
On Boundedness in Depth in the π-Calculus⋆

Roland Meyer

University of Oldenburg
Roland.Meyer@informatik.uni-oldenburg.de

Abstract. We investigate the class PBD of π-Calculus processes that are
bounded in the function depth. First, we show that boundedness in depth
has an intuitive characterisation when we understand processes as graphs:
a process is bounded in depth if and only if the length of the simple paths
is bounded. The proof is based on a new normal form for the π-Calculus
called anchored fragments. Using this concept, we then show that processes of
bounded depth have well-structured transition systems (WSTS). As a conse-
quence, the termination problem is decidable for this class of processes. The
instantiation of the WSTS framework employs a new well-quasi-ordering for
processes in PBD .

1 Introduction

Concurrent systems are known to be hard to design correctly. Dynamically
reconfigurable systems add to concurrency the problem of changing connec-
tion structures between system components. To ensure the correct behaviour
of systems, automatic verification techniques have proven useful. This automa-
tion comes with a tradeoff. To automate the analysis requires a decidable class
of models, but to model the systems of interest requires an expressive class.
We use the π-Calculus to model dynamically reconfigurable systems [17, 18].
The contribution of this paper is the up-to-now most expressive subclass of
π-Calculus for which termination is decidable. The importance of termination
for the π-Calculus has been recognised in [19, 5].

The class PBD we propose contains the processes that are bounded in depth.
The function depth measures the interdependence of restricted names in process
terms. Boundedness in depth is a very liberal requirement as it turns out that all
decidable subclasses of π-Calculus known so far are subclasses of PBD : finitary
agents [9], finite control processes [4], bounded processes [3], unique receiver
and bounded input systems (up to bisimilarity) [2], finite handler processes
[14], structurally stationary processes [14], and restriction-free processes [2].

But the definition of depth is difficult to grasp as the function refers to all
processes in a congruence class. To provide an intuition to PBD , we make use of
the standard graph-theoretic interpretation of the π-Calculus [17, 18]. Our first
main result states that boundedness in depth is equivalent to boundedness in the

⋆ This work was supported by the German Research Council (DFG) as part of the Graduate
School “TrustSoft” (GRK 1076/1).

477

478 R. Meyer

length of the simple paths (i.e., without repetition of edges) in the graphs. The
proof is based on a new normal form for processes called anchored fragments.

The decidability result for PBD is obtained by viewing this class as an in-
stance of well-structured transition systems (WSTS) [10, 1, 11]. WSTS are a
framework for infinite state systems that generalises decidability results for par-
ticular models. Technically, a WSTS is a transition system with an ordering re-
lation on the states which is compatible with the transition relation. Depending
on the ordering, the compatibility, and decidability properties the framework
yields decision procedures, e.g., for termination [10, 11] or simulation [1].

Our second main result is the instantiation of the WSTS framework for
processes of bounded depth. As a consequence, we inherit the decision procedure
for termination in [10, 11]. The technical contribution is a new ordering≼PBD on
processes which we show to be a well-quasi-ordering (wqo) (i.e., in every infinite
sequence of processes two comparable processes can be found) for processes of
bounded depth. In the proof, anchored fragments again play a vital role. Since
the ordering ≼PBD is a simulation relation it is compatible with the reaction
relation of the π-Calculus in a strong sense.

2 Preliminaries

The π-Calculus We use a π-Calculus with parameterised recursion as proposed
in [18]. Let the set (a, b ∈) N of names contain the channels and messages that
occur in communications. A process consumes prefixes π to communicate with
other processes or to perform silent actions. The prefixes are

π ::= a⟨b⟩ | a(x) | τ.

The output action a⟨b⟩ sends the name b on channel a. The input action a(x)
receives a name that replaces x on a. The τ symbol stands for a silent action.

To denote recursive processes we use process identifiers K, each defined by
an equation K(x̃) := P . When the identifier is called, K⌊ã⌋, it is replaced by the
process P where the names x̃ are replaced by ã. More precisely, a substitution
σ = {ã/x̃} is a function that maps the names in x̃ to ã and is the identity
on all names not in x̃. The application of a substitution, P{ã/x̃}, is defined in
the standard way [18]. A π-Calculus process is a call to an identifier, K⌊ã⌋, a
choice process deciding between prefixes, Σi∈Iπi.Pi, a parallel composition of
processes, P1 | P2, or the restriction of a name in a process, νa.P :

P ::= K⌊ã⌋ | Σi∈Iπi.Pi | P1|P2 | νa.P .

The set of all processes is P . We abbreviate empty sums (with I = ∅) by 0 and
arbitrary sums by M or N . By Πi∈IPi we denote the parallel composition of
several processes Pi with i ∈ I. The processes K⌊ã⌋ and Σi∈I ̸=∅πi.Pi are called
sequential. By S(P) we refer to the set of sequential processes in P . The function

On Boundedness in Depth in the π-Calculus 479

is defined inductively by S(0) := ∅, S(K⌊ã⌋) := {K⌊ã⌋}, S(Σi∈I ̸=∅πi.Pi) :=
{Σi∈I ̸=∅πi.Pi}, S(P1 | P2) := S(P1) ∪ S(P2), and S(νa.P) := S(P).

The input action a(b) and the restriction νc.P bind b and c, respectively.
The set of bound names in P is bn (P). If we refer to the set of restricted names
in P , rn (P) ⊆ bn (P), we mean the restricted names that are not covered by
prefixes. A name which occurs not bound in P is free and the set of free names
in P is fn (P). We permit α-conversion of bound names. Therefore, wlog. we
assume bn (P) ∩ fn (P) = ∅. Unless otherwise stated, we assume that a name
is bound at most once in a process. In a defining equation K(x̃) := P we
require fn (P) ⊆ x̃. If a substitution {ã/x̃} is applied to a process P , we assume
bn (P) ∩ (ã ∪ x̃) = ∅.

The results achieved in this paper make heavy use of the structural congru-
ence relation ≡ of processes. It is the smallest congruence where α-conversion
of bound names is allowed, + and | are commutative and associative and have
0 as neutral element, and the following laws for restriction hold:

νx.νy.P ≡ νy.νx.P νx.0 ≡ 0
νx.(P | Q) ≡ P | (νx.Q), if x /∈ fn (P).

The latter law is called scope extrusion.
We distinguish two normal forms for processes. A process νã.(P1 | . . . | Pn)

where ã ⊆ fn (P1 | . . . | Pn) and all Pi are sequential is in standard form [17].
Via structural congruence every process P can be rewritten as a process Psf

in standard form as follows. First, the scope of every restricted name not un-
der a prefix is extruded over all processes composed in parallel. Then unused
restricted names and empty sums are removed. Since all bound names are dif-
ferent and disjoint with the free names, α-conversion is not required. Thus, the
rewriting does not change the sequential processes, S(P) = S(Psf).

The restricted form [14] is based on the notion of fragments, i.e., processes
where the scopes of restricted names are minimal:

F ::= K⌊ã⌋ | Σi∈I ̸=∅πi.Pi | νa.(F1 | . . . | Fn),

where a ∈ fn (Fi) for all i. The set of all fragments is (F, G ∈) PF . Fragments
that are sequential processes, K⌊ã⌋ or Σi∈I ̸=∅πi.Pi, are elementary and referred
to by Fe. A process Pν is in restricted form, if it is a parallel composition of
fragments, Pν = Πi∈IFi. The set of fragments in Pν is Frag (Pν) :=

⋃
i∈I{Fi}.

The set of all processes in restricted form is Pν .
To compute the restricted form Pν ∈ Pν of a process P ∈ P , we minimise the

scopes of all restricted names not under a prefix and remove processes congruent
with 0, in particular unused restricted names. Again, this does not change the
sequential processes, S(P) = S(Pν). The restricted form of a process is invariant
under structural congruence up to rewriting of fragments: P ≡ Q iff Pν ≡̂Qν ,
where ≡̂ is the smallest equivalence on processes in restricted form that permits

480 R. Meyer

(1) associativity and commutativity with regard to | and (2) replacing fragments
by structurally congruent ones, i.e., F | Pν ≡̂G | Pν if F ≡ G.

The behaviour of π-Calculus processes is determined by the reaction relation
→ ⊆ P × P defined by the following rules:

(Tau) τ.P + M → P

(React) (x(y).P + M) | (x⟨z⟩.Q + N)→ P{z/y} | Q

(Const) K⌊ã⌋ → P{ã/x̃}, if K(x̃) := P

(Par)
P → P ′

P | Q→ P ′ | Q
(Res)

P → P ′

νa.P → νa.P ′

(Struct)
P → P ′

Q→ Q′ , if P ≡ Q and P ′ ≡ Q′.

By Reach (P) we denote the set of all processes reachable from P with the
reaction relation. The reaction relation is image finite, i.e., for every process P
there are up to structural congruence only finitely many Q with P → Q.

To relate a reachable fragment F ∈ Frag (Reach (P)) with the initial process
P , we recall that F consists of derivatives of P [14]. Derivatives are sequen-
tial subprocesses of P gained by removing prefixes as if they were commu-
nicated. Let P use n ∈ N = {0, 1, 2, . . .} recursive definitions Ki(x̃i) := Pi.
We define derivatives(P) := der (P) ∪

⋃n
i=1 der(Pi), where der (0) := ∅,

der (K⌊ã⌋) := {K⌊ã⌋}, der (Σi∈I ̸=∅πi.Pi) := {Σi∈I ̸=∅πi.Pi} ∪
⋃

i∈Ider(Pi),
der (P1|P2) := der (P1) ∪ der (P2), and der (νa.P) := der (P). Then every
F ∈ Frag (Reach (P)) is structurally congruent with νã.(Πi∈I ̸=∅Qiσi), where
Qi ∈ derivatives(P) and σi : fn (Qi)→ fn (P) ∪ ã.

To define the function depth, we require the nesting of restrictions mea-
sured as follows: nestν (K⌊ã⌋) := 0, nestν (Σi∈Iπi.Pi) := 0, nestν (P1 | P2) :=
max{nestν (P1) ,nestν (P2)}, and nestν (νa.P) := 1 + nestν (P).

Definition 1. The depth of F ∈ PF is the minimal nesting of restrictions in
all fragments in the congruence class: depth(F) := min{nestν (F ′) | F ′ ≡ F}.
A process P ∈ P is bounded in depth, iff there is kD ∈ N such that the depth of
all reachable fragments is less or equal to kD , i.e.,

∃kD ∈ N : ∀Q ∈ Reach (P) : ∀F ∈ Frag (Qν) : depth(F) ≤ kD .

The set of all processes that are bounded in depth is PBD . ♦

Well-Quasi-Orderings A quasi-ordering (qo) on a set of elements A is a reflexive
and transitive relation ≼A ⊆ A×A. We also call (A,≼A) a qo. The qo (A,≼A)
is a well-quasi-ordering (wqo), iff in every infinite sequence (ai)i∈N in A there
are two comparable elements, i.e., there are indices i < j with ai ≼A aj .

A result by Higman [13] lifts a wqo ≼A on a set of elements A to a wqo
≼H

A on the set of finite sequences A∗. The ordering u ≼H
A v demands u to be a

subsequence of v which is dominated elementwise wrt. ≼A, i.e., u = (u1, . . . , um)

On Boundedness in Depth in the π-Calculus 481

and v = (v1, . . . , vn) and there are 1 ≤ i1 < . . . < im ≤ n such that uk ≼A vik

for all 1 ≤ k ≤ m.
In Section 4 we define a qo on fragments. To prove it is a wqo, we relate it

with a wqo on trees. Consider a qo (A,≼A). The trees over A are defined by

T ::= a | (a, (T1, . . . , Tn)),

where a ∈ A. The set of all trees over A is T (A). The height of a tree is
measured similar to the nesting of restrictions in fragments, height(a) := 0 and
height((a, (T1, . . . , Tn))) := 1 + max{height(Ti) | 1 ≤ i ≤ n}. For n ∈ N we
denote by T (A)n the trees of height less or equal to n.

We use the rooted tree embedding ≼T (A) as qo on the trees in T (A). In-
tuitively, T1 ≼T (A) T2 if T1 is a subtree of T2 so that the levels of T1 are
preserved in T2. In particular, the root of T1 is mapped to the root of T2 and
the leaves in T1 are leaves in T2. Technically, the rooted tree embedding is de-
fined by two rules. If a ≼A a′ then a ≼T (A) a′ (Elem) and if a ≼A a′ and
(T1, . . . , Tm) ≼H

T (A) (T ′
1, . . . , T

′
n) then (a, (T1, . . . , Tm)) ≼T (A) (a′, (T ′

1, . . . , T
′
n))

(Comp). It is not hard to see that the relation ≼T (A) ⊆ T (A) × T (A) is a qo.
It is a wqo on trees of bounded height.

Lemma 1. If (A,≼A) is a wqo then (T (A)n,≼T (A)) is a wqo for all n ∈ N.

3 A Characterisation of Boundedness in Depth

In this section, we interpret fragments F as hypergraphs G[[F]]. With this in-
terpretation we call the process P ∈ P bounded in the simple paths, iff there is
kSim ∈ N such that the length of the longest simple path in the hypergraphs of
all reachable fragments is less or equal to kSim , i.e.,

∃kSim ∈ N : ∀Q ∈ Reach (P) : ∀F ∈ Frag (Qν) : lsp(G[[F]]) ≤ kSim ,

where lsp(G[[F]]) denotes the length of the longest simple path in G[[F]]. We prove
that a process is bounded in depth if and only if it is bounded in the simple
paths. Thus, processes in PBD can be intuitively understood as hypergraphs
where the length of the simple paths is bounded.

The main technical contribution is the definition of anchored fragments. In
this section, we use them to derive boundedness in depth from boundedness in
the simple paths (Lemma 3). In Section 4 they help us prove that the given
qo is a wqo. In particular we need that the nesting of restrictions in anchored
fragments is bounded if the depth is (Corollary 1). Before we turn to anchored
fragments, we make the interpretation of processes as hypergraphs precise.

482 R. Meyer

3.1 The Graph-theoretic Interpretation of the π-Calculus

A hypergraph [12] is a graph where several vertices may be connected with one
hyperedge, i.e., it is a tuple G = (V, E, l, inc), where V is a finite set of vertices,
E is a finite set of hyperedges, l : V → P is a vertex labelling function, and
inc : E → P(V) is an incidence function. In the graphical representation we
draw a dot labelled by l(v) for each v ∈ V and a box labelled by e for every
e ∈ E. There is an arc between v and e, if v ∈ inc(e). In our setting edges are
names, E ⊆ N . We also call hypergraphs graphs and hyperedges edges.

Two graphs G1 and G2 are equal, G1 = G2, if E1 = E2 and there is a bijection
f : V1 → V2 that is compatible with the labelling and the incidence functions.
Hence, the identity of elements v ∈ V is not important and we can always
assume V1 ∩ V2 = ∅.

A path in G is a finite sequence p = (v1, e1, . . . , vn, en, vn+1) such that the
edges ei connect vi and vi+1, i.e., vi, vi+1 ∈ inc(ei) for all i. The length of p,
length(p), is the number of edges in p. By fe(p) we refer to the first element in
p, v1. A path is simple, if ei ̸= ej for all i ̸= j. By lsp(G) we denote the length
of the longest simple path in G. The set of all paths in G is Paths(G).

We require three operations on graphs. The disjoint union of G1 and G2,
where E1 ∩ E2 = ∅, puts both graphs side by side. Formally, it is the graph
G1 ' G2 := (V1 ' V2, E1 'E2, l1 ' l2, inc1 ' inc2). The connect operator takes a
graph G and a name a /∈ E. The result is the graph G⊗a, where a is added to E.
The new edge connects the processes that have a as a free name, i.e., G ⊗ a :=
(V, E ' {a}, l, inc ' {(a, Va)}), where Va ⊆ V with v ∈ Va iff a ∈ fn (l(v)). We
define the application of a substitution {a/x} to G by G{a/x} := (V, E, l′, inc),
where l′(v) := l(v){a/x} for all v ∈ V .

The graph-theoretic interpretation (1) creates a vertex for every sequential
process, (2) takes the restricted names not under prefixes as the edges, and (3)
inserts an arc where a name is free in a process. Technically, it is the func-
tion G[[−]] defined by G[[0]] := (∅, ∅, ∅, ∅), G[[K⌊ã⌋]] := ({v}, ∅, {(v, K⌊ã⌋)}, ∅),
G[[Σi∈I ̸=∅πi.Pi]] := ({v}, ∅, {(v,Σi∈I ̸=∅πi.Pi)}, ∅), G[[P | Q]] := G[[P]] ' G[[Q]],
and G[[νa.P]] := G[[P]]⊗ a if a ∈ fn (P), G[[P]] otherwise.

Structurally congruent processes P1 ≡ P2 are mapped to equivalent hyper-
graphs G[[P1]] ≈ G[[P2]]. The relation ≈ is the smallest equivalence on hyper-
graphs where replacement of vertex labels by structurally congruent processes
is allowed, (V ' {v}, E, l ' {(v, P)}, inc) ≈ (V ' {v}, E, l ' {(v, Q)}, inc), if
P ≡ Q, and renaming of edges together with the attached processes is possible,
G⊗ a ≈ (G{b/a})⊗ b, if b /∈ fn (l(v)) for all v ∈ V . The equivalence ≈ preserves
the length of the longest simple path, G1 ≈ G2 implies lsp(G1) = lsp(G2).

On Boundedness in Depth in the π-Calculus 483

3.2 Anchored Fragments

By definition, all fragments under a restriction νa share the name a. In an-
chored fragments, we demand that distinguished processes inside the fragments,
the anchors, share the name a. The corresponding function anc gives for a
fragment FAi in νa.(FA1 | . . . | FAn) the process anc(FAi) = P ∈ S(FAi)
that knows the name, i.e., a ∈ fn (P). When descending an anchored fragment
FA = νa.(FA1 | . . . | FAn) using the function nestν , this guarantees that the
vertices labelled by the anchors anc(FAi) are connected via a in G[[FA]].

Definition 2. The set of anchored fragments (FA, GA ∈) PA is defined by

FA ::= K⌊ã⌋ | Σi∈I ̸=∅πi.Pi | νa.(FA1 | . . . | FAn),

where a ∈ fn (anc(FAi)) for all i, with anc(K⌊ã⌋) := K⌊ã⌋, anc(Σi∈I ̸=∅πi.Pi) :=
Σi∈I ̸=∅πi.Pi, and anc(νa.(FA1 | . . . | FAn)) := anc(FA1). ♦
Of course, anchored fragments are fragments. We now show that every fragment
can be rewritten as an anchored fragment using structural congruence. In the
proof, it is important that every sequential process inside a fragment can be
chosen as the anchor.

Lemma 2. Consider F ∈ PF and a process P ∈ S(F). Then there is an an-
chored fragment FA ∈ PA such that FA ≡ F , S(FA) = S(F), and anc(FA) = P .

We explain the induction step in the proof of Lemma 2. Given fragment F we
compute the standard form νã.(P1 | . . . | Pn). Since this does not change the
sequential processes, one process Pi is the given process P , wlog. P1. We split
the set of names ã into three subsets ã1, ã2, ã3 as follows. A name a that is
shared by P and P2 | . . . | Pn, i.e., a ∈ fn (P) ∩ fn (P2 | . . . | Pn), is in the
set ã1. A name which is only in the free names of P is in ã2. The remaining
names are in ã3. Shrinking the scopes yields νã1.(νã2.P | νã3.(P2 | . . . | Pn)).
To transform νã3.(P2 | . . . | Pn) into a parallel composition of anchored
fragments, we compute the restricted form. It consists of several fragments,
(νã3.(P2 | . . . | Pn))ν = G1 | . . . | Gm. By construction, every Gi contains
a process PAi sharing a name with P . Since each Gi contains less processes
than F we can apply the induction hypothesis. This yields anchored frag-
ments GAi where anc(GAi) = PAi shares a name with P . We now have
νã1.(νã2.P | GA1 | . . . | GAm). As the names in ã1 are shared by different
GAi, we minimise their scopes to get the required anchored fragment.

Example 1. Let F = νb1, b2, b3, a.(K⌊a, b1⌋ | L⌊a, b2⌋ | L⌊a, b3⌋). We construct
the anchored fragment FA that has K⌊a, b1⌋ as the anchor, anc(FA) = K⌊a, b1⌋.
The fragment F already is in standard form. We split the set of names
{a, b1, b2, b3} into ã1 = {a}, ã2 = {b1}, and ã3 = {b2, b3}. We shrink the scopes
of all ãi which gives νa.(νb1.K⌊a, b1⌋ | νb2, b3.(L⌊a, b2⌋ | L⌊a, b3⌋)). The re-
stricted form of νb2, b3.(L⌊a, b2⌋ | L⌊a, b3⌋) is νb2.L⌊a, b2⌋ | νb3.L⌊a, b3⌋. Both

484 R. Meyer

fragments, νb2.L⌊a, b2⌋ and νb3.L⌊a, b3⌋, are also anchored fragments where
the anchors share the name a with K⌊a, b1⌋. The scope of a is minimal. Our
computation returns νa.(νb1.K⌊a, b1⌋ | νb2.L⌊a, b2⌋ | νb3.L⌊a, b3⌋). ♦
For anchored fragments FA, the nesting of restrictions corresponds to the length
of a simple path p in the graph G[[FA]], nestν (FA) = length(p) for some simple
path p ∈ Paths(G[[FA]]). In the proof, we need that the first element of p is
labelled by the anchor of FA, l(fe(p)) = anc(FA). We illustrate the construction
of a suitable path p in the induction step. The idea is to extend a path p′ that
exists by the hypothesis by an edge and a vertex.

Example 2. Consider FA = νa.(νb1.K⌊a, b1⌋ | νb2.L⌊a, b2⌋ | νb3.L⌊a, b3⌋).

•

•L⌊a, b2⌋

•ab1

b2

b3

G[[νb3.L⌊a, b3⌋]]

L⌊a, b3⌋K⌊a, b1⌋

The figure to the left shows a simple path p
in G[[FA]] with length(p) = 2 = nestν (FA) and
l(fe(p)) = K⌊a, b1⌋ = anc(FA). By the hypoth-
esis, there is a simple path p′ in G[[νb3.L⌊a, b3⌋]]
with length(p′) = 1 = nestν (νb3.L⌊a, b3⌋) and
l(fe(p′)) = L⌊a, b3⌋ = anc(νb3.L⌊a, b3⌋). This
path is p′ = (L⌊a, b3⌋, b3, L⌊a, b3⌋), depicted by

dashed lines. As G[[νb3.L⌊a, b3⌋]] is embedded in G[[FA]] (dotted line), p′ is a path
in G[[FA]]. The anchor L⌊a, b3⌋ and the anchor of FA, K⌊a, b1⌋, are connected
with a. We define p = (anc(FA), a, p′) = (K⌊a, b1⌋, a, L⌊a, b3⌋, b3, L⌊a, b3⌋). It
extends p′ by the bold lines. ♦

3.3 The Characterisation of Boundedness in Depth

Fragment F is structurally congruent with an anchored fragment FA (Lemma 2).
As depth(F) ≤ nestν (FA) = length(p) for some simple path p in G[[FA]] and as
the length of the simple paths is bounded, the depth is bounded as well.

Lemma 3. If P ∈ P is bounded in the simple paths by kSim then P is bounded
in depth by kSim as well.

It is easy to check that the length of the longest simple path in G[[F]] is bounded
by the nesting of restrictions in F as follows: lsp(G[[F]]) ≤ 2nestν(F) − 1. Let
F be bounded in depth. There is a fragment FD ≡ F where the nesting of
restrictions is minimal, nestν (FD) = min{nestν (F ′) | F ′ ≡ F} = depth(F).
Since the graphs of F and FD are equivalent, lsp(G[[F]]) = lsp(G[[FD]]) holds.
The mentioned inequality and the choice of FD yield the following lemma.

Lemma 4. If P ∈ P is bounded in depth by kD then P is bounded in the simple
paths by 2kD − 1.

Combined, Lemma 3 and Lemma 4 prove our first main theorem.

Theorem 1. A process P ∈ P is bounded in depth if and only if it is bounded
in the simple paths.

On Boundedness in Depth in the π-Calculus 485

In the following section we understand anchored fragments as trees of bounded
height. The boundedness is justified by the following corollary of Lemma 4.

Corollary 1. Let P be bounded in depth by kD and FA ∈ Frag (Reach (P)) then
nestν (FA) ≤ 2kD − 1.

4 The Transition Systems of PBD are Well-structured

Our second main result states that processes of bounded depth have well-
structured transition systems (WSTS) [10, 1, 11]. A WSTS is a tuple (S,!,≼),
where (S,!) is an image finite transition system and ≼ ⊆ S × S is a wqo on
the states (s, t ∈) S which is required to be a simulation. By definition, the re-
lation s ≼ t is a simulation if state t imitates the transition behaviour of s, i.e.,
s ≼ t and s ! s′ implies there is t′ with t ! t′ and s′ ≼ t′. To instantiate the
framework, we define a qo ≼PBD on processes and prove it (1) to be a wqo on
Reach (P) where P is bounded in depth (Section 4.1) and (2) to be a simulation
(Section 4.2). We conclude with a decision procedure for termination.

4.1 A Well-Quasi-Ordering for PBD

Our wqo ≼PBD on processes is derived from a wqo on fragments. The idea of
the fragment ordering ≼F is to use the rooted tree embedding and close it
under structural congruence. The leafs in Rule (Elem) correspond to elemen-
tary fragments: Fe ≼F Fe (Rule (1)). Fragment νa.(Πi∈IFi) is dominated by
νa.(Πi∈IGi | Πj∈JGj) if the Gi dominate the Fi. This mimics Rule (Comp). If
F ′ is smaller than G′ then every F ≡ F ′ is smaller than G ≡ G′ (Rule (3)).

Definition 3. The fragment ordering ≼F ⊆ PF × PF is defined by:

(1)
Fe ≼F Fe

(2)
Fi ≼F Gi for all i ∈ I

νa.(Πi∈IFi) ≼F νa.(Πi∈IGi | Πj∈JGj)

(3)
F ≡ F ′ ≼F G′ ≡ G

F ≼F G
. ♦

Reflexivity of ≼F is immediate, transitivity follows from Lemma 8. To relate
the fragment ordering ≼F with the rooted tree embedding ≼T (A), we inter-
pret fragments F as (syntax) trees T [[F]] as follows: an elementary fragment
is a single leaf, T [[Fe]] := Fe, a fragment νa.(F1 | . . . | Fn) is the tree
T [[νa.(F1 | . . . | Fn)]] := (a, (T [[F1]], . . . , T [[Fn]])). If we assume that the set
A contains the sequential processes and the restricted names in F that are not
under prefixes, i.e., S(F)∪rn (F) ⊆ A, then T [[F]] is a tree over A, T [[F]] ∈ T (A).

486 R. Meyer

If we furthermore assume that A is ordered by the identity, i.e., we consider the
qo (A, id), then the rooted tree embedding implies the fragment ordering.

Lemma 5. Consider the qo (A, id). If T [[F]] ≼T (A) T [[G]] then F ≼F G for all
fragments F, G ∈ PF .

To conclude ≼F is a wqo from the fact that ≼T (A) is a wqo with Lemma 5,
(A, id) needs to be a wqo (cf. Lemma 1). This is the case if A is finite. Thus,
we need fragments that consist of a finite set of sequential processes and a
finite set of restricted names. The idea is to reuse restricted names in parallel
compositions, i.e., here we relax the requirement that a name is bound at most
once. For every i ∈ N we define con i : PF → PF by coni(Fe) := Fe and
coni(νa.(F1 | . . . | Fn)) := νui.(con i+1(F1){ui/a} | . . . | coni+1(Fn){ui/a}),
where wlog. ui is fresh for F1, . . . , Fn. Of course, F ≡ coni(F) and the restricted
names are determined by nestν (F) since rn (coni(F)) ⊆ {ui, . . . , ui+nestν(F)}.

Example 3. Consider FA = νa.(νb1.K⌊a, b1⌋ | νb2.L⌊a, b2⌋ | νb3.L⌊a, b3⌋). We
compute con0(FA) = νu0.(νu1.K⌊u0, u1⌋ | νu1.L⌊u0, u1⌋ | νu1.L⌊u0, u1⌋). ♦
Following the argumentation above, we now build particular anchored fragments
FA that consist of derivatives where the restricted names are changed by con0.

Lemma 6. Let F ∈ Frag (Reach (P)) for some P ∈ P. There is an anchored
fragment FA ≡ F with rn (FA) ⊆ {u0, . . . , unestν(FA)} and S(FA) ⊆ {Qσ | Q ∈
derivatives(P) and σ : fn (Q)→ fn (P) ∪ {u0, . . . , unestν(FA)}}.

Proof. Let F ∈ Frag (Reach (P)). We recalled that F ≡ νã.(Q1σ1 | . . . | Qnσn)
where Qi ∈ derivatives(P) and σi : fn (Qi) → ã ∪ fn (P) in Section 2. We
compute the restricted form, (νã.(Q1σ1 | . . . | Qnσn))ν =: F ′. It is a fragment
F ′ according to ≡̂ . For F ′ we compute FA

′ with Lemma 2. We now have
F ≡ FA

′ and S(FA
′) ⊆ {Qσ | Q ∈ derivatives(P) and σ : fn (Q)→ ã∪ fn (P)}.

With the function con0 we change the restricted names: con0(FA
′) ≡ FA

′

and rn
(
con0(FA

′)
)
⊆ {u0, . . . , unestν(FA′)}. The renaming changes the set of

sequential processes. They are now derivatives where the substitutions map into
fn (P) ∪ {u0, . . . , unestν(FA′)}. Thus, con0(FA

′) satisfies the requirements. ⊓*

To see that ≼F is a wqo on the reachable fragments of P ∈ PBD , let kD be
a bound on the depth. We define the set A := {u0, . . . , u2kD−1} ∪ {Qσ | Q ∈
derivatives(P) and σ : fn (Q) → fn (P) ∪ {u0, . . . , u2kD −1}}. Obviously, A is
finite and thus (A, id) is a wqo.

Let (Fi)i∈N be a sequence in Frag (Reach (P)). Every Fi is structurally
congruent with an anchored fragment FAi in Lemma 6. Corollary 1 yields
nestν (FAi) ≤ 2kD − 1. Thus T [[FAi]] ∈ T (A) with the set A we just defined.
The height of T [[FAi]] is equal to the nesting of restrictions in FAi. Thus, we
have a sequence (T [[FAi]])i∈N of trees in T (A)2kD −1. According to Lemma 1,
(T (A)2kD −1,≼T (A)) is a wqo and so there are i < j with T [[FAi]] ≼T (A) T [[FAj]].
Since A is ordered by the identity, FAi ≼F FAj with Lemma 5. With Rule (3)
we conclude Fi ≼F Fj . The following lemma holds.

On Boundedness in Depth in the π-Calculus 487

Lemma 7. Let P ∈ PBD . Then (Frag (Reach (P)) ,≼F) is a wqo.

We define the qo ≼PBD on Reach (P)/≡ by [Πi∈IFi] ≼PBD [Πi∈IGi | Πj∈JGj] if
Fi ≼F Gi for all i ∈ I. Wqo follows from Lemma 7 and Higman’s result.

Proposition 1. Let P ∈ PBD . Then (Reach (P)/≡,≼PBD) is a wqo.

4.2 The Relation ≼PBD is a Simulation

In the proof that ≼PBD is a simulation, the following Lemma 8 is crucial. It
relates the fragment ordering F ≼F G with the standard form of F . This
standard form is covered by G in a way that reveals ≼F is a simulation.

Lemma 8. For all F, G ∈ PF : F ≼F G if and only if F ≡ νã.(P1 | . . . | Pn)
in standard form and G ≡ νã.(P1 | . . . | Pn | R) for some R ∈ P.

Let [P] = [Πi∈IFi] ≼PBD [Πi∈IGi | Πj∈JGj] = [Q], which means Fi ≼F Gi

for all i ∈ I. With Lemma 8 we get Πi∈IFi ≡ Πi∈Iνai.(P1i | . . . | Pni). We
extrude the names νai and check that [P]→ [P ′] implies [Q]→ [Q′] with a case
distinction. The direction from right to left in Lemma 8 yields [P ′] ≼PBD [Q′].

Proposition 2. The relation ≼PBD is a simulation on P/≡.

With Proposition 1, Proposition 2, and the fact that→ is image finite up to ≡,
we conclude that processes of bounded depth have WSTS.

Theorem 2. Let P ∈ PBD . Then (Reach (P)/≡,→,≼PBD) is a WSTS.

4.3 Decidability of Termination for PBD

The WSTS (S,!,≼) has a non-terminating computation from s0 ∈ S iff an
infinite sequence s0 ! s1 ! . . . exists. If ! is effectively computable and ≼ is
decidable the following algorithm decides the termination problem [10, 11].

Let s0 ∈ S. We construct the finite reachability tree FRT(s0). The root is
labelled by s0. For every node labelled by s in the tree, we create a new node
for every successor t of s. We connect the node labelled by s and the new node.
If there is a node labelled by s′ on the path from the root to the new node with
s′ ≼ t, we label the new node by t+. Otherwise we label it by t. We do not
create successors for nodes t+. The idea is that t with s′ ≼ t can simulate the
behaviour of s′ and thus repeat s′ ! . . .! t.

Proposition 3 ([10, 11]). A WSTS (S,!,≼) has a non-terminating compu-
tation from s0 ∈ S if and only if FRT (s0) contains a node t+. As ≼ is a wqo,
the tree FRT (s0) is finite and containment of t+ is decidable.

488 R. Meyer

The reaction relation is effectively computable and ≼PBD is decidable.

Corollary 2. For P ∈ PBD it is decidable whether there is a non-terminating
computation starting from [P].

Example 4. Let P0 = νu0.(νu1.K⌊u0, u1⌋ | νu1.L⌊u0, u1⌋ | νu1.L⌊u0, u1⌋)
with K(x, y) := K⌊x, y⌋ | νz.y⟨z⟩ and L(x, y) := x⟨y⟩. Then FRT([P0]) is

•[P0] •[P1]+
•[P2]
•[P3]+•[P4]
•[P5]+

P1 = νu0.(νu1.(K⌊u0, u1⌋ | νu2.u1⟨u2⟩) | νu1.L⌊u0, u1⌋ | νu1.L⌊u0, u1⌋)
P2 = νu0.(νu1.K⌊u0, u1⌋ | νu1.u0⟨u1⟩ | νu1.L⌊u0, u1⌋)
P3 = νu0.(νu1.(K⌊u0, u1⌋ | νu2.u1⟨u2⟩) | νu1.u0⟨u1⟩ | νu1.L⌊u0, u1⌋)
P4 = νu0.(νu1.K⌊u0, u1⌋ | νu1.u0⟨u1⟩ | νu1.u0⟨u1⟩)
P5 = νu0.(νu1.(K⌊u0, u1⌋ | νu2.u1⟨u2⟩) | νu1.u0⟨u1⟩ | νu1.u0⟨u1⟩).

The

root of FRT([P0]) is labelled by [P0]. We have [P0] → [P1] and [P0] → [P2].
Thus, we insert two new nodes. For the first node, [P0] ≼PBD [P1] holds, so
we label it by [P1]+. Since [P0] ≼PBD [P2] does not hold, the second node is
labelled by [P2]. With [P2]→ [P3] we construct a new node. As [P0] ̸≼PBD [P3]
but [P2] ≼PBD [P3], we label it by [P3]+. The remaining nodes are constructed
similarly with [P4] ≼PBD [P5]. The existence of [P1]+ implies the system has a
non-terminating computation from [P0]. ♦

5 Related Work and Conclusion

The interpretation of processes as graphs was proposed in [15, 16] and has been
recalled in [17, 18] for the π-Calculus. We related the depth of a process P with a
function on the graph G[[P]]. We are not aware of similar results in the literature.
The proof required an intricate normal form called anchored fragments.

In [6, 8] decidability of structural congruence relations was investigated. The
authors proposed normal forms related with the restricted form in [14]. The
standard form of processes is due to [17]. Anchored fragments are more stringent
than the normal forms above, and thus reveal more information about the
connection structure of process terms.

Finkel generalised the coverability graph procedure for Petri nets to what he
called WSTS [10]. He presented algorithms to decide termination and bound-
edness problems in the general setting. Abdulla et. al. generalised decidability
results of temporal properties and simulation relations for lossy channel systems
to their notion of WSTS [1]. Both definitions were unified in [11]. This paper is
the first to instantiate the WSTS framework for the π-Calculus. Compatibility
with the reaction relation required a non-trivial ordering ≼PBD .

Based on a translation of π-Calculus into multisets, orderings on processes
defined by multiset containment relations were studied in [7]. We considered
the more intricate wqos, i.e., ≼PBD needed to be well-behaved under reaction.

On Boundedness in Depth in the π-Calculus 489

In [19, 5] type systems for the π-Calculus were presented that ensure ter-
mination of well-typed processes. We observe that terminating processes are
always bounded in depth due to the finite number of reachable processes. Fur-
thermore, our result is more general in that we instantiate the WSTS framework
for PBD and then derive decidability of termination as a corollary. To turn our
decidability result into a practical procedure, approximations on ≼PBD should
be developed to prune the finite reachability tree.

References

1. P. A. Abdulla, K. Čerans, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160(1–2):109–127, 2000.

2. R. M. Amadio and C. Meyssonnier. On decidability of the control reachability problem
in the asynchronous π-calculus. Nordic Journal of Computing, 9(1):70–101, 2002.

3. L. Caires. Behavioural and spatial observations in a logic for the π-Calculus. In FOSSACS
2004, volume 2987 of LNCS, pages 72–89. Springer-Verlag, 2004.

4. M. Dam. Model checking mobile processes. Information and Computation, 129(1):35–51,
1996.

5. Y. Deng and D. Sangiorgi. Ensuring termination by typability. Information and Com-
putation, 204(7):1045–1082, 2006.

6. J. Engelfriet and T. Gelsema. Multisets and structural congruence of the pi-calculus with
replication. Theoretical Computer Science, 211(1–2):311–337, 1999.

7. J. Engelfriet and T. Gelsema. Structural inclusion in the pi-calculus with replication.
Theoretical Computer Science, 258(1–2):131–168, 2001.

8. J. Engelfriet and T. Gelsema. A new natural structural congruence in the pi-calculus
with replication. Acta Informatica, 40(6):385–430, 2004.

9. G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verification envi-
ronment for mobile processes. ACM Transactions on Software Engineering and Method-
ology, 12(4):440–473, 2003.

10. A. Finkel. Reduction and covering of infinite reachability trees. Information and Com-
putation, 89(2):144–179, 1990.

11. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theo-
retical Computer Science, 256(1–2):63–92, 2001.

12. A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of LNCS.
Springer-Verlag, 1992.

13. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3),
2(7):326–336, 1952.

14. R. Meyer. A theory of structural stationarity in the π-Calculus. Under revision, 2008.
15. G. Milne and R. Milner. Concurrent processes and their syntax. JACM, 26(2):302–321,

1979.
16. R. Milner. Flowgraphs and flow algebras. JACM, 26(4):794–818, 1979.
17. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University

Press, 1999.
18. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge

University Press, 2001.
19. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the π-Calculus. Infor-

mation and Computation, 191(2):145–202, 2004.

