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Abstract. Loop agreement is a type of distributed decision tasks including many
well-known tasks such as set agreement, simplex agreement, and approximation
agreement. Because of its elegant combinatorial structure and its important role in
the decidability problem of distributed decision tasks, loop agreement has been thor-
oughly investigated. A classification of loop agreement tasks has been proposed,
based on their relative computational power: tasks are in the same class if and only
if they can implement each other. However, the classification does not cover such
important tasks as consensus, because any loop agreement task allows up to three
distinct output values in an execution. So, this paper considers classifying a variation
of loop agreement, called degenerate loop agreement, which includes consensus. A
degenerate loop agreement task is defined in terms of its decision space and two dis-
tinguished vertices in the space. It is shown that there are exactly two equivalence
classes of degenerate loop agreement tasks: one represented by the trivial task, and
the other by consensus. The classification is totally determined by connectivity of the
decision space of a task; if the distinguished points are connected in the space, the
task is equivalent to the trivial task, otherwise to consensus.
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1 Introduction

A distributed computing system consists of finitely many sequential processes com-
municating via accessing shared read/write registers and other mechanisms [10]. The
mechanisms include communication channels, synchronizing primitives, and general
services [1, 6]. The processes are asynchronous and may fail by stopping, so it is in-
distinguishable whether an irresponsive process has failed or is only running slowly. A
protocol is a distributed program in such a system. A task is a distributed coordination
problem where each process starts with a private input value and decides an output
value such that the decisions of all processes meet some specification [7]. Well-known
examples of tasks include consensus[5], set consensus[4], and renaming [2]. A pro-
tocol is said to solve a task if starting with any legal input assignment, the outputs
produced in any execution of the protocol meet the task specification.
Loop agreement [8] is an interesting type of tasks in the theory of distributed com-

puting. A loop agreement task is defined in terms of an edge loop in a 2-complex, with
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three distinguished points on the loop. It stands for a task with the distinguished points
as input values and the vertices of the 2-complex as output values. In an execution, if
the inputs are the same, the outputs all coincide with the input; if the inputs have two
distinct values, the outputs span a simplex along the segment of the loop connecting
the two points; otherwise, the outputs span an arbitrary simplex in the complex. Loop
agreement is attractive for the following reasons. 1. It has elegant combinatorial struc-
ture. 2. It plays a critical role in proving the undecidability of a variety of distributed
tasks [7]. 3. It is so general as to include many well-known tasks such as set agreement
and approximation agreement.
There are two very influential pieces of work on the computability issue of loop

agreement [7, 8]. Ref. [7] showed that a loop agreement task is solvable in certain
models if and only if the loop is contractible in the 2-complex, so the solvability of
loop agreement tasks in these models is undecidable.
In [8], a classification of loop agreement tasks was presented based on their relative

computational power. It considered whether a task T1 can implement T2, i.e. T2 can be
solved by calling an instance of a solution to T1, followed by a protocol using shared
read/write registers. Loop agreement tasks can be classified according to the equiva-
lence relation induced by implementation. [8] assigned an algebraic signature to each
loop agreement task, which is a pair of the fundamental group of the 2-complex and
the path class represented by the loop. It was shown that T1 can implement T2 if and
only if there is a homomorphism from the signature of T1 to that of T2. As a result, the
signature completely characterizes the computability of a loop agreement task.
The above work is so elegant. However, its significance is a little weakened in that

loop agreement does not include consensus. Consensus is a task whose set of input
values is {0,1}, and in any execution, all the processes agree on the input to some pro-
cess. Consensus is among the most important tasks in distributed computing, due to its
universality [6]. As a result, this paper choose to study an variation of loop agreement,
called degenerate loop agreement, which includes consensus. The aim is to adapt the
classification of loop agreement tasks in [8] to degenerate loop agreement tasks.
The main contribution of this paper is a complete classification of degenerate loop

agreement tasks. Based on the equivalence relation induced by mutual implementa-
tion, degenerate loop agreement tasks are divided into two classes: one represented by
consensus, the other by the trivial task. The classification is topologically determined;
any disconnected task is equivalent to consensus, while connected ones are equivalent
to the trivial task.
The rest of this paper is organized as follows. In Section 2, preliminaries on com-

plexes and distributed tasks are presented. In Section 3, degenerate loop agreement
tasks are defined. Section 4 proves that there are exactly two classes of degenerate
loop agreement tasks, up to the equivalence induced by implementation. Section 5
concludes this paper.
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2 Preliminaries

This section will introduce our distributed computing model and formalize the no-
tion of a task. Necessary material from combinatorial topology is also presented, since
degenerate loop agreement will be specified using simplicial complexes. Simplicial
complexes and their topological properties have long been utilized in distributed com-
putability theory [3, 9, 12]. This paper will exploit connectivity of 1-complexes.

2.1 System model and task formalization

The computing model and task formalization coincide with those in [8], so we will
present very briefly. Interested readers please refer to Subsection 3.1 of [8].
We adopt the shared-memory model [10] for distributed computing, where a sys-

tem consists of a finite set of asynchronous sequential processes, which communicate
through accessing shared memory. The shared memory includes read/write registers
and possibly more powerful objects and services. A process may delay indefinitely, or
fail by stopping.
A task is a distributed coordination problem in which each process starts with a

private input value, communicates with others via shared memory, produces an output
value, and halts.
Formally, an n-process task T is specified by a triple (I ,O,∆), where I ⊆

(DI
⋃
{⊥})n \{(⊥, · · · ,⊥)} is the set of input vectors,O ⊆ (DO

⋃
{⊥})n \{(⊥, · · ·⊥)}

is the set of output vectors, and ∆ ⊆ I ×O is the task specification. DI and DO are
respectively the input and output data types. I and O are both prefix-closed [8]. An
element I ∈I represents an assignment of input values in an execution: if I i ̸=⊥, the
ith process starts with input Ii, otherwise it does not participate in that execution. The
meaning of output vectors can be likewise understood. ∆ carries an input vector to a
set of matching output vectors, specifying the legal outputs for that input assignment.
Here, vectors I ∈I and O ∈O are said to match, when for any i, I i =⊥ if and only if
Oi =⊥.
An n-process protocol is said to t-resiliently solve a task (I ,O,∆), if for every

execution where the input vector is I and at least n− t processes decide, the decision
vector is a prefix of some output vector in ∆(I). When t = n−1, the protocol is said to
be wait-free.
We also borrow the notion of implementation from [8]. A task T1 is said to be im-

plementable from task T2, if T1 can be solved by calling an instance of a protocol
that solves T2, possibly followed by access to shared read/write registers. Implemen-
tation naturally induces an equivalence relation where two tasks are equivalent if and
only if they are mutually implementable. This relation partitions tasks into equivalence
classes, which is the very idea of the classification in this paper.
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2.2 Simplicial Complexes

We recall the notion of simplicial complexes and simplicial maps. Readers can also
refer to the standard textbook [13, 11] for more information.
Arbitrarily choose a finite set of points {v0,v1, · · · ,vm} in the n−dimensional Eu-

clidean space Rn. If they are affinely independent, the convex closure

s =
{

m
∑
i=0

λivi ∈ Rn|
m
∑
i=0

λi = 1 and λi ≥ 0 for 0≤ i≤m
}
is called the simplex spanned

by {v0,v1, · · · ,vm}, denoted by {v0,v1, · · · ,vm}, and m is called the dimension of s.
The simplex spanned by any subset of {v0,v1, · · · ,vm} is called a face of s. Each vi is
called a vertex of s.
Two simplices are said to well-positioned, if the intersection of them is either empty

or a face of each of them. A finite set of pairwise well-positioned simplices, together
with all their faces, is called a (simplicial) complex. A complex is said to be an
n−complex, if all the simplexes are of dimension no more than n. A complexes C ′
is said to be a subcomplex of C, if C ′ ⊆ C. Vertices A,B in a complex C are said to
connected, if there is a sequence of vertices v0 = A,v1, · · · ,vn = B, such that for each
0 ≤ i ≤ n− 1, {vi,vi+1} spans a simplex in C; such a sequence of vertices is called a
path connecting A and B.
A map f from complex C to C ′ is simplicial, if for each vertex v of C, f (v) is also

a vertex of C′, and for each simplex s = {v0,v1, · · · ,vm} ∈ C, f (s) is spanned by the
set { f (vi)|0≤ i≤m}. Obviously, to define a simplicial map, one only has to define its
behavior on vertices.

3 Degenerate Loop Agreement

Definition 1. A 1-complex K, together with two distinct vertices A,B ∈ K, deter-
mines a task (I ,O,∆ ) where I = (DI

⋃
{⊥})n \ {(⊥, · · · ,⊥)}, O = (DO

⋃
{⊥})n \

{(⊥, · · · ,⊥)}, DI = {0,1}, DO is the set of vertices of K, and

∆(I) =

⎧
⎨

⎩

{O|O matches I, and val(O) = {A}} i f val(I) = {0}
{O|O matches I, and val(O) = {B}} i f val(I) = {1}
{O|O matches I, and val(O) ∈ K} otherwise

(1)

The task is called a degenerate loop agreement task and denoted by T = (K,A,B). K
is called the decision space of T .

Intuitively, the input values of T = (K,A,B) are 0 and 1, and the output ones are the
vertices of K. When all the inputs are 0 (or 1, respectively), all processes decide A (or
B, respectively); otherwise, the decided values spans a simplex in K.
Hereunder, a degenerate loop agreement task T = (K,A,B) will be illustrated by

the complex K marked with A and B. See Figure 1 as an example.
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Fig. 1 The illustration of a task T = (K,A,B)

Example 1. A famous example of degenerate loop agreement task is consensus, which
intuitively means that all processes must agree on a value from their inputs. Formally,
consensus= ({A,B},A,B), as illustrated in Figure 2.

Fig. 2 consensus

There is a canonical fact on consensus.

Lemma 1. (Theorem 12.6, [10]) Consensus can’t be solved using read/write registers.

Example 2. Another example of degenerate loop agreement task is T = (K,A,B),
where K consists of the simplex {A,B} and its faces. See Figure 3 as an illustration of
T . Since T can be solved by the protocol where each process trivially outputs its input,
it is called the trivial task in this paper.

Fig. 3 The trivial task

There is an obvious fact on the trivial task. The proof is omitted here.

Lemma 2. A degenerate loop agreement task can be solved using read/write registers
if and only if it can be implemented by the trivial task.

4 A Classification of Degenerate Loop Agreement

The main result is that degenerate loop agreement is divided into two classes, as stated
in Theorem 1 at the end of this section. To prove this theorem, this section is organized
as follows. First, Corollary 1 normalizes degenerate loop agreement tasks by removing
redundant components from their decision spaces. Second, Lemma 6 shows that all
disconnected degenerate loop agreement tasks are equivalent. Third, Lemma 8 shows
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that all connected degenerate loop agreement tasks are equivalent. Some other techni-
cal lemmas are also included.
First of all, we identify a condition which allows one degenerate loop agreement

task to implement another. It can be an corollary of Lemma 6.2 in [8], but we provide
a much simpler proof.

Lemma 3. Given two degenerate loop agreement tasks T=(K,A,B) and T ′= (K′,A′,B′),
if there is a simplicial map f : K→ K ′ such that f (A) = A′ and f (B) = B′, then T im-
plements T ′.

Proof: Choose an arbitrary protocol P for T , and construct a protocol P f as follows.
Each process of Pf first runs protocol P, resulting in a temporary decision value v.
Then it outputs f (v) as its final decision. We show that Pf solves T ′.
Consider an arbitrary execution of Pf , with SI/SO as its set of input/output values,

respectively. Assume S′O to be the set of output values of P in this execution. The fol-
lowing is a case analysis.
Case 1: SI = {0}. Then S′O = {A} since P solves T . Because f (A) = A′, we have

SO = {A′}. Likewise, if SI = {1}, then SO = {B′}.
Case 2: SI = {0,1}. Then S′O spans a simplex in K. Because f : K→ K ′ is a simpli-

cial map, SO = { f (v)|v ∈ S′O} spans a simplex in K ′.
As a result, Pf solves T ′, and hence T implements T ′. ✷

Then we show that a task gets stronger if some part of its decision space is removed,
as shown in the following lemma.

Lemma 4. Given two 1-complexes K and K ′, if K is a subcomplex of K ′ and A,B
are vertices of K, then the degenerate loop agreement task T = (K,A,B) implements
T ′ = (K′,A,B).

Proof: The inclusion i :K→K ′, v $→ v is a simplicial map. By Lemma 3, T = (K,A,B)
implements T ′ = (K′,A,B). ✷

Definition 2. Given a degenerate loop agreement task T = (K,A,B), a connected com-
ponentC of K is called an idle component of T , ifC contains neither A nor B.

Lemma 5. Let C be an idle component of a degenerate loop agreement task T=(K,A,B).
Then T is equivalent to T ′ = (K \C,A,B).

Proof: On the one hand, T ′ implement T , by Lemma 4.
On the other hand, define a simplicial map f : K→ K ′,

f (v) =
{
A i f v is a vertex in C
v otherwise (2)

See Figure 4 for an illustration of f . By Lemma 3, T ′ implement T .
To sum up, T is equivalent to T ′. ✷

According to Lemma 5, a task can be equivalently transformed by eliminating all
its idle components, so we immediately have the following corollary.

Corollary 1. Any degenerate loop agreement task is equivalent to one without idle
components.
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Fig. 4 The map f in Lemma 5

As a result, all the tasks hereunder are assumed to have no idle components, without
loss of generality.

Definition 3. A degenerate loop agreement task T = (K,A,B) is said to be connected
if A and B are connected in K. Otherwise it is said to be disconnected.

Connectivity is a topological property. The following lemmas show that it plays a
critical role in classifying degenerate loop agreement tasks.

Lemma 6. Any two disconnected degenerate loop agreement tasks are equivalent.

proof: The basic idea is to show that any disconnected degenerate loop agreement
task T = (K,A,B) is equivalent to consensus. Without loss of generality, assume the
decision space of consensus is K ′ = {A,B}.
First, K′ is a subcomplex of K. By Lemma 4, consensus implements T .
Second, define a simplicial map f : K→ K ′,

f (v) =
{
A i f v is in the component containing A
B i f v is in the component containing B (3)

See Figure 5 for an illustration of f . By Lemma 3, T implements consensus.
Altogether, T is equivalent to consensus, and the lemma holds. ✷

To show that that all connected degenerate loop agreement tasks are also equiva-

Fig. 5 The map f in Lemma 6

lent, we have to construct a protocol πm for a special task τm = (κm,0,1), where m is
a positive integer. The decision space κm of τm is a 1-complex in R1, consisting of the
simplices { i

2m , i+12m }, 0≤ i≤ 2m−1, as well as their faces. κm is illustrated in Figure 6.
The n−process protocol πm is illustrated in Figure 7. It is actually the 1-dimensional
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version of the barycentric agreement protocol in [8]. For the completeness of presen-
tation, the correctness of πm is proved here, in a way that is a little different from that
in [8].

Fig. 6 Decision space κm of the task τm

Fig. 7 The protocol πm (for process P)

Lemma 7. The protocol πm solves τm.

Proof: First, πm is wait-free, since each process does not wait for others to progress
and it only executes a bounded number of steps before terminating.
Second, We claim that for each r, the values in view[r] always span a simplex in κ r.

The proof is by induction.
Step 1. When r = 0, view[r] contains either 0, 1, or 0 and 1, so it spans a simplex in

κ0. The claim holds in this case.
Step 2. Hypothesize that the claim holds for r0 < m−1.
Step 3. It is obvious that the set of values scanned by one process when r = r 0 is

either a subset or a superset of that scanned by another process when r = r 0. Hence
when r = r0, some (possibly zero) processes decide a value in view[r0], and the others
decides the average of the values in view[r0]. As a result, the values in view[r0 + 1]
spans a simplex in κr0+1.
To sum up, the values in view[m−1] always span a simplex in κm−1. Following the

argument in step 3, we have that the final values decided by the protocol π m spans a
simplex in κm. Furthermore, it is clear that when all the inputs are A, the processes
only decides A, likewise for the case of B. So, πm solves τm. ✷

Now we are ready to adapt Lemma 6 to the case of connected tasks.

Lemma 8. Any two connected degenerate loop agreement tasks are equivalent.

Proof: Our idea is to show that any connected degenerate loop agreement task T =
(K,A,B) is equivalent to the trivial task. The proof proceeds in two steps. Without loss
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of generality, assume that the trivial task is T ′ = (K′,0,1), where K ′ = {0,1,{0,1}}.
Step 1: to prove that T implement the trivial task. Define a simplicial map f : K→

K′,

f (v) =
{
0 i f v= A
1 otherwise (4)

See Figure 8 for an illustration of f . By Lemma 3, T implements the trivial task.
Step 2: to prove that the trivial task implements T . Because K is connected, there

Fig. 8 The map f in Lemma 8

is a path in K connecting A and B. Fix one such path u0,u1,u2, · · · ,un, where u0 = A
and un = B. Let m= ⌈log2n⌉. By Lemmas 7 and 2, the trivial task implements τm.
We now have to show that τm implements T . Define a simplicial map g : κm→ K,

g(
i
2m

) =
{
ui 0≤ i≤ n
B n≤ i≤ 2m (5)

See Figure 9 for an illustration of f . By Lemma 3, τm implements T , so the trivial task
implements T .
To sum up, every connected degenerate loop agreement task is equivalent to the

trivial task, and the lemma holds. ✷

Fig. 9 The map g in Lemma 8

Theorem 1. There are two equivalence classes of degenerate loop agreement tasks.

Proof: By Lemma 6 and Lemma 8, degenerate loop agreement tasks can be divided
into at most two equivalence classes: one represented by consensus, and the other by
the trivial task. By Lemma 1, consensus can not be implemented from the trivial task.
As a result, there are exactly two equivalence classes of degenerate loop agreement
tasks. ✷
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5 Conclusion

Loop agreement is an interesting type of distributed decision tasks and has been thor-
oughly studied. However, it does not include the important task of consensus, so this
paper considers one of its variation, called degenerate loop agreement, which includes
consensus. Classifying degenerate loop agreement tasks is explored to characterize
their computational power: two tasks are in the same class if and only if they can
implement each other. It turn out that there are exactly two classes: one represented
by consensus, including all disconnected tasks, and the other by the trivial task, in-
cluding all connected tasks. Hence this classification is totally determined by topology
of the decision spaces. Compared with the classification of loop agreement where 1-
dimensional holes are decisive, our work involves mainly 0-dimension holes, i.e. con-
nectivity. We hope that this provides a further step towards bridging the gap between
topology and computer science.
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