
Universal Coinductive Characterisations of
Process Semantics

David de Frutos Escrig⋆ and Carlos Gregorio Rodŕıguez⋆⋆

Department of Sistemas Informáticos y Computación
Universidad Complutense de Madrid

defrutos,cgr@sip.ucm.es

Abstract. We present a theoretical framework which allows to define in a
uniform way coinductive characterisations of nearly any semantic preorder or
equivalence between processes, by means of simulations up-to and bisimula-
tions up-to. In particular, all the semantics in the linear time-branching time
spectrum are covered. Constrained simulations, that generalise plain simula-
tions by including a constraint that all the pairs of related processes must
satisfy, are the key to obtain such a general framework. We provide a sim-
ple axiomatisation of any constrained simulation preorder and also for the
corresponding equivalence. These axiomatizations allow us to prove in a uni-
form way that each constrained simulation preorder (equivalence) defines a
class of process preorders (equivalences) which share commons properties, like
the possibility of giving coinductive characterisations for all of them, or the
existence of a canonical preorder inducing each of these equivalences.

1 Introduction and Related Work

One of the essential decisions that should be taken when defining a process alge-
bra is to settle in the most adequate way its underlying semantics. Occasionally
the semantics is directly determined by an equivalence relation but more often
it is based on a preorder relation, although certainly every preorder induces an
equivalence by means of its kernel; besides, the ordering relations can be used
to compare non-equivalent processes or to define continuous domains in order
to apply fix point arguments to define the behaviour of recursive processes.

Every semantics sets forth a level of abstraction that determines which as-
pects of the behaviour of processes are of importance and which are not. Mainly
because of the generality and diversity of the applications of process algebras,
there is no prevailing semantic notion, but rather a number of different propos-
als have arisen from diverse approaches, contexts and applications.

We consider that this variety of process semantics is a good sign of the
applicability of process algebras just proving the healthiness of the formalism.
However, this plurality of semantics becomes a hindrance when the goal is to

⋆ Partially supported by the Spanish MEC project DESAFIOS TIN2006-15660-C02-01 and
the project PROMESAS-CAM S-0505/TIC/0407.

⋆⋆ Partially supported by the Spanish MEC project WEST/FAST TIN2006-15578-C02-01.

397

398 D. de Frutos Escrig, C. Gregorio

study general properties for all of them, to compare different semantics or to
determine what semantics suits a given application better.

That is why it would be nice to have a unified model that could provide
us with a general and uniform approach to the different semantics. Our work
targets this goal and looks for a common framework in which to include the
semantics for processes. Bisimulation semantics [Par81, Mil89] is one of the most
elegant and powerful equivalences defined for processes and it was our starting
point to achieve this goal of uniformity. In [dFG05] we showed how to weaken the
notion of bisimulation defining our bisimulations up-to that characterise many
other interesting equivalences. In [dFG07] we continued that work, extending
our results by considering process preorders instead of equivalences, and we
have found out that this approach is indeed even more general, giving rise to a
richer and more elegant theory. In both cases ready simulation [BIM95] was our
main support, and that meant that we could only apply our results to preorders
that were coarser than ready simulation. This restriction also appear in other
related works such as [AFI07].

However, it was not clear that only the semantics coarser than ready simu-
lation would satisfy our results. In fact, we had already presented in [dFG05]
a result (Theorem 2, there) proving that we could also get coinductive charac-
terisations of some equivalences finer than the ready simulation equivalence. To
prove that theorem we required a quite ad-hoc property, that we called Hoare-
Equivalence, but in [dFG07] we did not find the way to transfer these results
to the framework of semantic preorders.

This paper focuses on the generalisation of the simulations up-to, and pro-
vides a general coinductive characterisation of a great variety of semantics pre-
orders, either coarser or finer than the ready simulation preorder, in particular,
this characterisation can be applied to all the semantics in the linear time-
branching time spectrum [Gla01]. This generalisation has been possible after
the observation that ready simulation was just a significant example of what
we have called constrained simulations. This kind of simulations preserve the
properties we need in order to prove the generalisation of previous results.

The rest of the paper is structured as follows. In Section 2 we introduce
the basic definitions and notations on processes and preorders, and we recall
some results from our previous works [dFG05, dFG07]. In Section 3 we define
the family of constrained simulations, where simulations are constrained by
the obligation to relate processes that satisfy some adequate condition. We
provide a sound and complete axiomatization for the preorders and the induced
equivalence relations (see Theorem 4 and 5). These axiomatizations are one of
the key points in the proofs of the main results of the paper that follow in the
next sections.

The core of our results is collected in Sections 4 and 5, where we define the no-
tion of constrained simulation up-to a preorder ; we develop our theory through
a number of results that provide characterisations of the semantic preorders
and equivalences in terms of constrained simulations up-to (see Theorem 6, 7, 8
and 9). Some additional results that illustrate the applications of the theory are

Universal Coinductive Characterisations of Process Semantics 399

also included (see Theorem 10). Finally in Section 6 we conclude by discussing
some research lines for future work.

2 Preliminaries and Previous Work

The behaviour of processes is usually described using the well-established for-
malism of labelled transition systems [Plo81] or lts for short.

Definition 1. A labelled transition system is a structure T = (P ,Act,→)
where

– P is a set of processes, agents or states,
– Act is a set of actions, and
– →⊆ P ×Act× P is a transition relation.

A rooted lts is a pair (T , p0) with p0 ∈ P .

Act is the set of actions that processes can perform and the relation → de-
scribes the process transitions after the execution of actions. The triple ⟨p, a, q⟩
is represented by p

a−→ q, indicating that process p performs action a evolving to
process q. A rooted lts describes the semantics of a process: that corresponding
to its initial state p0.

Some usual notations on lts are used. We write p
a−→ if there exists a

process q such that p
a−→ q. The function I calculates the set of initial actions

of a process, I (p) = {a | a ∈ Act and p
a−→}.

Lts for finite processes are just directed graphs which become finite trees if
expanded. These finite trees can be syntactically described by the basic process
algebra BCCSP, which was also used, for instance, in [Gla01, dFG05].

Definition 2. Given a set of actions Act, the set of BCCSP processes is defined
by the following BNF-expression:

p ::= 0 | ap | p + q

where a ∈ Act. 0 represents the process that performs no action; for every
action in Act, there is a prefix operator; and + is a choice operator.

All the definitions we present in the paper are valid for arbitrary processes,
that is, for arbitrary rooted lts, either finite or infinite. We are going to prove
the results in this paper mainly by induction on the depth of BCCSP processes.
Then, by using continuity arguments (in a similar way as we did in [dFG05])
these results can be extended to arbitrary finitely branching transition systems,
since by unfolding any of them we can get an equivalent finitary tree process.

The operational semantics for BCCSP terms is defined in Fig. 1. The depth
of a BCCSP process is the depth of the tree it denotes.

400 D. de Frutos Escrig, C. Gregorio

ap
a−→ p p

a−→ p′

p + q
a−→ p′

q
a−→ q′

p + q
a−→ q′

Fig. 1 Operational Semantics for BCCSP Terms

As usual, trailing occurrences of the constant 0 are omitted: we write a
instead of a0. By using

∑
as a shorthand for multiple choice (which is commu-

tative and associative) we can define any process as
∑

i

∑
j aipij . A process aq′

is a summand of the process q if and only if q
a−→ q′. Given a ∈ Act we define

p|a as the (sub)process we get by adding all the a-summands of p. That is, if
p =

∑
i

∑
j aipij , then p|ai =

∑
j aipij .

Preorders, that we represent by ⊑, are reflexive and transitive relations. We
use the symbol⊒ to represent the preorder relation⊑−1. Every preorder induces
an equivalence relation that we denote by ≡, that is p ≡ q if and only if p ⊑ q
and q ⊑ p. Finally, bisimulation equivalence is denoted by =B.

Definition 3. A preorder relation ⊑ over processes is a behaviour preorder if
it is coarser than the bisimulation equivalence, i.e. p =B q ⇒ p ⊑ q, and it is
a precongruence with respect to the prefix and choice operators, i.e. if p ⊑ q
then ap ⊑ aq and p + r ⊑ q + r. Besides, if the relation is symmetric, i.e. is an
equivalence relation, we say that it is a behaviour equivalence.

In [dFG05] we introduced bisimulations up-to a preorder (that we denote
by !⊑) in order to weaken the definition of bisimulations in such a way that
weaker equivalences could be captured by a coinductive definition.

Definition 4. Let ⊑ be a behaviour preorder. Then a binary relation S over
processes is a bisimulation up-to ⊑, if pSq implies that:

– For every a, if p
a−→ p′a, then there exist q′ and q′a, q ⊒ q′

a−→ q′a and p′aSq′a;
– For every a, if q

a−→ q′a, then there exist p′ and p′a, p ⊒ p′
a−→ p′a and p′aSq′a.

Two processes are bisimilar up-to ⊑, written p !⊑ q, if there exists a bisimula-
tion up-to ⊑, S, such that pSq.

The added capability introduced by the ⊒-reduction generalises the origi-
nal definition of bisimulation, so that we have now more chances to prove the
equivalence of two processes. When the behaviour preorder is just the identity
relation we get the bisimulation equivalence, but, as we proved in [dFG05], we
get other interesting semantics (traces, failures, ready simulation and so on)
by considering other behaviour preorders. One of the main results in that pa-
per (see Theorem 1 below) required the preorders to satisfy the axiom (RS),
ax ⊑ ax + ay (that characterises the ready simulation preorder [BIM95]) so
that it could only be applied to semantics coarser than the ready simulation.

Universal Coinductive Characterisations of Process Semantics 401

Definition 5. A behaviour preorder ⊑ is initials preserving when p ⊑ q implies
I (p) ⊆ I (q). It is action factorised (or just factorised) when p ⊑ q implies
p|a ⊑ q|a, for all a ∈ I (p).

Theorem 1 ([dFG05]). For every behaviour preorder ⊑ that is initials pre-
serving, action factorised and satisfying the axiom (RS), we have that p !⊑ q
if and only if p ≡ q.

This theorem provides a symmetric, coinductive, bisimulation-like characterisa-
tion for any equivalence in the linear time-branching time spectrum from trace
equivalence to ready simulation equivalence.

Once we had coinductive characterisations for many semantic equivalences
we shifted the focus from equivalences to preorders. In [dFG07] we first achieved
characterisations of some semantic preorders in terms of simulations up-to.

Definition 6. Let ⊑ be a behaviour preorder, we say that a binary relation S
over processes is a simulation up-to ⊑, if pSq implies that:

– For every a, if p
a−→ p′a there exist q′ and q′a, q ⊒ q′

a−→ q′a and p′aSq′a.

We say that process p is simulated up-to ⊑ by process q, or that q simulates p
up-to ⊑, written p !∼⊑ q, if there exists a simulation up-to ⊑, S, such that pSq.

Theorem 2 ([dFG07]). For every behaviour preorder ⊑ that satisfies the ax-
iom (S) x ⊑ x + y , we have p !∼⊑ q if and only if p ⊑ q.

This result only applies to preorders coarser than the simulation preorder
and therefore it falls short of the generality we got in Theorem 1. In order to
regain this generality we needed to strengthen the simulation relation to achieve
a greater discriminating power. Ready simulation was again called to play an
essential role.

Definition 7. Let I be the binary relation that captures the equivalence of
initial actions and is defined over pairs of processes by pIq ⇔ I (p) = I (q). Let
⊑ be a behaviour preorder, we say that a binary relation S over processes is
an I-simulation up-to ⊑, if S ⊆ I (that is, pSq ⇒ pIq), and S is a simulation
up-to ⊑. Or, equivalently, in a coinductive way, whenever we have pSq we also
have:

– For every a, if p
a−→ p′a there exist q′, q′a such that q ⊒ q′

a−→ q′ and p′aSq′a;
– pIq;

We say that process p is I-simulated up-to ⊑ by process q, or that q I-simulates
p up-to ⊑, written p !∼

I

⊑ q, if there exists an I-simulation up-to ⊑, S, such that
pSq.

By using this definition we were able to characterise all the preorders finer
than failures and coarser than ready simulation.

402 D. de Frutos Escrig, C. Gregorio

Theorem 3 ([dFG07]). For every behaviour preorder ⊑ that satisfies the ax-
iom (RS), and ⊑ ⊆ I, we have that p !∼

I

⊑ q if and only if p ⊑ q.

Once again, we needed the axiom (RS) to prove the theorem above. In the
rest of the paper we will generalise our results by taking as starting point a
more general class of simulations that we have called constrained simulations.

3 Constrained Simulations

C-constrained simulations are just plain simulations to which we impose that
their pairs should also be related by the constraint C.

Definition 8. Given a relation C over BCCSP processes, a relation SC is a
C-constrained simulation, if pSCq implies:

– For every a, if p
a−→ p′ there exists q′, q

a−→ q′ and p′SCq′, and
– pCq.

We say that process p is C-simulated by process q, or that q C-simulates p,
written p !→

C
q, whenever there exists a C-constrained simulation SC , such

that pSCq.

Since we want to characterise behaviour preorders by using C-simulations it
is reasonable to impose on these simulations the condition of being themselves
behaviour preorders; that is guaranteed whenever the constraints are also be-
haviour preorders. Given that the operators in our basic algebra BCCSP are
those generating finite trees, this condition is quite natural and the results we
will prove based on it are indeed rather general.

Example 1. Let us briefly present several examples of constrained simulations,
all of them corresponding to relations being behaviour preorders.

– Ordinary simulation is a constrained simulation taking as C the universal
relation, xCy for every x and y.

– Ready simulation is just the I-constrained simulation, where pIq ⇔ I (p) =
I (q).

– Ready simulation is perhaps the most important C-constrained simulation
but we can also achieve a greater discriminating power. Let us consider, for
instance, the simulation preorder ⊑S and C =⊑−1

S ; then 2-nested simula-
tions [GV92] are just the corresponding class of C-constrained simulations.

One could argue that, whenever we admit a nearly arbitrary constraint when
defining the constrained simulations, we are vitiating the local character of the
notion of simulation, thus spoiling the coinductive nature of the generalisation.
We do not agree with such an opinion for several reasons. First, we can still

Universal Coinductive Characterisations of Process Semantics 403

consider local constraints that provide interesting results, such as I, as we are
going to see. More in general, this family of constrained simulations will allow us
to set a benchmark to compare and classify the complexity of process semantics,
most of these semantics can be characterised with a local constraint, but others,
such as 2-nested simulation, are intrinsically non-local (see [AFGI04]). To have
a common framework to unify all these simulation semantics is very useful
because we can prove general results for all of then as we present in the rest of
this section.

C-constrained similarity, !→
C , can be conditionally axiomatized in a simple

way. For any constraint C we just need to consider the axiom

(PC) xCy ⇒ x ⊑ x + y

We define the axiomatization PC as the set of axioms obtained by adding the
axiom PC to the set of axioms that characterises bisimulation equivalence (Fig-
ure 2), PC = {B1, B2, B3, B4, PC}. As usual, we write PC ⊢ p ⊑ q when the
relation p ⊑ q is provable from PC using the rules of inequational logic. PC is
sound and complete with respect to !→

C .

(B1) x + y = y + x (B3) x + x = x
(B2) (x + y) + z = x + (y + z) (B4) x + 0 = x

Fig. 2 Axiomatisation for the (Strong) Bisimulation Equivalence

Theorem 4. For every constraint C being a behaviour preorder, we have that

PC ⊢ p ⊑ q ⇐⇒ p !→
C

q

Proof. Soundness. Bisimilarity axioms are sound for both the relation C and for
the C-constrained simulation preorder. Therefore, we only need to prove that the
axiom (PC) is also sound. Process p + q can obviously simulate p and since we
have pCq and C is a congruence with respect to choice, we also have pC(q + p)
and we conclude that p !→

C
p + q.

Completeness. By induction on the depth of processes. If p = 0 then 0Cq
and, applying (PC), (B1) and (B4), PC ⊢ 0 ⊑ q. Consider now the general case
p =

∑
aipi. On the one hand, if p !→

C
q then pCq and we can use (PC) to

prove that PC ⊢ p ⊑ p+ q. On the other hand, whenever p
ai−→ pi then q

ai−→ qji

with pi !→
C

qji ; by induction hypothesis we have PC ⊢ pi ⊑ qji , therefore we
have PC ⊢ q +

∑
aipi ⊑ q +

∑
aiqji , equivalently PC ⊢ q + p ⊑ q. Combining

both cases, PC ⊢ p ⊑ q + p ⊑ q.

We next study the axiomatization of the equivalence relation associated to
the C-constrained simulation,→

C
← =!→

C ∩ "←
C . We propose the following axiom

404 D. de Frutos Escrig, C. Gregorio

for each constraint C:

(EC) xCy ⇒ a(x + y) = a(x + y) + ay

We define the set EC = {B1, B2, B3, B4, EC}, containing the axioms that
characterise bisimulation equivalence (Figure 2) and the axiom EC . We write
EC ⊢ p = q when the equation p = q is provable from EC .

EC is sound and complete with respect to→
C
← . However, in this case, to prove

this result the constraint has to be symmetric, that is, it has to be a behaviour
equivalence; below we will comment more on this subject.

Theorem 5. For every constraint C being a behaviour equivalence, we have
that

EC ⊢ p = q ⇔ p→
C
← q

Proof. Soundness. Let us just prove that (EC) is sound. Whenever pCq we also
have EC ⊢ a(p+q) = a(p+q)+aq. We have to prove that a(p+q) !→

C
a(p+q)+aq

and a(p+q)+aq !→
C

a(p+q). Let us start by proving a(p+q) !→
C

a(p+q)+aq,
processes in both sides of the relation can trivially simulate each other and taking
into account that C is a behaviour preorder, from pCq we derive a(p+q) C a(p+
q) + aq and, we immediately conclude that we have a C-simulation.

Let us prove now that a(p + q)+ aq !→
C

a(p + q), as before, processes in both
sides can simulate each other, to have a C-simulation we just need to prove
a(p+ q)+aq C a(p+ q). As before, from pCq we derive a(p+ q) C a(p+ q)+aq
and, since C is symmetric, we conclude a(p + q) + aq C a(p + q).

Completeness. The proof of the completeness of the axiomatization of the
simulation equivalence in [Gla01] (Section 17.2) can be transferred without any
changes just checking the additional proof obligations imposed by the condition
in the axiom (EC).

It is interesting to note that the cases in which C is not symmetric are not
completely excluded from the result above. This can be concluded from the
following results.

Definition 9. We say that two constraints C1 and C2 are cs-equivalent, which
we denote by C1 ∼ C2, iff they define the same C-constrained similarity relation,
that is !→

C1=!→
C2 .

Next proposition is just a snapshot of a nice algebraic theory that can be
developed around constrained simulations and cs-equivalence.

Proposition 1. For any behaviour preorders C, C1 and C2 we have:

1. C1 ∼ C2 ⇒ (C1 ∩ C2) ∼ C1.
2. C ∼!→

C and !→
C is the smallest C-simulation that is cs-equivalent to C.

3. If C1 ∼ C2 and C1 ⊇ C ⊇ C2, then C ∼ C1.

Universal Coinductive Characterisations of Process Semantics 405

4. For the simulation preorder ⊑S we have that C ∼ (C ∩ ⊑S).

Example 2. Next we show some illustrative examples of cs-equivalent con-
straints.

– Let us consider the classical simulation preorder, ⊑S. ⊑S=!→
U where U is

the universal relation, xUy for every x and y. On the other hand, if we use
⊑S as constraint, it is immediate to see that ⊑S=!→

⊑S and therefore U ∼⊑S,
but while U is symmetric, ⊑S is not.

– Taking the constraint I⊇ given by pI⊇q ⇔ I (p) ⊇ I (q), we have that the
ready simulation preorder is !→

I⊇ , as it was originally defined in [BIM95]. It

is well known that the ready simulation preorder also coincides with !→
I , see

for instance [Gla01]. Again, I is a symmetric relation, I⊇ is not, and I ∼ I⊇.
– In a similar way, we can define the 2-nested simulation as a constrained

simulation using either ⊑−1
S or the equivalence relation ⊑−1

S ∩ ⊑S .

From the examples above, one could guess that any constraint might be
cs-equivalent to some symmetric one. This is indeed the case for any “interest-
ing” constraint we have found, but in general it is not true, as the following
counterexample shows.

Example 3. If we consider the behaviour preorder ⊑ defined by the axioms of
bisimulation equivalence (Figure 2) together with the axiom x ⊑ x + aa, where
a represents any arbitrary action in Act, it can be checked that there is no
symmetric constraint cs-equivalent to ⊑.

4 Constrained Simulations Up-to a Preorder

Starting from constrained simulations we define a general notion of constrained
simulation up-to a preorder that will allow us to provide simulation-like char-
acterisations for behaviour preorders.

Definition 10. Let ⊑ be a behaviour preorder, and C a relation over processes.
We say that a binary relation S over processes is a C-simulation up-to ⊑, if
S ⊆ C (that is, pSq ⇒ pCq), and S is a simulation up-to ⊑. Or, equivalently,
in a coinductive way, whenever we have pSq, we also have:

– For every a, if p
a−→ p′a there exist q′, q′a such that q ⊒ q′

a−→ q′a and p′aSq′a;
– pCq.

We say that process p is C-simulated up-to ⊑ by process q, or that process q

C-simulates process p up-to ⊑, written p !∼
C

⊑ q, if there exists a C-simulation
up-to ⊑, S, such that pSq.

406 D. de Frutos Escrig, C. Gregorio

We often just write !∼
C , instead of !∼

C

⊑, when the behaviour preorder is clear
from the context.

The following proposition highlights the tight relation between a behaviour
preorder and its kernel equivalence.

Proposition 2. Given a behaviour preorder ⊑ and a behaviour equivalence C

such that !→
C⊆ ⊑ ⊆ C, we have p ⊑ q ⇐⇒ q ≡ q + p ∧ pCq.

Proof. First we prove the right to left implication. Given that processes p and
q satisfy the constraint C, we can apply the axiomatic characterisation for !→

C

in Theorem 4, and using the axiom (PC) we obtain p !→
C

p + q. Now, since

!→
C⊆ ⊑, we also have p ⊑ p + q ≡ q and therefore p ⊑ q.
We now prove the left to right implication. On the one hand, since ⊑ is a

behaviour preorder we have p ⊑ q ⇒ p + q ⊑ q. On the other hand, if p ⊑ q
then pCq and also qCp, since C is symmetric. As before, we use the axiom for
C-similarity to obtain q !→

C
q + p. Since !→

C ⊆ ⊑, we conclude q ⊑ q + p.

Next we show that whenever p is C-simulated up-to ⊑ by q we also have
q ≡ q + p. Using this lemma and the previous proposition we will prove later
our Theorem 6.

Lemma 1. For every behaviour preorder ⊑ and every behaviour equivalence C,
such that !→

C⊆ ⊑ ⊆ C, we have p !∼
C

⊑ q ⇒ q ≡ q + p

Proof. We prove it by induction on the depth of process p. Since ≡ is a congru-
ence with respect to the choice operator, it is enough to show that p !∼

C

⊑ q ⇒ q ≡
q + p|a for every a ∈ I(p). Whenever p

a−→ p′a then there exist qa and q′a such
that q ⊒ qa

a−→ q′a with p′a !∼
C

⊑ q′a, so that p′aCq′a and, applying the induction

hypothesis, q′a ≡ q′a +p′a. Since !→
C⊆ ⊑, we can use the axiomatization given in

Theorem 5 and apply the axiom (EC) to obtain p′aCq′a ⇒ aq′a ≡ a(q′a+p′a)+ap′a;
therefore aq′a ≡ aq′a + ap′a. Hence we get

∑
aq′a ≡

∑
aq′a + p|a. On the other

hand, qa = aq′a + ra and since ≡ is a congruence with respect to choice∑
aq′a +

∑
ra ≡

∑
aq′a +

∑
ra + p|a, that is,

∑
qa ≡

∑
qa + p|a. We can

also add q in both sides, getting
∑

qa + q ≡
∑

qa + q + p|a. Now, applying
Proposition 2 to ⊑, since for every qa we have qa ⊑ q, we conclude q ≡ q + qa,
and therefore q ≡ q + p|a, as we wanted to prove.

Theorem 6. For every behaviour preorder ⊑ and every behaviour equivalence
C such that !→

C⊆ ⊑ ⊆ C, we have p !∼
C

⊑ q ⇔ p ⊑ q.

Proof. The right to left implication is obvious: we have pCq and if p
a−→ p′a

then we can take q ⊒ p
a−→ p′a. To prove the left to right implication we use

Lemma 1, p !∼
C

⊑ q ⇒ q ≡ q + p and, since pCq is also satisfied, we can now

apply Proposition 2, to conclude p !∼
C

⊑ q ⇒ p ⊑ q.

Universal Coinductive Characterisations of Process Semantics 407

The condition of symmetry imposed to C is necessary, as the following coun-
terexample shows.

Example 4. Let us consider the non-symmetric constraint I⊇ defined in Exam-
ple 2. Let us consider the preorder ⊑ defined by the axioms that define the
ready simulation preorder (that is, the axioms that characterise bisimulation
equivalence plus the axiom ax ⊑ ax + ay), together with the axiom x + bb ⊑ x.
The constrained simulation !→

I⊇ is the ready simulation preorder and thus it is

immediate to check both !→
I⊇ ⊆ ⊑ and ⊑ ⊆ I⊇. However this preorder does not

satisfy the thesis of Theorem 6, because if we consider the processes p = a + bb

and q = a + b, we have p ̸⊑ q but p !∼
I⊇
⊑ q, because I(p) = I(q) and if p

a−→ 0

then q
a−→ 0, while for p

b−→ b we can take q ⊒ a + bb + b
b−→ b.

Theorem 6 generalises Theorem 2 and 3 (and also Theorem 44 in [dFG08]).
And what is even more important, it provides a uniform framework that allows
to better understand the role of the premises in the previous results we had on
simulations up-to. Thanks to the use of constrained simulations up-to, now we
can clearly see that a great deal of semantic preorders both coarser and finer
than the ready simulation preorder can be characterised by using simulations
up-to. In particular, we can characterise not only all the preorders coarser than
the ready simulation that appear in Van Glabbeek’s linear time-branching time
spectrum but also the rest of semantics there. Next example illustrates the case
of possible-futures semantics that is not coarser than the ready simulation and
therefore falls outside the scope of Theorem 3.

Example 5. If we denote by ⊑PF the possible-futures preorder [RB81, Gla01],
then, taking the constraint pT q⇔ traces(p) = traces(q), we have that T is a be-
haviour equivalence and that !→

T⊆ ⊑PF⊆ T . Thus we are under the hypothesis

of Theorem 6 and therefore !∼
T

⊑P F
and ⊑PF are the same relation.

Once again, the next result shows the interplay between preorders and the
induced equivalences. For a given preorder, we could use the induced equivalence
relation ≡ to characterise the preorder by means of a C-simulation up-to ≡.

Theorem 7. For every behaviour preorder ⊑ and its induced equivalence re-
lation ≡, for every behaviour equivalence C such that !→

C⊆ ⊑ ⊆ C, we have

p !∼
C

⊑ q ⇔ p !∼
C

≡ q.

Proof. The right to left implication is obvious. The left to right implication is
a consequence of Proposition 2; whenever q would reduce into q′ by applying
q ⊒ q′ we could also reduce it by ≡, by applying q ≡ q + q′, and then we could
execute all the transitions of q′.

408 D. de Frutos Escrig, C. Gregorio

5 Constrained Simulations up-to an Equivalence

The previous section was devoted to the study of constrained simulations up-to
a preorder. The starting point there was a given preorder, instead in this sec-
tion we show that the theory of constrained simulations up-to can be developed
even if we do not have such a preorder to start from. It is true that equiva-
lence relations are particular cases of preorders but equivalences are symmetric
relations and cannot be characterised by means of proper simulations that are
intrinsically non-symmetric. An interesting result that we present in this section
is how to use our up-to technique to build up an adequate preorder for a given
equivalence relation.

Lemma 2. For every behaviour equivalence ≡, and for every constraint C that
is a behaviour equivalence such that →

C
← ⊆ ≡, we have p !∼

C

≡ q ⇒ q ≡ q + p.

Proof. The proof uses the same notations and follows similar arguments to those
in the proof of Lemma 1. We use induction on the depth of process p. Since ≡
is a congruence with respect to the choice operator, it is enough to show that
p !∼

C

≡ q ⇒ q ≡ q +p|a for every a ∈ I(p). Whenever p
a−→ p′a then q ≡ qa

a−→ q′a

and p′a !∼
C

≡ q′a, and by applying the induction hypothesis we obtain q′a ≡ q′a +p′a.

On the other hand, since →
C
← ⊆≡, we can use the axiomatic characterisation

given in Theorem 5 and apply the axiom (EC) to obtain aq′a ≡ a(q′a +p′a)+ap′a;
therefore aq′a ≡ a(q′a+p′a)+ap′a ≡ aq′a+ap′a. Adding all up

∑
aq′a ≡

∑
aq′a+p|a.

Since ≡ is a congruence with respect to the choice operator we can add subterms
in both sides of the equivalence, in particular, every qa = aq′a + ra and therefore∑

aq′a +
∑

ra ≡
∑

aq′a +
∑

ra + p|a, that is,
∑

qa ≡
∑

qa + p|a. Since for all
qa we have q ≡ qa, then we conclude that q ≡ q + p|a.

Theorem 8. For every behaviour equivalence ≡, and every constraint C that
is a behaviour equivalence such that →

C
← ⊆ ≡ ⊆ C, we have p !∼

C

≡ q ∧ p "∼
C

≡ q ⇔
p ≡ q.

Proof. The right to left implication is obvious, just considering that ≡ ⊆ C.
We prove the left to right implication. Since p !∼

C

≡ q then, by Lemma 2, we have
that q ≡ q+p; symmetrically, from q !∼

C

≡ p we get p ≡ q+p and therefore p ≡ q.

As desired, for any equivalence relation fulfilling the hypothesis of the the-
orem above, we get a preorder such that its kernel is the original equivalence.
Moreover, this preorder satisfies some interesting properties.

Proposition 3. For every behaviour equivalence ≡, and for every constraint C

that is a behaviour equivalence such that →
C
← ⊆ ≡ ⊆ C, we have that !∼

C

≡ is a
behaviour preorder and !→

C⊆ !∼
C

≡ ⊆ C.

Universal Coinductive Characterisations of Process Semantics 409

Proof. That !∼
C

≡ is a precongruence with respect to the choice operator follows
from the congruence with respect to the choice of ≡. The rest of the properties
are immediate.

Now we can say that for any behaviour equivalence fulfilling the hypothesis of
Theorem 8, the preorder !∼

C

≡ is canonical in the sense specified in the following
result.

Theorem 9. For every behaviour equivalence ≡, and for every constraint C

that is a behaviour equivalence, such that →
C
← ⊆ ≡ ⊆ C, the preorder !∼

C

≡ is the
only behaviour preorder that satisfies !→

C⊆ !∼
C

≡ ⊆ C, and whose kernel is ≡.
Therefore, it can be said to be the canonical preorder under the constraint C
that induces the equivalence ≡.

Proof. Proposition 3 says that !∼
C

≡ satisfies the hypothesis of the results in Sec-
tion 4. On the other hand, if there is any other behaviour preorder ⊑ such that
≡ = ⊑ ∩ ⊒, then by applying Theorem 6 and 7 we conclude ⊑ ⇔ !∼

C

⊑ ⇔ !∼
C

≡.

The canonicity of the preorder !∼
C

≡ is bounded by the constraint C appearing

in its definition. For instance, trace equivalence ≡T satisfies →
U
← ⊆ ≡T , and

therefore we can obtain the U -canonical preorder !∼
U

≡T
, which is just the classic

preorder ⊑T . But we also have →
I
← ⊆ ≡T ⊆ I, and then we also consider the I-

canonical preorder !∼
I

≡T
whose kernel is also trace equivalence, but it is strictly

finer than ⊑T . Then we could even conclude that we should not call canonical
to these generated preorders. We have decided to maintain this term because
it is true that given both the equivalence ≡ and the constraint C, then the
generated preorder !∼

C

≡ is unique indeed.
Anyway, if we want to associate to an equivalence a unique canonical preorder

we can define it as the C-canonical preorder with the coarsest constraint C.
That is, the coarsest C such that →

C
← ⊆ ≡ ⊆ C that generates the preorder

!∼
C

≡. We have not been able to prove the existence of such a coarser constraint
for any arbitrary behaviour equivalence. However, if we restrict ourselves to the
semantics in the linear time-branching time spectrum, it is easy to see that such
a coarsest constraint exists.

Proposition 4. Let O ∈ {T, S, CT, CS, F, R, FT, RT, PW, RS, 2N, PF} be any
of the semantics in the linear time-branching time spectrum [Gla01]. Then, there
exists a coarsest constrained CO such that →

CO← ⊆ ≡O ⊆ CO and that is defined
in Table 1.

Proof. We prove some of the results, the rest can be proved in a similar way.

T Since →
U
← ⊆ ≡T , we have immediately CT = U .

410 D. de Frutos Escrig, C. Gregorio

T S CT CS F R FT RT PW RS PF 2N
CO U U V V I I I I I I W X

pUq ∀p, q pWq ⇐⇒ p ≡T q
pV q ⇐⇒ (p = 0⇔ q = 0) pXq ⇐⇒ p ≡S q
pIq ⇐⇒ I(p) = I(q)

Table 1 Coarsest Constraints for the Semantics in the ltbt Spectrum

F We have →
I
← ⊆ ≡F ⊆ I. We know that →

I
← can be axiomatized by pIq ⇒

a(p + q) ≡ a(p + q) + ap. If we consider any other →
C
← ⊆ ≡F ⊆ C with

→I
← ̸⊆→

C
← we should have I ̸⊆ C and therefore there should be some processes

such that p′Cq′ and some action b ∈ I(q′)− I(p′). From the axiomatization
of →

C
← we would obtain a(p′ + q′) ≡ a(p′ + q′) + ap′ but these two processes

are not failure equivalent, since the right one can reject {b} after executing
a, and the leftone cannot.

2N As for the other simulation semantics, O2N is just the constraint used in
the definition.

PF We have →
T
← ⊆ ≡PF ⊆ T . As above, if we have another constraint

→T
← ̸⊆→

C
← we should have some processes such that p′Cq′, and therefore

a(p′ + q′) ≡ a(p′ + q′) + ap′, but T (p) ̸= T (q). This is not possible because
a possible future for the process in the right side after executing a is T (p′),
that is not a possible future for the process on the left side.

As a byproduct, we have detected a new simulation semantics that does not
appear in the linear time-branching time spectrum, the T -constrained simu-
lation, which we could call trace equivalence simulation semantics. This new
semantics should be added in the spectrum between ready simulation and 2-
nested simulation, and above possible futures.

We can take advantage of the close relation between any behaviour equiva-
lence and the corresponding canonical preorder by turning an axiomatic char-
acterisation of the former into an axiomatization of the latter.

Theorem 10. Let ≡ be a behaviour equivalence and C a constraint that is a
behaviour equivalence such that →

C
← ⊆ ≡ ⊆ C. If AE is an axiomatization of

the equivalence ≡, taking the axiom (PC) to be xCy ⇒ x ⊑ x + y, we have that
AP = AE ∪ {PC} is an axiomatization of the relation !∼

C

≡.

Proof. As usual we write AP ⊢ p ⊑ q when the inequality p ⊑ q is provable from
the set of axioms AP . We prove that AP ⊢ p ⊑ q iff p !∼

C

≡ q.

Soundness. On the one hand, ≡⊆!∼
C

≡; on the other hand, from Proposition 3

we know that !→
C⊆ !∼

C

≡ ⊆ C; besides, from Theorem 4 we have that PC is one

of the axioms that characterise !→
C .

Universal Coinductive Characterisations of Process Semantics 411

Completeness. By Lemma 2 we know that p !∼
C

≡ q ⇒ q ≡ q + p and therefore
AP ⊢ q ≡ q + p. On the other hand, we have also pCq and then, using PC , we
get AP ⊢ p ⊑ p + q. All together, AP ⊢ p ⊑ p + q ≡ q.

With this result, the correctness and completeness of the axiomatization for
the preorders are proved once and for all for a great variety of semantics.

6 Conclusions and Future Work

In this paper we have universalised the presentation of our theory of simulation
up-to by means of which we provide coinductive characterisations for a great
variety of semantics either coarser or finer than the ready simulation, including
those in the linear time-branching time spectrum. Constrained simulations have
played an essential role in our development; we have provided an axiomatization
of the preorders defined by them and also of the induced equivalences.

An interesting result was that any behaviour equivalence induces a canonical
preorder whose kernel is the given equivalence relation. It is nice to find that for
all the semantics in the linear time-branching time spectrum the so obtained
canonical preorder coincides with the one we already knew from the literature.
As a consequence of the canonicity, some properties can be proved in general,
once and for all. We have illustrated this fact by giving a general axiomatization
of the preorders in terms of the axiomatization of the equivalences and the
axiomatization of the constrained simulations.

There are several directions in which we plan to continue the study of the
relations between preorders and equivalences. For instance, the axiomatization
of the preorders that we have obtained is conditional. It would be interesting
to know in which cases the axiom (PC) can be turned into an equivalent finite
collection of equational axioms. This is in fact the case for the semantics in
the linear time-branching time spectrum coarser than the ready simulation, for
which there exists an equational axiomatization equivalent to our conditional
axiomatization.

In [AFIL05] you can find a review of (in)axiomatizability results, that its au-
thors have recently completed giving other new results on the subject. We think
that our characterisation of the semantics using constrained simulations up-to
will be useful to get other new (in)axiomatizability general results. For instance,
we conjecture that any interesting preorder stronger than the ready simulation
is not finitely axiomatizable (see [AFGI04] for the seed results supporting this
conjecture).

412 D. de Frutos Escrig, C. Gregorio

References

[AFGI04] Luca Aceto, Wan Fokkink, Rob van Glabbeek, and Anna Ingólfsdóttir. Nested
semantics over finite tree are equationally hard. Information and Computation,
191(2):203–232, 2004.

[AFI07] Luca Aceto, Wan Fokkink, and Anna Ingólfsdóttir. Ready to preorder: get your
BCCSP axiomatization for free! In CALCO’07, volume 4624 of Lecture Notes in
Computer Science, pages 65–79. Springer, 2007.

[AFIL05] Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. Finite equational
bases in process algebra: Results and open questions. In Processes, Terms and
Cycles, volume 3838 of LNCS, pages 338–367. Springer, 2005.

[BIM95] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced.
Journal of the ACM, 42(1):232–268, 1995.

[dFG05] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Bisimulations up-to for the
linear time-branching time spectrum. In CONCUR 2005, volume 3653 of Lecture
Notes in Computer Science, pages 278–292. Springer, 2005.

[dFG07] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. Simulations up-to and
canonical preorders (extended abstract). In SOS 2007, volume 192 of ENTCS,
pages 13–28. Elsevier, 2007.

[dFG08] David de Frutos-Escrig and Carlos Gregorio-Rodŕıguez. (Bi)simulations up-to char-
acterise process semantics. Information and Computation, (to appear), 2008.

[Gla01] Rob J. van Glabbeek. Handbook of Process Algebra, chapter The Linear Time
– Branching Time Spectrum I: The Semantics of Concrete, Sequential Processes,
pages 3–99. Elsevier, 2001.

[GV92] Jan Friso Groote and Frits Willem Vaandrager. Structured operational semantics
and bisimulations as a congruence. Information and Computation, 100(2):202–260,
1992.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[Par81] David M.R. Park. Concurrency and automata on infinite sequences. In Theoretical

Computer Science, 5th GI-Conference, volume 104 of Lecture Notes in Computer
Science, pages 167–183. Springer, 1981.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Tech. Report
DAIMI FN-19, Comp. Sci. Dept., Aarhus University, 1981.

[RB81] William Rounds and Stephen Brooks. Possible futures, acceptances, refusals, and
communicating processes. In 22nd Foundations of Computer Science Annual Sym-
posium, pages 140–149. IEEE, 1981.

