Okhotin [4], who showed that for every given
recursive function it is possible to represent a set that grows faster.

Despite these extensive positive results (and maybe to some extent due to
these positive results), no results saying that some particular set cannot be
represented by such equations could so far be obtained. The DTIME(n2) ∩
DSPACE(n) complexity upper bound for conjunctive grammars over a unary
alphabet is the only known restriction. Otherwise, no techniques of proving
non-representability of sets by equations with union, intersection and addition
are known.

This paper considers a particular case of systems (*) with n = 1: these
are equations of the form X = ϕ(X), where X is a unique variable and ϕ is
an expression containing arbitrarily nested union, intersection, sum and ulti-
mately periodic constants. Every such equation has a least solution given by⋃∞

n=0 ϕ
n(∅). It is shown that these equations can represent a certain non-

periodic set of an exponential growth rate: namely, the example of Jeż [3] is
reconstructed using one variable instead of four. At the same time it is proved
that no sets that grow asymptotically faster than exponential can be repre-
sented. Another class of sets is shown to be non-representable by a restricted
class of such equations: these are dense sets, that is, sets with super-linearly
growing complements. In overall, it is demonstrated that one-variable equations
are weaker in power than systems of multiple equations. This also demonstrates
that conjunctive grammars with a single nonterminal cannot generate all con-
junctive languages.
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2 Conjunctive grammars and systems of equations

Conjunctive grammars form a natural extension of the context-free grammars
that supports intersection in the right-hand sides of rules:

Definition 1 ([7]). A conjunctive grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively, P is a finite set of rules, each of the form

A→ α1& . . . &αn (n ! 1, A ∈ N, αi ∈ (Σ ∪N)∗) (1)

and S ∈ N is the start symbol. A grammar is said to be linear conjunctive if
furthermore each αi in each rule (1) is in Σ∗NΣ∗ or in Σ∗.

One way to define the semantics of conjunctive grammars is by term rewrit-
ing. Consider terms over concatenation and conjunction. Then a subterm A can
be rewritten with (α1& . . .&αn) for every rule (1), and any subterm of the form
(w& . . . &w), with w ∈ Σ∗, can be rewritten with w. Then L(G) is defined as
the set of all strings w ∈ Σ∗ that are derivable from the term S.

An equivalent definition can be given using language equations.

Definition 2. For every conjunctive grammar G = (Σ, N, P, S), the associated
system of language equations is a system of equations in variables N , in which
each variable assumes a value of a language over Σ, and which contains the
following equation for every variable A:

A =
⋃

A→α1&...&αm∈P

m⋂

i=1

αi (for all A ∈ N) . (2)

Each instance of a symbol a ∈ Σ in such a system defines a constant language
{a}, while each empty string denotes a constant language {ε}. A solution of such
a system is a vector of languages (. . . , LC , . . .)C∈N , such that the substitution
of LC for C, for all C ∈ N , turns each equation (2) into an equality.

Let (. . . , LC , . . .) be the least solution of the system and define LG(C) = LC

for all C ∈ N and L(G) = LG(S).

Consider conjunctive grammars over a one-symbol alphabet, with Σ = {a}.
A formal language L ⊆ a∗ can be regarded as a set of numbers {n | an ∈ L }.
The operation of concatenation of languages is replaced with pairwise addition
of sets: for all S, T ⊆ N, define

S + T = {m + n | m ∈ S, and n ∈ T }

Thus a system of language equations (2) corresponding to a conjunctive gram-
mar over {a} can be regarded as a system of equations over sets of natural
numbers.
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For unary languages, being regular means to be ultimately periodic as a set
of numbers. A set S is ultimately periodic if there exist numbers d, p ! 0, such
that for any n ! d, the number n is in S if and only if n + p is in S. Such a set
is also said to be periodic starting from d with period p.

The first example of a system of equations with union, intersection and ad-
dition representing a non-periodic set (originally presented in the form of a
conjunctive grammar) is as follows:

Example 1 (Jeż [3]). The system of equations
⎧
⎪⎪⎨

⎪⎪⎩

X1 =
(
(X1 + X3) ∩ (X2 + X2)

)
∪ {1}

X2 =
(
(X1 + X1) ∩ (X6 + X2)

)
∪ {2}

X3 =
(
(X1 + X2) ∩ (X6 + X6)

)
∪ {3}

X6 =
(
(X1 + X2) ∩ (X3 + X3)

)

has the least solution Xk = { k · 4n | n ! 0 }, for k = 1, 2, 3, 6.

The idea of this construction is best understood in terms of positional nota-
tion of numbers. Let Σk = {0, 1, . . . , k − 1} be digits in base-k notation. For
every w ∈ Σ∗

k, let (w)k be the number defined by this string of digits. Define
(L)k = { (w)k | w ∈ L }. Now the solution of the above system can be repre-
sented in base-4 notation as the vector

(
(10∗)4, (20∗)4, (30∗)4, (120∗)4

)
. Let us

substitute this vector into the right-hand side of the first equation:

(
(10∗)4 + (30∗)4

)
∩
(
(20∗)4 + (20∗)4

)
=

=
(
(10∗30∗)4 ∪ (10+)4 ∪ (30∗10∗)4

)
∩
(
(20∗20∗)4 ∪ (10+)4

)
= (10+)4

Taking the singleton {1} into account, the set (10∗)4 is obtained.
In order to minimize the number of brackets, the subsequent examples will

assume the following default precedence of operations: addition has the highest
precedence, intersection has intermediate precedence, and the precedence of
union is the lowest. Also, singleton constants {n} will sometimes be written as
n.

Let us define the notion of a growth rate of a set. Every infinite set of numbers
L = {i1, i2, . . . , in, . . .}, with 0 " i1 < i2 < . . . < in < . . ., can be regarded as
an increasing integer sequence. The growth rate of such sequences is represented
by a function g(n) = in. The set from Example 1 has exponential growth rate.

The method of manipulating positional notations of numbers using addi-
tion of sets has been further extended in the following way. Consider a linear
conjunctive grammar generating base-k positional notations of some numbers.
Then the set of these numbers can be specified by a system of equations over
sets of numbers.

Theorem 1 (Jeż, Okhotin [4]). For every k ! 2 and for every linear conjunc-
tive grammar G over Σk there exists a system of equations X = ϕi(X1, . . . , Xn)
over sets of natural numbers with the least solution Xi = Si, in which S1 =
(L(G))k.
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This theorem has several important implications. One of them is that the
growth rate of representable sets is not bounded by any fixed recursive function.

Theorem 2 (Jeż, Okhotin [4]). For every recursively enumerable set of nat-
ural numbers S there exists a system Xi = ϕi(X1, . . . , Xn) over sets of natural
numbers with the least solution Xi = Si, such that the growth function of S1 is
greater than that of S at any point.

There are four variables in the system in Example 1, while Theorems 1–
2 use quite many variables. The purpose of this paper is to investigate the
expressibility of univariate equations.

3 Equations with one variable

Consider an equation
X = ϕ(X),

where the unknown X is a set of natural numbers, while ϕ uses union, inter-
section and addition, as well as ultimately periodic constants. These operations
can, in general, be arbitrarily nested. It is known from the fixed point theory
that

⋃
i!0 ϕ

i(∅) is the least (wrt set inclusion) among all the solutions of the
equation.

A particular case of such equations are those corresponding to one-non-
terminal conjunctive grammars, where ϕ must be a union of intersections of
sums, and it is interesting to note that already in this case every ultimately
periodic set can be represented using singleton constants.

Lemma 1 (Alhazov [1]). Every unary regular language is generated by a one-
nonterminal conjunctive grammar.

Proof. Let K ∪ (ap)+L be the given language, where K, L ⊆ {ε, a, . . . , ap−1}.
Then the required grammar is

S → ai (ai ∈ K ∪ apL ∪ a2pL)

S → apS&a2pS ⊓&

The question is, whether any non-periodic sets can be represented using
univariate equations. As the following lemma demonstrates, this is indeed the
case:

Lemma 2. The following one-variable equation has the unique solution { 4n − 8 |
n ! 3 } ∪ { 2 · 4n − 15 | n ! 3 } ∪ { 3 · 4n − 11 | n ! 3 } ∪ { 6 · 4n − 9 | n ! 3 }:

X =
(
11+X+X ∩ 22+X+X

)
∪
(
1+X+X ∩ 9+X+X

)
∪

∪
(
7+X+X ∩ 12+X+X

)
∪
(
13+X+X ∩ 14+X+X

)
∪ {56, 113, 181}
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Here addition is assumed to have higher precedence than intersection.

The idea behind this construction is to encode four variables from Example 1
into a single variable. The unique solution of the constructed equation is a union
of four disjoint sets:

L1 = { 4n − 8 | n ! 3 }
L2 = { 2 · 4n − 15 | n ! 3 }
L3 = { 3 · 4n − 11 | n ! 3 }
L6 = { 6 · 4n − 9 | n ! 3 }

Each of them represents the corresponding component of the solution of the
system from Example 1. These components are represented with an offset : the
numbers in L1, L2, L3 and L6 are smaller by d1 = 8, d2 = 15, d3 = 11 and
d6 = 9, respectively.

Consider first the following system:
⎧
⎪⎪⎨

⎪⎪⎩

Y1 =
(
11+Y1+Y3 ∩ 22+Y2+Y2

)
∪ {56}

Y2 =
(
1+Y1+Y1 ∩ 9+Y6+Y2

)
∪ {113}

Y3 =
(
7+Y6+Y6 ∩ 12+Y1+Y2

)
∪ {181}

Y6 = 13+Y3+Y3 ∩ 14+Y1+Y2

(3)

This system is obtained from the system in Example 1 as follows. First, the
constant sets {1}, {2} and {3} are replaced with {64}, {128} and {192}, so that
the values of n in the solution start from 3. Then the substitution X1 = Y1 +8,
X2 = Y2 + 15, X3 = Y3 + 11, X6 = Y6 + 9 is applied. It is easy to see that the
solution of system (3) is the vector (L1, L2, L3, L6).

Note that each set Li is a subset of a periodic set { 64m− di | m ! 1 }.
Let us call every such periodic superset a track. The sum of any two of these
sets, Li + Lj , is a subset of { 64m− di − dj | m ! 2 }, which is a track as well.
The numbers 8, 15, 11 and 9 have been chosen so that the sums of all pairs of
these numbers are pairwise distinct: di + dj = dk + dℓ with i " j and k " ℓ
implies i = k and j = ℓ. In other words, the tracks are pairwise disjoint, and
the calculations in the right-hand sides of different equations occur in different
tracks.

This property is used to ensure that if the same set L1 ∪ L2 ∪ L3 ∪ L6 is
substituted for every variable in the right-hand sides of (3), then every right-
hand side still evaluates to L1, L2, L3 and L6, respectively. Now the equation
in Lemma 2 is obtained from the system (3) by identifying all four variables
into one.

It must be admitted that these ideas do not work in general, and Lemma 2
is not proved by a formal transformation. However, they happen to work for
the given example and with the given assignment of offsets to variables. The
lemma can actually be proved by substituting the given set into the equation
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and verifying that it is indeed a solution. The proof is omitted in this extended
abstract due to its pure technicality.

The equation in Lemma 2 has a simple form corresponding to a conjunctive
grammar. The result can thus be restated in the following form.

Example 2. The following one-nonterminal conjunctive grammar generates the
language { a4n−8 | n ! 3 }∪{ a2·4n−15 | n ! 3 }∪{ a3·4n−11 | n ! 3 }∪{ a6·4n−9 |
n ! 3 }:

S → a22SS&a11SS | a9SS&aSS | a7SS&a12SS | a13SS&a14SS | a56 | a113 | a181

This example answers the question raised by Jeż [3] about the least number
of nonterminals in a conjunctive grammar necessary to generate non-regular
languages over {a}: one is enough.

4 Non-representability of fast growing sets

The set represented in Lemma 2 has exponential growth. It will now be shown
that sets with asymptotically super-exponential growth cannot be represented
by univariate equations. The following statement is also applicable to some sets
that do not formally fit this description.

Theorem 3. Let L = {n1, n2, . . . , ni, . . .} with 0 " n1 < n2 < . . . < ni < . . .
be an infinite set of natural numbers, for which lim infi→∞

ni
ni+1

= 0. Then L is
not the least solution of any univariate equation X = ϕ(X).

In particular, the theorem asserts non-representability of sets like { 22n |
n ! 0 } and {n! | n ! 1 }, as well as sets like {n!, n! + 1 | n ! 1 }.

The assumption that limit inferior of ni
ni+1

as n approaches infinity is zero
means that the size of gaps between consecutive numbers (measured relatively
to the smaller number) is not bounded. That is, for every k there is n ∈ L so
that L does not contain any numbers between n + 1 and kn.

If such a set is a least solution of an equation, then L can be expressed
from itself and from ultimately periodic constants using union, intersection
and addition. Then the gaps between elements of the set have to be bridged
either by summing up several smaller elements of this set in an expression
X + . . .+X , or by adding an ultimately periodic constant to X . The expression
ϕ contains only finitely many additions, and hence only a bounded number of
smaller elements can be added up. Larger gaps can only be bridged by adding
an ultimately periodic constant. However, this addition would make the sum
ultimately periodic as well.

This reasoning is formalized in the following statement:

Lemma 3. Let ϕ(X) be an expression that contains instances of a unique vari-
able X ultimately periodic constants with a common period p starting from d,
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and the operations of union, intersection and addition. Let h be the greatest
number of nested additions in ϕ. Let a number n and a set of numbers L be
such that n ∈ ϕ(L), L ∩ {⌈ n

2h ⌉, ⌈ n
2h ⌉+ 1, . . . , n− 1} = ∅ and n

2h ! d + p. Then
n ∈ L or n− p ∈ ϕ(L).

Proof. Induction on the structure of ϕ.
Basis I: ϕ(X) = X . Then n ∈ ϕ(L) means n ∈ L.
Basis II: ϕ(X) = C, where C is an ultimately periodic set of natural num-

bers. Then h = 0 and hence n ! d + p by assumption. Since C has period p
starting from d, n ∈ ϕ(L) = C is equivalent to n− p ∈ C = ϕ(L).

Induction step I: ϕ(X) = ϕ1(X) ∪ ϕ2(X). Then n ∈ ϕ(L) implies that
n ∈ ϕi(L) for some i ∈ {1, 2}. Assume without loss of generality that n ∈ ϕ1(L).
Let h1 be the greatest number of nested additions in ϕ1; obviously, h1 " h. Then

n
2h1 ! n

2h and therefore L ∩ {⌈ n
2h1 ⌉, ⌈

n
2h1 ⌉+ 1, . . . , n− 1} = ∅ and n

2h1 ! d + p.
Thus the induction hypothesis is applicable to ϕ1 and n, giving that n ∈ L or
n− p ∈ ϕ1(L) ⊆ ϕ(L).

Induction step II: ϕ(X) = ϕ1(X)∩ϕ2(X). In this case n ∈ ϕ(L) implies both
n ∈ ϕ1(L) and n ∈ ϕ2(L). Let h1 and h2 be the greatest numbers of nested
additions in ϕ1 and ϕ2, respectively, for which it is known that h1 " h and
h2 " h. As in the case of union, the induction hypothesis is applicable to ϕ1

and n, as well as to ϕ2 and n, which gives n ∈ L or n − p ∈ ϕ1(L), and at
the same time n ∈ L or n − p ∈ ϕ2(L). If either subexpression yields n ∈ L,
this immediately proves the claim for ϕ and n. Otherwise the number n− p is
known to be both in ϕ1(L) and in ϕ2(L), which means n− p ∈ ϕ(L).

Induction step III: ϕ(X) = ϕ1(X)+ϕ2(X). Then it follows from n ∈ ϕ(L)
that there are two numbers n1, n2 ! 0 with n1 + n2 = n and ni ∈ ϕi(L) for
i ∈ {1, 2}. Assume without loss of generality that n1 ! n2. Let h1 be the greatest
number of nested additions in ϕ1, which is known to be at most h − 1. Then
n1
2h1 ! n1

2h−1 ! n
2 · 1

2h−1 = n
2h , and therefore L∩{⌈ n1

2h1 ⌉, ⌈
n1
2h1 ⌉+1, . . . , n−1} = ∅

and n1
2h1 ! d + p. By the induction hypothesis for ϕ1 and n1 it follows that

n1 ∈ L or n1 − p ∈ ϕ1(L). Consider each of these cases:

– In the former case, note that n
2 " n1 " n. Since h ! 1 and L∩ {⌈ n

2h ⌉, ⌈ n
2h ⌉+

1, . . . , n− 1} = ∅ by assumption, n1 ∈ L implies that n1 must be equal to n,
while n2 must be zero. This proves that n ∈ L.

– If n1 − p ∈ ϕ1(L), then n− p = (n1 − p) + n2 ∈ ϕ(L).

This last case completes the proof of the lemma. ⊓)

Proof (Theorem 3). Suppose there exists an equation X = ϕ(X) with the least
solution L0. Let C1, . . . , Cm be all constants used in ϕ, and let each Ci have
period pi starting from di. Let p = lcm{p1, . . . , pm} and d = max{d1, . . . , dm};
then all constants have period p starting from d. Denote the greatest number
of nested additions in ϕ by h.

By the definition of limit inferior, there exist infinitely many numbers i with
ni

ni+1
< 1

2h . Then it is possible to choose a sufficiently large i so that ni+1
2h ! d+p.
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Now ni < ni+1
2h ! ⌈ni+1

2h ⌉, and since L0 contains no elements between ni +1 and
ni+1 − 1, it follows that L0 ∩ {⌈ni+1

2h ⌉, . . . , ni+1 − 1} = ∅.
Since L0 is the least fixed point of ϕ, there exists a number of iterations ℓ, for

which ni+1 /∈ ϕℓ(∅) and ni+1 ∈ ϕℓ+1(∅). Denote L = ϕℓ(∅), that is, ni+1 /∈ L
and ni+1 ∈ ϕ(L). Since L ⊆ L0, it is known that L∩{⌈ni+1

2h ⌉, . . . , ni+1−1} = ∅.
Therefore, Lemma 3 is applicable to ϕ, n and L, and it asserts that n ∈ L or
n − p ∈ ϕ(L). The former contradicts the assumption, while the latter is not
possible since ⌈ n

2h ⌉ ! n − p ! n − 1. The contradiction obtained proves the
theorem. ⊓(

Theorem 3 implies a separation of one-nonterminal conjunctive languages
from conjunctive languages of the general form.

Theorem 4. The following proper containments hold:

Reg{a} ⊂ Conj1{a} ⊂ Conj{a}

Proof. In particular, Conj1{a} \ Reg contains the language from Example 2,
while Conj{a} \ Conj1{a} contains some languages growing faster than expo-
nential (and as it will be demonstrated in the next section, also some languages
with super-linearly growing complements). ⊓(

5 Non-representability of dense sets

In this section we derive non-representability results concerning a class of sets
that are known as additive bases:

Definition 3. Let S ⊆ N be an infinite set of natural numbers, and let k > 0.
For any n ∈ N, define the number of its representations as a sum of k elements
of S by

rk,S(n) = |{(a1, . . . , ak) ∈ Sk : a1 + · · · + ak = n}|.

The set S is said to be a basis of order k if every sufficiently large natural
number n can be represented as sum of k (not necessarily distinct) elements of
S, or equivalently if rk,S(n) " 1. In other words, S is a basis of order k if and
only if (S + · · · + S)︸ ︷︷ ︸

k

is co-finite.

As an example, there is a well-known result, Legendre’s theorem, that the set
of squares of the natural numbers is a basis of order four.

Clearly, if a set S is a basis of order k then it is also a basis of every order
n > k. The non-representability results we will obtain in this section, are for
sets that are bases of order 2.

We start with a class of sets that are dense additive bases of order 2:
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Definition 4. Given any m, n ∈ N, let [m, n] denote the discrete closed interval
[m, n] = {i ∈ N : m ! i ! n}.

A set L ⊆ N is said to be dense if limn→∞
|L∩[0,n]|

n = 1.

For example, the set N \ { 2n | n " 0 } is obviously dense, and so is the set
of composite numbers.

The following lemma is easy to establish using basic properties of limits:

Lemma 4. Let L be a dense set. Then

lim
n→∞

|(N \ L) ∩ [0, n]|
|L ∩ [0, n]| = lim

n→∞

|(N \ L) ∩ [0, n]|
n

= 0.

Similarly to Theorem 3, the following theorem states that sets of the above
form cannot be represented using univariate equations that use finite or co-finite
constants:

Theorem 5. Let L be a dense non-ultimately periodic set. Then there is no
univariate equation X = ϕ(X) using finite and co-finite constants, which would
have the least solution L.

The proof of the theorem is based upon the following three lemmas.

Lemma 5. Let L1 ⊆ N and L2 ⊆ N be dense sets. Then the set L1 + L2 is
co-finite.

Notice that this lemma implies that dense sets are additive bases of order 2
(just take L1 = L2).

Proof. The main idea of the proof is that every sufficiently large element of N
can be written as the sum of two elements of N in too many ways. Now, since
the sets N \ L1 and N \ L2 are “sparse”, every sufficiently large element of N
can also be written as the sum of at least two elements of L1 and L2. In other
words, N \ (L1 + L2) is finite.

More formally now, it suffices to show that for every sufficiently large n ∈ N
there exist ℓ1 ∈ L1 and ℓ2 ∈ L2 such that n = ℓ1 + ℓ2. Consider the number
of ways in which a number n can be written as a sum of two numbers n1 ∈ L1

and n2 ∈ L2. More specifically, given n ∈ N, define the functions:

p(n) = |{(n1, n2) : (n1 ∈ N) and (n2 ∈ N) and (n1 + n2 = n)}|
r1(n) = |{k : (k ∈ N \ L1) and (k ! n)}|
r2(n) = |{k : (k ∈ N \ L2) and (k ! n)}|

Now it is easy to see that every sufficiently large number n in N can be written
as n = ℓ1 + ℓ2, with ℓ1 ∈ L1 and ℓ2 ∈ L2, in at least p(n)− r1(n)− r2(n) ways.
To prove that p(n)− r1(n)− r2(n) > 0 for large values of n, it suffices to show
that limn→∞

p(n)
n > 0, while limn→∞

r1(n)
n = 0 and limn→∞

r2(n)
n = 0.
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Notice now that p(n) = n + 1 since n can be written as the sum of two
elements of N in the following ways: (0, n), (1, n − 1), . . . , (n, 0). Therefore,
limn→∞

p(n)
n = 1. Consider now the case of r1(n) (the case of r2(n) is iden-

tical). Since L1 is a dense set, Lemma 4 asserts that limn→∞
|(N\L1)∩[0,n]|

n = 0,
and therefore limn→∞

r1(n)
n = 0. It follows that p(n)− r1(n)− r2(n) > 0 (that

is, n ∈ L1 + L2) for all sufficiently large n ∈ N. Therefore, N \ (L1 + L2) is a
finite set. ⊓$

Lemma 6. Let S1, S2 ⊆ N be dense sets, let T ⊆ N be any non-empty set. Then
the sets S1 ∩ S2, S1 ∪ T and S1 + T are dense.

The proof, which is omitted, proceeds by using simple set-theoretic arguments,
and the basic properties of limits.

Lemma 7. Let ϕ(X) be an expression using the variable X, finite or co-finite
constants, together with the operations of union, intersection and addition. Let
L be a dense set and assume that ϕ(L) is infinite. Then, ϕ(L) is a dense set.

Proof. Follows from Lemma 6 by a straightforward induction.

Proof (Proof of Theorem 5). Let X = ϕ(X) be an equation. Let us prove that
L cannot be its least solution. The proof is by an induction on the number of
subexpressions of the form ψ(X) + ξ(X) in ϕ, in which both ψ and ξ contain
some instances of X .

Basis. If there are no such additions, then the least solution must be ul-
timately periodic by the known results on language equations with one-sided
concatenation [2]. Since L is non-periodic, a contradiction is obtained.

Induction step. Consider any of the smallest such subexpressions of ϕ, that
is, let ϕ(X) = ϕ̂(X, ϕ̃(X)), where ϕ̃ = ψ + ξ.

Consider first the case where both ψ(L) and ξ(L) are infinite. Let us show
that ϕ̃(L) is co-finite. Indeed, by Lemma 7, ψ(L) is a dense set and ξ(L) is also
a dense set. Then Lemma 5 states that N\ (ψ(L)+ ξ(L)) is a finite set. In other
words, ψ(L) + ξ(L) = N \ F for some finite F ⊂ N. Denote N \ F by R′.

Then ϕ(L) = ϕ̂(L, ϕ̃(L)) = ϕ̂(L, R′). Let ϕ′(X) be a new expression defined
as ϕ̂(X, R′). Then L should be the least solution of the equation X = ϕ′(X).
Since ϕ′(X) contains fewer subexpressions of the form ψ(X) + ξ(X), by the
induction hypothesis, L cannot be the least solution of this equation. A contra-
diction.

Now consider the remaining case of ψ(L) being a finite set, say F . Then
ϕ(L) = ϕ̂(L, ϕ̃(L)) = ϕ̂(L, F+ξ(L)). Define a new expression ϕ′(X) as ϕ̂(X, F+
ξ(X)); the set L should be the least solution of the equation X = ϕ′(X).
However, ϕ′ contains fewer subexpressions of the form ψ(X)+ ξ(X), and hence
L is not its least solution. This last contradiction establishes the induction step
and concludes the proof. ⊓$

An immediate consequence of this result is that the class of sets of natural
numbers that can be defined using univariate equations containing only finite
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or co-finite constants is not closed under complementation. Indeed, the com-
plement of the language in Lemma 2 is dense and falls under Theorem 5. In
particular, the class of unary languages generated by conjunctive grammars
with one nonterminal is not closed under complementation.

Note that the equations corresponding to conjunctive grammars have a par-
ticular form, in which union and intersection may not be nested within addition.
Further non-representability results for one-nonterminal conjunctive grammars
can be obtained by using this form:

Theorem 6. Let L be an additive basis of order 2 that is not ultimately periodic.
Then L is not the least solution of any univariate equation X = ϕ(X) that uses
ultimately periodic constants, together with the operations of union, intersection
and addition and in which union and intersection can not be nested within
addition.

Proof (a sketch). Let X = ϕ(X) be an equation. Let us prove that L cannot
be its least solution. Consider any subexpression of ϕ of the form X + · · ·+ X .
Since L is a basis, the corresponding sum L + · · · + L is co-finite and therefore
ultimately periodic. Replace every such expression in ϕ by a corresponding
constant. If there are no such additions left, then the least solution of the
resulting equation must be ultimately periodic by the known results on language
equations with one-sided concatenation [2], which is a contradiction. ⊓"

It follows that the family of unary languages generated by one-nonterminal
conjunctive grammars does not contain any non-periodic additive bases of order
2.

6 Conclusions

It was shown that univariate equations X = ϕ(X) with union, intersection and
addition are, on one hand, nontrivial in the sense that they can represent some
non-periodic sets. On the other hand, counting arguments were used to show
that they cannot represent some sets that are known to be representable using
systems of equations.

These non-representability results become the first of their kind, since no
methods of proving sets non-representable by systems of equations with union,
intersection and addition are currently known. This task appears challenging,
though it is the authors’ hope that the results obtained in this paper may also
shed some light on this more general case.
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