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Abstract. It is shown that the existence of a Hamiltonian path in a planar automatic
graph of bounded degree is complete for Σ11 , the first level of the analytical hierarchy.
This sharpens a corresponding result of Hirst and Harel for highly recursive graphs.
Furthermore, we also show: (i) The Hamiltonian path problem for finite planar graphs
that are succinctly encoded by an automatic presentation is NEXPTIME-complete,
(ii) the existence of an infinite path in an automatic successor tree is Σ11 -complete,
and (iii) an infinite version of the set cover problem is decidable for automatic graphs
(it is Σ 11 -complete for recursive graphs).

1 Introduction

The theory of recursive structures has its origins in computability theory. A structure
is recursive, if its domain is a recursive set of naturals, and every relation is again
recursive. Starting with the work of Manaster and Rosenstein [23] and Bean [1, 2],
infinite variants of classical graph problems for finite graphs were studied for recursive
graphs. It is not surprising that these problems are mostly undecidable for recursive
graphs. This motivates the search for the precise level of undecidability. It turned out
that some of the problems reside on low levels of the arithmetic hierarchy (e.g. the
question whether a given recursive graph has an Eulerian path [3]), whereas others are
complete for Σ 1

1 — the first level of the analytic hierarchy [21]. A classical example
for the latter situation is the question whether a given recursive tree has an infinite
path. With a technically quite subtle reduction from the latter problem, Harel proved
in [13] that also the existence of a Hamiltonian path (i.e., a one-way infinite path that
visits every node exactly once) in a recursive graph is Σ 1

1 -complete. Σ 11 -hardness holds
already for highly recursive graphs, where a list of the neighbors of a node v can be
computed effectively from v.
Hamiltonian paths in infinite graphs were also studied under a purely graph the-

oretic view. An important result of Dean, Thomas, and Yu [6] states that an infinite
undirected graph G has a Hamiltonian path if it is (i) planar, (ii) 4-connected, and (iii)
has only one end (see [7] for definitions). This extends a result of Tutte [27] for finite
graphs.
In computer science, in particular in the area of automatic verification, focus has

shifted in recent years from arbitrary recursive graphs to subclasses that have more
amenable algorithmic properties. An important example for this is the class of auto-
matic graphs [5, 16]. A graph is called automatic if it has an automatic presentation,
which consists of a finite automaton that generates the set of nodes and a two-tape
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automaton with synchronously moving heads, which accepts the set of edges. One of
the main motivations for investigating automatic graphs is the fact that every auto-
matic graph has a decidable first-order theory [16], this result extends to first-order
logic with infinity and modulo quantifiers [5, 19]. In contrast to these positive results,
Khoussainov,Nies, and Rubin have shown that the isomorphism problem for automatic
graphs is Σ 11 -complete [17]. Results on the model theoretic complexity of automatic
structures can be found in [15].
The main result of this paper states that the existence of a Hamiltonian path be-

comes Σ 11 -complete already for a quite restricted subclass of recursive graphs, namely
for automatic graphs, which are planar and of bounded degree. The latter means that
there exists a constant c such that every node has at most cmany neighbors. The proof
of the Σ 11 lower bound (the non-trivial part) in Section 3 is based on a reduction from
the recurring tiling problem [10, 12]. This is a variant of the classical tiling problem
[29, 4] that asks whether a given finite set of tiles allows a tiling of the infinite quar-
ter plane such that a distinguished color occurs infinitely often at the lower border.
Harel proved that the recurring tiling problem is Σ 1

1 -complete [10, 12]. In our reduc-
tion we use as building blocks some of the graph gadgets from the NP-hardness proof
of the Hamiltonian path problem for finite planar graphs [9]. These gadgets have to be
combined in a non-trivial way for the whole reduction.
The main purpose of automatic presentations is the finite representation of infinite

structures. But automatic presentations can be also used as a tool for the succinct rep-
resentation of large finite structures. An automatic presentation of size n may generate
a finite graph of size 2O(n). A straightforward adaptation of our proof for infinite au-
tomatic graphs shows that it is NEXPTIME-complete to check whether a finite planar
graph given by an automatic presentation has a Hamiltonian path, see Section 4. With-
out the restriction to planar graphs, this result was already shown by Veith [28] in the
slightly different context of graphs represented by ordered binary decision diagrams
(OBDDs). The special OBDDs considered by Veith in [28] can be seen as automatic
presentations of finite graphs.
Finally, in Section 5 we investigate some other graph problems in the automatic

setting. Using a proof technique from [20, 15], we prove that the fundamental Σ 1
1 -

complete problem in recursion theory, namely the existence of an infinite path in a
recursive tree remains Σ 1

1 -complete if the input tree is automatic. For this result it is
crucial that the tree is a successor tree, which means that it is an acyclic graph, where
every node is reachable from a root node and every node except the root has exactly
one incoming edge. If trees are given as particular partially ordered sets (order trees),
then the existence of an infinite path is decidable for automatic trees [20].
From the above results, one might get the feeling that graph problems always have

the same degree of undecidability in the recursive and in the automatic world. To the
contrary, there are problems that are Σ 1

1 -complete for recursive graphs [14] but de-
cidable for automatic graphs. This applies to the existence of an infinite branch in
an automatic order tree (i.e., the reflexive and transitive closure of a successor tree,
Khoussainov, Rubin, and Stephan [20]) as well as to the existence of an infinite clique
in an automatic graph (Rubin [25]). We show that also an infinite version of the set
cover problem is decidable for automatic graphs. This result is achieved by providing
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a decision procedure for a fragment of second-order logic that allows to express the set
cover problem as well as the two other decidable problems mentioned before.
Proofs, which are not included in this extended abstract will appear in the long

version of this paper.

2 Preliminaries

Infinite graphs and Hamiltonian paths For details on graph theory see [7]. A graph
is a pairG= (V,E), whereV is the (possibly infinite) set of nodes and E ⊆V×V is the
set of edges. It is undirected if (u,v) ∈ E implies (v,u) ∈ E. The graph G has degree at
most c, where c∈N, if every node is contained in at most cmany edges. IfG has degree
at most c for some constant c, then G has bounded degree. If it is only required that
every node is involved in only finitely many edges then G is called locally finite. The
graph G is planar if it can be embedded in the Euclidean plane without crossing edges
and without accumulation points; any such embedding is a plane graph. A finite path
in G is a sequence [v1,v2, . . . ,vn] of nodes such that (vi,vi+1) ∈ E for all 1≤ i≤ n. The
nodes v1 and vn are the end points of this path. The graphG= (V,E) is connected if for
all u,v ∈V there exists a finite path in the undirected graph (V,E ∪{(x,y) | (y,x) ∈ E}
with end points u and v. An infinite path in G is an infinite sequence [v 1,v2, . . .] such
that every initial segment is a finite path. A Hamiltonian path (or spanning ray) of an
infinite graph G is an infinite path [v1,v2, . . .] in G that visits every node of G exactly
once, i.e. the mapping i &→ vi (i ∈ N) is a bijection between N and the set of nodes.

Recursive graphs and automatic graphs A recursive graph is a graph G = (V,E)
such that V and E are recursive subsets of N and N×N, respectively. In case G is
infinite, one can w.l.o.g. assume that V = N. A recursive graph G is highly recursive
if it is locally finite and for every node v a list of its finitely many neighbors can be
computed from v. Harel [13] has shown the following result:

Theorem 1 ([13]). It is Σ 1
1 -complete to determine, whether a given highly recursive

undirected graph of bounded degree has a Hamiltonian path.

Recall that Σ11 is the first level of the analytic hierarchy [21]. More precisely, it is
the class of all subsets of N of the form {n ∈ N | ∃Aϕ(A)}, where ϕ(A) is a formula
of first-order arithmetic. In Thm. 1, a recursive graph is encoded by a pair of Gödel
numbers for machines for the node and edge set, respectively.
In [14], Hirst and Harel proved that for planar recursive graphs the existence of a

Hamiltonian path is still Σ 11 -complete. The aim of this paper is to extend the results
from [13, 14] to the class of planar automatic graphs of bounded degree. We introduce
this class of graphs briefly, more details can be found in [16, 5]
Let us fix n ∈ N and a finite alphabet Γ . Let # ̸∈ Γ be an additional padding

symbol. For words w1, . . . ,wn ∈ Γ ∗ we define the convolution w1 ⊗w2 ⊗ · · ·⊗wn,
which is a word over the alphabet (Γ ∪{#})n, as follows: Let wi = ai,1ai,2 · · ·ai,ki with
ai, j ∈ Γ and k=max{k1, . . . ,kn}. For ki < j ≤ k define ai, j = #. Then w1⊗ · · ·⊗wn =
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(a1,1, . . . ,an,1) · · · (a1,k, . . . ,an,k). Thus, for instance aba⊗bbabb= (a,b)(b,b)(a,a)(#,b)(#,b).
An n-ary relation R ⊆ (Γ ∗)n is called automatic if the language {w1 ⊗ · · ·⊗ wn |
(w1, . . . ,wn) ∈ R} is a regular language.
Now let A = (A,(Ri)i∈J) be a relational structure with finitely many relations,

where Ri ⊆ Ani . A tuple (Γ ,L,h) is called an automatic presentation for A if (i) Γ
is a finite alphabet, (ii) L⊆Γ ∗ is a regular language, (iii) h : L→ A is a surjective func-
tion, (iv) the relation {(u,v) ∈ L×L | h(u) = h(v)} is automatic, and (v) the relation
{(u1, . . . ,uni) ∈ Lni | (h(u1), . . . ,h(uni)) ∈ Ri} is automatic for every i ∈ J. We say that
A is automatic if there exists an automatic presentation forA . In the rest of the paper
we will mainly restrict to automatic graphs. Such a graph can be represented by an
automaton for the node set and an automaton for the edge set. Clearly, a (locally finite)
automatic graph is (highly) recursive.
In contrast to recursive graphs, automatic graphs have some nice algorithmic prop-

erties. In [16] it was shown that the first-order theory of an automatic structure is decid-
able. This result extends to first-order logic with infinity andmodulo quantifiers [5, 19].
For general automatic structures, these logics do not allow elementary algorithms [5].
On the other hand, for automatic structures with a Gaifman graph of bounded degree
first-order logic extended by a rather general class of counting quantifiers can be de-
cided in triply exponential space [22].
In contrast to these positive results, several strong undecidability results show that

algorithmic methods for automatic structures are quite limited. Since the configuration
graph of a Turing machine is automatic, it follows easily that reachability in automatic
graphs is undecidable. Khoussainov,Nies, and Rubin have shown that the isomorphism
problem for automatic graphs is Σ 1

1 -complete [17], whereas isomorphism of locally
finite automatic graphs is Π 0

3 -complete [24]. Our main result is the following:

Theorem 2. It is Σ 11 -complete to determine, whether a given planar automatic undi-
rected graph of bounded degree has a Hamiltonian path.

Note that the Σ 11 upper bound in Thm. 2 follows immediately from the corresponding
result for general recursive graphs (Thm. 1). For the lower bound we use a special
variant of the tiling problem [29, 4] that was introduced by Harel.

Tilings Our main tool for proving Σ 1
1 -hardness of the existence of a Hamiltonian

path in a planar automatic graph of bounded degree is the recurring tiling problem
[10, 12]. An instance of the recurring tiling problem consists of (i) a finite set of colors
C = {c0,c1, . . . ,cn}, (ii) a distinguished color c0, and (iii) a set T ⊆C4 of tile types.
For a tile type t ∈ T we write t = (tW , tN , tE , tS) (“W” for west, “N” for north, “E” for
east, and “S” for south); a visualization looks as follows:

tN
tW

tS
tE

A mapping f : N2 → T is a tiling if, for every (i, j) ∈ N2, we have f (i, j)N =
f (i+ 1, j)S and f (i, j)E = f (i, j+ 1)W . A recurring tiling is a tiling f such that for
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×

Fig. 1 The graph X , its use and abbreviation

infinitely many j ∈ N, we have f (0, j)S = c0. Now the recurring tiling problem asks
whether a given problem instance has a recurring tiling. Harel has shown the following
result:

Theorem 3 ([10]). The recurring tiling problem is Σ 1
1 -complete.

The recurring tiling problem turned out be very useful for proving Σ 1
1 lower bounds

for certain satisfiability problems in logic [11].

3 Hamiltonicity for automatic graphs

In this section, we reduce the recurring tiling problem to the existence of a Hamiltonian
path in a planar automatic graph of bounded degree. This proves Thm. 2 by Thm. 3.

3.1 Building blocks

Let us introduce several building blocks from which we assemble our final planar
automatic graph of bounded degree. These building blocks are variants of graphs
taken from the NP-hardness proof for the Hamiltonian path problem in finite planar
graphs [9].

Exclusive or Consider the finite plane graph X in Fig. 1 (first picture). It has a Hamil-
tonian path from u1 to u2 (and similarly from v1 to v2) indicated in the second picture.
Now suppose G′ is some graph containing the edges u ′ and v′. Then we build a graph
G as follows: in the disjoint union of G ′ and X , delete the edges u′ and v′ and connect
their endpoints to u1 and u2 (to v1 and v2, resp., see Fig. 1, third picture). Now suppose
H is a Hamiltonian path in G with no endpoint in X . Suppose u 1 is the first vertex from
X in H. Then the restriction of H to X has to coincide with the Hamiltonian path from
u1 to u2. Hence H gives rise to a Hamiltonian path in G ′ that coincides with H on G′
but passes through the edge u ′ instead of taking the detour through X . Note that H ′
does not contain the edge v ′. Conversely, every Hamiltonian path H ′ of G′ that con-
tains the edge u′ but not the edge v′ induces a Hamiltonian path H of G in a similar
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Fig. 2 The graph A and its abbreviation
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Fig. 3 Paths through the graph A

way. Joining X to the graph G ′ in this manner restricts the Hamiltonian paths to those
that either contain the edge u ′ or the edge v′, but not both. This also explains the name
X : this graph acts as an “exclusive-or”. Note that, if G ′ is planar and the two edges u′
and v′ belong to the same face, then also G can be constructed as a planar graph. Since
we will make repeated use of this construction, we abbreviate it as in Fig. 1, fourth
picture.

Boolean functions Let f : {0,1}n → {0,1} be a Boolean function. In the NP-
hardness proof of [9], a planar graph G together with distinguished edges e 1, . . . ,en
is constructed such that f (b1, . . . ,bn) = 1 iff G has a Hamiltonian cycle H with
bi = 1⇔ ei ∈ H. We modify this construction slightly in order to place the edges
ei and two vertices u and v in a specified order at the boundary of the outer face.

Theorem 4. There exists a constant c such that from given k,ℓ,n ∈ N and F ⊆
2{1,...,k+ℓ+n}, one can construct effectively in logspace a finite plane graph GF of de-
gree at most c such that:

– At the boundary of the outer face of GF , we find (in this counter-clockwise order)
edges e1, . . .ek, a vertex u, edges ek+1, . . . ,ek+ℓ, a vertex v, and edges ek+ℓ+1, . . . ,
ek+ℓ+n.

– For every M ⊆ {1, . . . ,k+ ℓ+n}, M ∈ F iff there is a Hamiltonian path H from u to
v such that M = {i | ei belongs to H}.
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A A A A
. . . . . .

Fig. 4 The infinite graph L

A A A A
. . . . . .

Fig. 5 A visit of a Hamiltonian path to the graph L

Infinity checking Next consider Fig. 2 – it depicts a graph A that is connected to some
context via the edges ℓ, a, a ′, b, b′, and r. If the complete graph has a Hamiltonian path,
then locally, it has to be of one of the four forms depicted in Fig. 3.
Now consider Fig. 4 – it consists of infinitely many copies of the graph A arranged

in a line, the edges a′ and b′ connect these copies of Awith a line of nodes. Suppose the
edges a and b of the copies of A are connected to some infinite graph G. Then, every
Hamiltonian path H of the resulting graph has to enter and leave L infinitely often.
Since the possibilities to pass A are restricted as shown in Fig.3, any such visit has to
look as described in Fig. 5, i.e., the path enters from a into some copy of A, moves
left to some copy of A (possibly without doing any step), moves down to the third line
where it goes all the way back until it can enter the A-copy visited first via the edge b ′
and leave it via the edge b.

3.2 Assembling

From an instance of the recurring tiling problem, we construct in this section a planar
automatic graph G of bounded degree that has an Hamiltonian path iff the instance of
the recurring tiling problem admits a solution. So, we fix a finite setC= {c 0,c1, . . . ,cn}
of colors, a distinguished color c0, and a set T ⊆C4 of tile types. Next let

V = {W0,W1, . . . ,Wn,S0,S1, . . . ,Sn,N0,N1, . . . ,Nn,E0,E1, . . . ,En}.

Wewill describe tile types by certain subsets ofV whereWi expresses that the left color
is ci, and Ni denotes that the top color is not ci (Si and Ei refer to the bottom and right
color and are to be understood similarly). More precisely, the tile d = (c i,c j,ck,cℓ)
is denoted by the set Sd = {Wi}∪ {Nm | m ̸= j}∪ {Em | m ̸= k}∪ {Sℓ}. Now let F =
{Sd | d ∈ T } be the descriptions of all the tile types d in T . Then, by Thm. 4, there
are finite plane graphs G1, G2, G3, and G4 with the following properties: (i) at the
outer face, we find edges e for e ∈ V and nodes u and v in the order indicated in
Fig. 6 and (ii) M ∈ F iff there exists a Hamiltonian path H of Gx from u to v such that
M = {v ∈ V | v belongs to H} (for all 1≤ x≤ 4 andM ⊆ V ).
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Fig. 6 The graphs Gx

Next we choose mutually disjoint graphs G(k,ℓ) (for k,ℓ ∈ N) such that

G(k,ℓ)∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G1 if k+ ℓ is even and k > 0
G2 if k+ ℓ is odd and ℓ= 0
G3 if k+ ℓ is odd and ℓ> 0
G4 if k+ ℓ is even and k = 0.

Then u(k,ℓ) and v(k,ℓ) refer to the nodes u and v of the graphG(k,ℓ); similarly, e(k,ℓ)
for e ∈ V refers to the edge e of the graphG(k,ℓ). In the disjoint union of these graphs
G(k,ℓ), we connect the node v(k,ℓ) by a new edge with the following node:

u(k+1,ℓ) for k+ ℓ even and ℓ= 0
u(k+1,ℓ−1) for k+ ℓ even and ℓ> 0
u(k−1,ℓ+1) for k+ ℓ odd and k > 0

u(k,ℓ+1) for k+ ℓ odd and k = 0.

The result G1 of this construction is visualized in Fig. 7 where the vertices u(k,ℓ)
are denoted by empty nodes and v(k,ℓ) by filled nodes. From G 1 we construct G2 by
replacing the edges Ei(k,ℓ) andWi(k,ℓ+1) as well as Ni(k,ℓ) and Si(k+1,ℓ) (k,ℓ∈N,
0≤ i≤ n) by a copy of the exclusive-or graphX , see Fig. 8. In a third step, we construct
G3 by adding to G2 the graph L from Fig. 4. To connect L to G2, the start node of the
edges a and b, resp., of the ith copy of A in L is the left and right, resp., node of the
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Fig. 8 Second step in global construction – the graph G2 (for two colors c0 and c1)

edge S0(0, i). The final graph G is obtained from G3 by adding a new node⊥ together
with an edge between⊥ and u(0,0).
Let us now prove that G has a Hamiltonian path iff T admits a recurring tiling.

First suppose there is a recurring tiling f : N×N→ T . Let k,ℓ ∈ N and f (k,ℓ) =
(cW ,cN ,cE ,cS). Then the graph G(k,ℓ) ∈ {Gx | 1 ≤ i ≤ 4} has a Hamiltonian path
H(k,ℓ) from u(k,ℓ) to v(k,ℓ) such that for all 1≤ i≤ n

1. the edge Si belongs to H(k,ℓ) iff cS = ci,
2. the edgeWi belongs to H(k,ℓ) iff cW = ci,
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3. the edge Ni belongs to H(k,ℓ) iff cN ̸= ci, and
4. the edge Ei belongs to H(k,ℓ) iff cE ̸= ci.

Then we find a Hamiltonian path H1 of the infinite graph G1 in Fig. 7 by appending
these Hamiltonian paths suitably:

H1 = H(0,0),H(1,0),H(0,1),H(0,2),H(1,1),H(2,0) . . .

Since f is a tiling, we get

Ei(k,ℓ) /∈ H1 ⇐⇒ f (k,ℓ)E = ci
⇐⇒ f (k,ℓ+1)W = ci
⇐⇒ Wi(k,ℓ+1) ∈H1

and similarly Ni(k,ℓ) /∈H1 iff Si(k+1,ℓ)∈H1. Hence the Hamiltonian path H1 can be
extended to a Hamiltonian path H2 of the graphG2 obtained fromG1 by adding all the
copies of the exclusive-or graph X . Observe also that f is recurring, i.e., there are in-
finitely many ℓ∈N with f (0,ℓ)S = c0. For every such ℓ, the pathH1 passes through the
edge S0(0,ℓ). Instead of passing through this edge, we now enter the graph L (Fig. 4)
via the edge a of the ℓth copy of A and leave it via its edge b. We can ensure that after
this visit, all nodes of L to the left of the ℓth copy of A have been visited (cf. Fig. 5).
This results in a Hamiltonian path H3 of the graph G3 starting in u(0,0). Prepending
the node⊥ gives a Hamiltonian path H of the final graph G.
Conversely, let H be a Hamiltonian path of the final graph G. Since ⊥ has degree

1, the path H has to start in ⊥ – deleting⊥ from H gives a Hamiltonian path H3 of G3
that starts in u(0,0). Since G3 contains infinitely many nodes outside of L, this path
has to enter and leave L infinitely often. Any such visit has to enter via the edge a some
copy of A and leave via the edge b of the same copy of A (or vice versa, see Fig. 5).
Hence, deleting all the vertices of L from the path H, we obtain a Hamiltonian path H 2
of the graph G2 that contains infinitely many edges of the form S0(0,ℓ). Recall that
G2 is obtained from G1 by replacing some pairs of edges by the exclusive-or graph X .
Hence, the restriction of H2 to the nodes of G1 gives rise to a Hamiltonian path H1 of
G1 that

(a) contains infinitely many edges of the form S 0(0,ℓ),
(b) contains the edgeWi(k,ℓ+1) iff it does not contain the edge Ei(k,ℓ), and
(c) contains the edge Si(k+1,ℓ) iff it does not contain the edge Ni(k,ℓ)

for all 0≤ i≤ n and k,ℓ ∈N. Since H1 has to pass through all the graphs G(k,ℓ), it has
to be of the form

H(0,0),H(1,0),H(0,1),H(0,2),H(1,1),H(2,0) . . .

where H(k,ℓ) is a Hamiltonian path of the graph G(k,ℓ) from u(k,ℓ) to v(k,ℓ). Now
we are ready to define the mapping f : N2→C4: set

(1) f (k,ℓ)W = ci iff H(k,ℓ) contains the edgeWi(k,ℓ),
(2) f (k,ℓ)N = ci iff H(k,ℓ) does not contain the edge Ni(k,ℓ),
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(3) f (k,ℓ)E = ci iff H(k,ℓ) does not contain the edge Ei(k,ℓ), and
(4) f (k,ℓ)S = ci iff H(k,ℓ) contains the edge Si(k,ℓ).

SinceH(k,ℓ) is a Hamiltonian path ofG(k,ℓ) from u(k,ℓ) to v(k,ℓ), we get f (k,ℓ)∈T
from the construction of the graphs G1,G2,G3,G4. By (1), (b), and (3), we have

f (k,ℓ)W = ci ⇐⇒ Wi(k,ℓ) belongs to H(k,ℓ)
⇐⇒ Ei(k,ℓ+1) does not belong to H(k,ℓ+1)
⇐⇒ f (k,ℓ+1) = ci

and similarly f (k,ℓ)N = f (k+1,ℓ)S follows from (2), (c), and (4). Thus, f is a tiling.
Since H1 contains infinitely many edges of the form S0(0,ℓ), there are infinitely many
ℓ ∈ N such that S0(0,ℓ) belongs to H(0,ℓ), i.e., f (0,ℓ)S = c0.
Thus, we showed that indeed the graph G contains a Hamiltonian path iff the set of

tiles T admits a recurring tiling.
Clearly, the undirected graph G is planar and has bounded degree. Thus, in order to

finish the proof of Thm. 2, it remains to prove that G is automatic. Note that the graph
G has a highly regular structure. It results from the infinite gridN×N by replacing each
grid point by a finite graph and connecting these finite graphs in a regular pattern. It is
not surprising that such a graph is automatic, in particular since the grid is automatic.
Let us provide some more formal arguments for the automaticity of G.
Recall that G can be obtained fromN×N by replacing every grid point (k,ℓ)∈N×

N by a finite graph G′(k,ℓ). This graph is a copy of one of the graphs G ′1,G′2,G′3,G′4,
whereG′i is the graphGi together with copies of the XOR-graph X that connectG(k,ℓ)
with G(k+1,ℓ) and G(k,ℓ+1). Whether G′(k,ℓ) is G′i only depends on the parity of
k+ ℓ and whether k and ℓ are zero or non-zero, respectively.
The alphabet of our presentation consists of the elements of {0,1,#} 2\{(#,#)} and

the nodes of the graphs G′1, . . . ,G′4. Then, the node set of G can be represented by the
regular language

{(bin(k)⊗bin(ℓ))v | k,ℓ≥ 0, v is a node of G ′(k,ℓ)}, (1)

where bin(n) is the binary encoding of a number n (note that the parity of k+ ℓ can be
determined by a finite automaton from bin(k)⊗ bin(ℓ)). Constructing from this node
representation an automaton that recognizes the edge set of G is straightforward but
tedious. This concludes the proof of Thm. 2.
There also exists the variant of two-way Hamiltonian paths in infinite graphs. A

two-way Hamiltonian path in G = (V,E) is a two-way infinite sequence (v i)i∈Z such
that (vi,vi+1) ∈ E for all i ∈ Z and for every node v ∈ V there is exactly one i ∈ Z
such that v = vi. From the previous construction, it follows that also the existence of
a two-way Hamiltonian path in a given planar automatic graph of bounded degree is
Σ11 -complete. Take the disjoint union of two copies of our main graph G and connect
the two⊥-nodes with an edge. The resulting graphG ′ has a two-way Hamiltonian path
iff G has a (one-way) Hamiltonian path. Moreover, since G is automatic and the class
of automatic graphs is closed under disjoint unions, G ′ is automatic as well.
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4 Remarks about large finite graphs

The main purpose of automatic presentations is the finite representation of infinite
structures. But automatic presentations can be also used as a tool for the succinct rep-
resentation of large finite structures. Note that a finite automaton with n states can
accept a finite language with 2O(n) elements, which may serve as the domain of a finite
structure.
In general, given an automatic presentation (Γ ,L,h) for a finite graph (V,E) to-

gether with an automaton A for the node set language L, it is clear that |V | is bounded
by |Γ |n, where n is the number of states of A. It follows that for every graph problem L
in NP, the succinct version of L, where the input graph is given by an automatic presen-
tation, belongs to NEXPTIME. In particular, the Hamiltonian path problem belongs to
NEXPTIME for this succinct input representation.
For the lower bound, consider for n≥ 1 the finite planar graph Gn that results from

our main infinite graph G by restricting it to the graphs G(k,ℓ) for k+ ℓ ≤ n and the
connecting XOR-graphs between these graphs. Then Gn has a Hamiltonian path if and
only if the finite set of tiles T admits a tiling of the “triangle” Dn = {(k,ℓ) ∈ N×N |
k+ ℓ ≤ n} (tilings of finite parts of the grid N×N are defined analogously to tilings
of the whole grid). Now we can use a result of Fürer [8]: It is NEXPTIME-complete
(under logspace reductions) to check for a given number n (encoded in binary) and a
finite set of tiles T whether T admits a tiling of Dn. Let us make a few remarks on
Fürer’s proof before continuing:

– Fürer proved NEXPTIME-completeness for tilings of the square {(k,ℓ) ∈ N×N |
k,ℓ ≤ n} instead of the triangle Dn. It is straightforward to adapt Fürer’s proof for
Dn.

– Fürer actually does not speak about NEXPTIME-completeness in his paper, but
states explicit lower bounds. But in his proof he presents a generic reduction from
the acceptance problem for nondeterministic exponential time Turing-machines to
the problem of tiling {(k,ℓ) ∈ N×N | k,ℓ≤ n} for a given number coded in binary.

– Fürer states that all his construction can be carried out in polynomial time, but it is
straightforward to check that they can be carried out even in logspace.

Finally, it is easy to construct from a number n coded in binary in logarithmic space
an automatic presentation of the graphGn. For this, we can basically use the automatic
presentation of the infinite graph G, but restrict it to numbers of size at most n. Hence,
we obtain:

Theorem 5. It is NEXPTIME-complete under logspace reductions to check for a given
automatic presentation of a finite planar graph, whether it has a Hamiltonian path.

A variant of Thm. 5 was shown by Veith [28]. He considers finite structures that are
represented by OBDDs (ordered binary decision diagrams). In this context, the node
set of a graph is {0,1}n for some fixed n. The edge set is represented by an OBDD over
variables x1, . . . ,xn,y1, . . . ,yn. Here the tuple (x1, . . . ,xn)∈ {0,1}n represents the initial
vertex of an edge, whereas (y1, . . . ,yn)∈ {0,1}n represents the final node. The variable
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order of the OBDDs in [28] is fixed to the interleaved order x 1,y1,x2,y2, . . . ,xn,yn. Un-
der this variable order, OBDDs exactly correspond to deterministic acyclic automata
that work on the convolution (x1 · · ·xn)⊗ (y1 · · ·yn).
In [28], the following upgrading theorem was shown (here, only formulated for the

classes NP and NEXPTIME): If a graph problem L is NP-complete under quantifier
free first-order reductions then obdd(L) (the class of all OBDDs of the above form
that encode a graph from L) is NEXPTIME-complete under polynomial time reduc-
tions. Since the Hamiltonian path problem (HP) is NP-compete under quantifier free
first-order reductions [26], it follows that obdd(HP) is NEXPTIME-complete under
polynomial time reductions. Thm. 5 strengthens this result in two points: we obtain
NEXPTIME-completeness (i) under logspace reductions and (ii) for planar graphs. It
is not clear for us, whether the planar Hamiltonian path problem is still NP-complete
under quantifier free first-order reductions.

5 Further graph problems

An order tree is a partial order (A,≼) with a least element such that the set {a ∈ A |
a ≼ b} is finite and linearly ordered for every b ∈ A, a successor tree is the covering
relation of an order tree. It is decidable, whether an automatic order tree has an infinite
path [20]. The following result is in sharp contrast to this positive result.

Theorem 6. It is Σ 11 -complete to determine whether a given automatic successor tree
T has an infinite path.

The proof idea is to transform a recursive successor tree into an automatic one by
adding the computation (i.e., sequence of transitions) that verifies the edge (u,v) as a
path between the nodes u and v; a similar idea was used in [20, 15].
Let us now present some graph problems which are Σ 1

1 -complete for recursive
graphs, but decidable in automatic graphs. For this, we introduce, inspired by [18, 25],
a fragment SOr of second-order logic, which extends first-order logic with the infinity
quantifier and modulo quantifiers. Every relation that is definable in first-order logic
with the infinity quantifier and modulo quantifiers has a regular set of representatives
[16, 5, 19]. We will extend this result to SOr. The set of all formulas of SOr is induc-
tively defined as follows:

– Every atomic first-order formula is an SOr-formula.
– X(x1, . . . ,xk) for x1, . . . ,xk first-order variables and X a k-ary second-order variable
is an SOr-formula.

– If ϕ and ψ are SOr-formulas, then also ϕ ∨ψ is an SOr-formula.
– If ϕ is an SOr-formula, then also ¬ϕ , ∃xϕ , ∃∞xϕ (“there are infinitely many x
satisfying ϕ”), ∃(k,p)xϕ for 0 ≤ k < p ∈ N (“the number of x satisfying ϕ is finite
and congruent k modulo p”) are SOr-formulas.

– If ϕ is an SOr-formula and X is a second-order variable of arity k such that for every
k-tuple of first-order variables x1, . . . ,xk, ϕ contains the subformula X(x1, . . . ,xk)
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only negatively (i.e. within an odd number of negations), then also ∃X infinite : ϕ is
an SOr-formula.

Note that the restriction on ϕ in the last point ensures that if ϕ is satisfied for some
k-ary relation X = R and Q⊆ R, then ϕ is also satisfied for X = Q.
Using the proof ideas from [18] and [25], one can show the following two theo-

rems. The first theorem refers to the decidability of the SOr-theory of every automatic
structure, the second theorem implies that from a SOr-formula ∃X infinite : α(X) true
in an automatic structureA , one can construct a regular witness to the validity of this
formula.

Theorem 7. From an automatic presentation (Γ ,L,h) of an automatic structure A
and an SOr-formula ϕ(x) one can compute effectively an automaton for the convolu-
tion of the relation {(u1, . . . ,un) ∈ Ln | A |= ϕ(h(u1), . . . ,h(un))}. Hence, if ϕ is an
SOr-sentence, then A |= ϕ can be checked effectively.

Theorem 8. From an automatic presentation (Γ ,L,h) of an automatic structure A
and an SOr-sentence β = ∃X infinite : α(X) with A |= β , one can construct H ⊆ Ln
regular such that h(H) is infinite andA |= α(h(H)).

We use Thm. 7 and 8 to show that two problems, which are Σ 1
1 -complete for recursive

structures [14], are decidable for automatic structures. First, by taking the SO r-formula
∃X infinite ∀x,y : (x,y ∈ X ⇒ (x,y) ∈ E), we get:

Corollary 1 (cf. [25, Thm. 3.20]). It is decidable whether a given automatic graph
contains an infinite clique. If an infinite clique exists, a regular set of representatives
of an infinite clique can be computed.

The second problem is the infinite version of maximal set cover considered by Hirst
and Harel [14]. It asks whether, given a set X = {Xi | i ∈ N} of sets Xi ⊆ N, there
exists A ⊆ N with

⋃
a∈AXa = N and N \A infinite. Note that the collection X can be

represented as a set of pairs E with (i, j) ∈ E iff j ∈ Xi. Then there exists A as required
iff the directed graph (N,E) satisfies ∃B infinite ∀ j∃i : i /∈ B∧ (i, j) ∈ E (then A is the
complement of B). Hence we get:

Corollary 2. The infinite version of maximal set cover is decidable if the collection X
is given as an automatic set of pairs. In case a set cover as required exists, an infinite
such can be computed.
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