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Abstract. We survey some recent results on iterative methods for approximating the
least solution of a system of monotone fixed-point polynomial equations.

1 Introduction

Consider the following problem formulated by Francis Galton in the (politically incor-
rect) 19th century [26], and quoted by Thomas Harris in his classical text on branching
stochastic processes [20]:

Let p0, p1, p2 . . . be the respective probabilities that a man has 0, 1, 2, . . . sons, let each son have
the same probability for sons of his own, and so on. What is the probability that the male line
is extinct after r generations, and more generally what is the probability for any given number
of descendants in the male line in any given generation?

We are interested here in the probability that the male line eventually becomes extinct.
A little thought shows that this probability is a solution of the fixed-point equation

X = ∑
n≥0

pnXn (1)

and after some more thought one concludes that it is in fact the smallest solution.
Consider now the following stochastic context-free grammar (i.e., a grammarwhose

productions are annotated with probabilities) with axiom X :

X 0.4−→ XY, X 0.6−→ a
Y 0.3−→ XY, Y 0.4−→ YZ, Y 0.3−→ b
Z 0.3−→ XZ, Z 0.7−→ b

What is the probability that the grammar eventually generates a word, i.e., a string of
non-terminals? Again, it is not to difficult to show that it is equal to the X-component
of the least solution of the following system of equations.

X = 0.4XY +0.6
Y = 0.3XY +0.4YZ+0.3 (2)
Z = 0.3XZ+0.7
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Notice that the vector (1,1,1) is a solution of the system. We will later investigate
whether it is the least solution or not.
Equations (1) and (2) are two examples of monotone systems of polynomial equa-

tions (MSPEs for short). MSPEs are systems of the form

X1 = f1(X1, . . . ,Xn)
...

Xn = fn(X1, . . . ,Xn)

where f1, . . . , fn are polynomials with positive real coefficients. In vector form we
denote an MSPE by X = f (X). We call the vector f (X) of polynomials a monotone
system of polynomials, or MSP. Obviously, a solution of X = f (X) is a fixed-point
of f (X), and vice versa. Further, any solution of X = f (X) can be visualized as a
point of intersection of the submanifolds defined by the n implicit functions f i(X)−
Xi = 0. In particular, when the polynomials of f (X) are quadratic the solutions of
X = f (X) correspond to the intersection of n quadrics. Figure 1 shows the graph of
such a quadratic MSPE with n= 2.

X1 = f1(X1,X2)

X2 = f2(X1,X2)
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Fig. 1 Graphs of the equations X1 = f1(X1,X2) and X2 = f2(X1,X2) with f1(X1,X2) = X1X2+ 1
4 and
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8 . There are two real solutions in R2[0,∞], the least one is labelled
with µ f .

We call MSPEs and MSPs “monotone” because x ≤ x ′ implies f (x) ≤ f (x′) for
every x,x′ ∈Rn

≥0. This is a bit imprecise, because not every monotone polynomial has
positive coefficients. Perhaps “positive systems” would be a better name, but since we
have used the term “monotone” in several papers we stick to it.
MSPEs appear naturally in the analysis of many stochastic models, such as stochas-

tic context-free grammars (with numerous applications to natural language processing
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[23, 19], and computational biology [24, 5, 4, 22]), probabilistic programs with pro-
cedures [9, 2, 13, 11, 10, 12, 14], web-surfing models with back buttons [16, 17], and
branching processes [20], a topic in stochastic theory that can be traced back to Gal-
ton’s problem.
In the last years Etessami and Yannakakis [13] and ourselves [21, 8] have studied

the problem of solving MSPEs. This paper gives a succinct—and informal—overview
of our results.

2 Some Definitions and Facts

Let R[0,∞] denote the set of non-negative reals extended with ∞. We extend the def-
initions of sum and product as usual: ∞ + k = ∞ for every k ∈ R [0,∞], ∞ · 0 = 0, and
∞ ·k = ∞ for every k ∈ R[0,∞] \{0}. The resulting algebraic structure is the real semir-
ing. MSPEs are systems of fixed-point equations over the real semiring.
Given two vectors u,v∈Rn

[0,∞], we say that u≤ v holds if ui≤ vi holds for every 1≤
i≤ n, where ui,vi are the i-th components of u and v, respectively. This is the pointwise
order on vectors of reals. The first positive result on MSPEs is a direct consequence of
Kleene’s theorem:

Theorem 1 (Kleene’s fixed-point theorem). Every MSP f (X) has a least fixed-point
µ f in Rn

[0,∞] with respect to the pointwise order. Moreover, the sequence (κ (k)
f )k∈N

given by
κ (0)
f := 0

κ (k+1)
f := f (κ (k)

f ) = f k+1(0)

is non-decreasing with respect to ≤ (i.e., κ (k)
f ≤ κ (k+1)

f ) and converges to µ f .

We call (κ (k)
f )k∈N the Kleene sequence, and its elements the Kleene approximants of

µ f .

Example 1. For the system (2) we obtain:

κ (0)
f = (0,0,0), κ (1)

f = (0.6,0.3,0.7),
κ (2)
f = (0.672,0.438,0.826), κ (3)

f = (0.718,0.533,0.867),
κ (4)
f = (0.753,0.600,0.887), κ (5)

f = (0.781,0.648,0.900), . . .

The least solution of a system of linear equations (monotone or not) satisfies some
good properties that no longer hold for MSPEs. It is easy to show (using for instance
Cramer’s rule) that if the coefficients are rationals, then the least solution is also ratio-
nal. However, using Galois theory one can prove that the least solution of a polynomial
system may not be expressible by radicals. For instance:

Fact 1. The least fixed-point of
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X =
1
6
X6+

1
2
X5+

1
3

. (3)

is not expressible by radicals.

This fact also holds for quadratic systems, i.e., systems in which all polynomials have
at most degree 2. Given an MSP f over a set X of variables, it is easy to construct
a quadratic MSP g over a larger set X ∪Y such that the projection of µg onto X
is equal to µ f . The construction is very similar to the one that brings a context-free
grammar in Chomsky normal form. For instance, it “expands” Equation (3) into the
system

X =
1
6
XX5+

1
2
XX4+

1
3

Xn = XXn−1 (for n= 5,4,3)
X2 = X2

Since this expansion involves only a linear blowup, we can take quadratic MSPEs as a
normal form of MSPEs.
The least solution of linear MSPEs is not only rational, but a succinct rational.

Consider a system of dimension n (i.e., with n equations) whose coefficients are given
as ratios of m-bit integers. It is easy to show using Cramer’s rule that the least solution
can be written as the quotient of two natural numbers with at most O(n 2m+ n logn)
bits. As a consequence, we get

Fact 2. Let X = f (X) be a linear MSPE of dimension n whose coefficients are given
as ratios of m-bit integers. For every component µ f i of the least fixed-point of f : if
0< µ fi < ∞ then

1
2O(n2m+n logn)

≤ µ fi ≤ 2O(n2m+n logn)

(where the constant of the Big-Oh notation is independent of f ).

Since the least fixed-point of a MSP can be irrational, there is no bound on the number
of digits needed to write it down. However, using results of [8] we can still give a lower
and an upper bound:

Fact 3. Let f be a quadratic MSP of of dimension n whose coefficients are given as
ratios of m-bit integers. For every component µ f i of the least fixed-point of f : if 0 <
µ fi < ∞ then

1
2m·2O(n) ≤ µ fi ≤ 2m·2

O(n)

(where the constant of the Big-Oh notation is independent of f ).

So, loosely speaking, while the least fixed-point of a linear system is at most exponen-
tial in the dimension of the system, the least solution of a quadratic system is at most
double exponential.
It is easy to find examples of quadratic MSPs in which the least fixed-point is ratio-

nal and double exponential. The n-th component of the least solution of system
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X1 = k
X2 = X21

...
Xn = X2n−1

is equal to k2(n−1) .

3 Computational complexity

The fundamental decision problem for MSPs is whether (µ f ) i ∼ a holds for a given
MSP f and a component i, where a is some positive rational number and∼∈ {≤,=,≥
}. Let us call this problem MSP-DECISION. Little is known about its computational
complexity. The problem lies in PSPACE:

Consider e.g. a two-dimensional MSPE X1 = f1(X1,X2),X2 = f2(X1,X2). To de-
cide whether (µ f )1 ≤ a holds one can equivalently decide if the following for-
mula is true:

∃x1 ∈ R,x2 ∈ R : x1 = f1(x1,x2) ∧ x2 = f2(x1,x2) ∧ x1,x2 ≥ 0 ∧ x1 ≤ a

Such formulas can be decided in PSPACE, because the first-order theory of the
reals is decidable, and its existential fragment is even in PSPACE [3].

For a lower bound, we introduce the problem SQUARE-ROOT-SUM:

Given k+ 1 natural numbers n1, . . . ,nk and b, determine whether ∑k
i=1
√ni ≤ b

holds.

The SQUARE-ROOT-PROBLEM is a natural subproblem of many questions in com-
putational geometry. For instance, the length of the boundary of a polygon whose ver-
tices lie in Z2 is a sum of square roots of integers. It has been a major open problem
since the 70s whether SQUARE-ROOT-SUM belongs to NP. The problem can easily
be reduced to MSP-DECISION:

Suppose we are given n1 = 2, n2 = 3, and b = 3, and we want to decide
if
√
2+
√
3 ≤ 3. One would like to come up with an MSP f (X) such that

(µ f )1 =
√
2,(µ f )2 =

√
3,(µ f )3 =

√
2+
√
3, so that deciding

√
2+
√
3 ≤ 3

is equivalent to deciding (µ f )3 ≤ 3. One has to be careful though, because for
instance the equation X1 = X21 +X1− 2 is not an MSPE. It was shown in [13]
how to overcome this problem: Instead of encoding e.g.

√
2 directly, it suffices

to encode a+b ·
√
2 for some rationals a,b.

The least solution of the equation X = X 2+(1−λ 2 ·n)/4 equals (1−λ
√
n)/2.

So, by choosing for λ a small enough rational number we get a 1-dimensional
MSP whose least solution is a+ b ·

√
n for some rationals a,b. In our example

we can set λ = 1
max(2,3) = 1

3 which leads to the following MSPE.
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X1 = X21 + 1− 29
4

X2 = X22 + 1− 39
4

X3 = X1+X2

Its least solution is

µ f =
(
1
2
− 1
6
√
2, 1
2
− 1
6
√
3,1− 1

6
(√
2+
√
3
))

.

So, the question whether
√
2+
√
3≤ 3 holds can be translated into the question

whether (µ f )3 ≥ 1− 1
6 ·3= 1

2 holds.

It follows from this reduction that proving membership of MSP-DECISION in NP
would be a major breakthrough.
An interesting issue is the complexity of MSP-DECISION in the Blum-Shub-Smale

computational model, in which all operations on rationals take unit time independently
of their size. SQUARE-ROOT-SUM can be decided in polynomial time in this model
[25], but it is open whether the result extends to MSP-DECISION.

4 Approximating the Least Fixed-Point: Newton’s Method

For most practical purposes, the main computational problem concerning MSPs is the
approximation of the least fixed-point up to a given accuracy. Kleene’s method can be
applied, and it is very robust: it always converges when started at 0, for any MSP. On
the other hand, the convergence speed of the Kleene sequence can be very poor. Before
presenting an example, we define a notion of convergence order that differs from the
one commonly used in numerical mathematics, but is particularly natural for computer
science.
Let (ak)k≥0 be a non-decreasing sequence of vectors over the real semiring such that

limk→∞ ak = a< ∞. The convergence order of the sequence is the function β : N→ N
defined as follows: β (k) is the greatest natural number i such that

∥a−ak∥
∥a∥ ≤ 2−i

where ∥·∥ is some norm. We say that a sequence has linear, exponential, logarithmic,
etc. convergence order if the function β (k) grows linearly, exponentially, or logarith-
mically in k, respectively. Notice that the asymptotic behaviour of β (k) is independent
of the norm, because all norms are equivalent up to a constant. In the univariate case,
β (k) is the number of bits of ak that coincide with the corresponding bits of a (the
formalization of this intuition requires some care, like identifying 1 and 0.999 . . .). For
instance, for the sequence (1− 2−k)k≥0 we have β (k) = k, i.e., the first k bits of the
k-th element of the sequence coincide with the first k bits of the limit.
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Consider now this very simple but at the same time very illustrative quadraticMSPE
in one variable:

X = 1/2+1/2X 2 (4)

In Galton’s problem, the least solution of this equation gives the extinction probability
of an individual’s descent line when every individual has 0 or 2 children with proba-
bility 1/2. The least solution is 1. We have:

Fact 4. The i-th Kleene approximant of X = 1/2+ 1/2X 2 satisfies κ (i) ≤ 1− 1
i+1 for

every i≥ 0. So the Kleene sequence only has logarithmic convergence order.

Example 2. Here are some of the Kleene iterates.

κ (0) = 0, κ (1) = 0.5, κ (2) = 0.625
κ (3) = 0.695, κ (4) = 0.742, κ (5) = 0.775
· · ·

κ (20) = 0.920, . . . , κ (200) = 0.990, . . . , κ (2000) = 0.9990, . . .

Faster approximation techniques have been known for a long time. In particular, New-
ton’s method, suggested by Isaac Newton more than 300 years ago, is a standard ef-
ficient technique for approximating a zero of a differentiable function. Since the least
solution of a fixed-point equation X = f (X) is a zero of g(X) = f (X)−X , the method
can be applied to search for fixed-points of f (X).
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Fig. 2 Newton’s method to find a zero of a one-dimensional function g(X)

We briefly recall the method for the case of one variable, see Fig. 2 for an illustra-
tion. Starting at some value ν (0) “close enough” to the zero of g(X), we proceed iter-
atively: given ν (i), we compute a value ν (i+1) closer to the zero than ν (i). For that, we
compute the tangent to g(X) passing through the point (ν (i),g(ν (i))), and take ν (i+1)
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as the zero of the tangent (i.e., the X-coordinate of the point at which the tangent cuts
the X-axis). A little arithmetic leads to:

ν(i+1) = ν(i) +
f (ν(i))−ν(i)

1− f ′(ν(i))

Newton’s method can be easily generalized to the multivariate case:

ν(i+1) = ν(i) + (Id− f ′(ν(i)))−1( f (ν(i))−ν(i))

where f ′(X) is the Jacobian of f , i.e., the matrix of partial derivatives of f , and Id is
the identity matrix.
Notice that Newton’s method is not restricted to the real semiring, it can be applied

to any differentiable functions over the real field. However, when applied with this
generality it is far less robust than Kleene’s method: it may converge very slowly,
converge only when started at a point very close to the zero—whichmust be guessed—
or even not converge at all.
However, if we applyNewton’s method to f (X)= 1/2+1/2X 2, starting at ν (0) = 0,

we obtain:

Fact 5. The i-th Newton approximant of X = 1/2+ 1/2X 2 satisfies ν(i) = 1− 1
2i for

every i ≥ 0. The i-th approximant has i correct bits, i.e., the Newton sequence has
linear convergence.

So in this particular example the Newton sequence converges “exponentially faster”
than the Kleene sequence. The number of arithmetic operations needed to compute i
correct bits of the solution grows polynomially instead of exponentially in i. (Recall,
however, that the operations have to be applied to rationals whose length may grow
exponentially in the number of iterations.) One can ask whether the good behaviour
on this example is just a coincidence, or whether perhaps Newton’s method is robust
on the real semiring. A number of recent results have shown that (with certain ifs and
buts) the latter is the case, and we briefly survey them in the next section.

5 Convergence Order and Thresholds for Newton’s Method

The first positive result on the convergence of Newton’s method was obtained by Etes-
sami and Yannakakis in [13]. They showed that the method always converges to the
least fixed-point starting from ν (0) = 0, and that it converges at least as fast at the
Kleene sequence.1
Inspired by this positive result, we started to study the convergence order. Given an

MSPE X = f (X) whose least solution µ f is finite, it is well-known that the conver-
gence order depends critically on the Jacobian matrix at the least fixed-point, i.e., on
1 More precisely, Etessami and Yannakakis proved the result for a structured version of the method,
and we showed in [8] that this additional structure is not required for convergence (although it is
convenient for efficiency).
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f ′(µ f ). Every textbook proves that the method performs brilliantly when the matrix
(Id− f ′(µ f )) is non-singular: it exhibits exponential convergence order. So we fo-
cused our attention on the singular case, of which f (X) = 1/2+1/2X 2 is an example.
By Fact 5 we can expect at most linear convergence. But perhaps the method converges
more slowly on other examples?
It is convenient to start with the special case of strongly connectedMSPEs. Loosely

speaking, an MSPE is strongly connected if every variable depends on any other vari-
able, where dependence is defined as follows. Given two variables X and Y , X depends
on Y if either Y appears on the right-hand-side of the equation for X , or if there is a
variable Z such that X depends on Z and Z depends on Y .

5.1 Strongly Connected MSPEs

We proved the following theorem in [21].
Theorem 2. Let f (X) be a strongly connected MSP such that µ f is finite. There is a
number t f such that for every i≥ 0:

β (t f + i)≥ i .

In particular, the Newton sequence has linear convergence order.
We call t f the threshold of f (X). Loosely speaking, the theorem states that after

crossing the threshold (i.e., from the t f -th approximant onwards) the Newton sequence
gains at least one bit of accuracy per iteration. The threshold itself is an upper bound
on the number of iterations needed to obtain the first bit of the least fixed-point.
The proof of [21] was based on the following topological property of R n: if the

infimum of the distances between points of two sets is 0, then the two sets have at least
one common point. As a consequence, it was a purely existential proof, and provided
no information on the size of the threshold. In [7] we obtained the following relation
between the threshold and the minimal component of µ f .

Theorem 3. Let f (X) be a quadratic strongly connected MSP of dimension n whose
coefficients are given as ratios of m-bit integers. Let µmin be the minimal component of
µ f . The threshold t f of Theorem 2 satisfies

t f ≤ 3n2m+2n2 |logµmin| .

Moreover, if fi(0) > 0 holds for every 1≤ i≤ n, then t f ≤ 3mn.

Example 3. Consider again the following MSPE, which was given as Equation (2) on
page 285.

X = 0.4XY +0.6
Y = 0.3XY +0.4YZ+0.3
Z = 0.3XZ+0.7
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Using a result from [8], slightly stronger than Theorem 3 but technically more dif-
ficult to state, one can prove that the threshold of this system satisfies t f ≤ 6 for
the maximum-norm (i.e., the norm of a vector is the absolute value of its maxi-
mal component). So β (14) ≥ 8. After computing 14 Newton iterates we get ν (14) =
(0.983,0.974,0.993).As we have computed at least β (14)≥ 8 bits, we know that µ f is
at most ν (14) +(2−8,2−8,2−8) which is strictly less than 1 in every component. There-
fore, the stochastic context-free grammar from the introduction produces a terminal
string with probability less than 1.

Combining Theorem 3 with Fact 3 we obtain:

Corollary 1. Let X = f (X) be a quadratic strongly connected MSPE of dimension n
whose coefficients are given as ratios of m-bit integers. The threshold t f of Theorem 2
satisfies t f ∈m2O(n).

This corollary gives an exponential bound on the number of iterations needed to com-
pute the first bit of the least fixed-point. It is open whether this bound is tight.

5.2 General MSPEs

The following example shows that an exponential number of iterations is sometimes
needed for the first bit, if the MSPE is not strongly connected. We give a family of
MSPEs in which the number of iterations needed to compute the first bit grows expo-
nentially in the dimension of the system.

Example 4. Consider the following family of MSPEs.

X1 = 1/2+1/2 ·X 21
X2 = 1/4 ·X 21 +1/2 ·X1X2+1/4 ·X 22

... (5)
Xn = 1/4 ·X 2n−1+1/2 ·Xn−1Xn+1/4 ·X 2n

The variable Xi depends on X j if and only if j ≤ i. So the dependence graph contains
n strongly connected components, one for each variable. The least fixed-point of the
system is the vector (1,1, . . . ,1). We show in [21] that ν (2n−1)

n ≤ 1/2 holds, and so that
at least 2n−1 iterations of Newton’s method are needed to obtain the first bit of Xn.
The proof goes as follows. We consider a decomposed version of Newton’s method, in
which for a given k we perform k iterations of the normal method on the first equation,
yielding a lower bound a(k)

1 of the first component of the least fixed-point. Then we
perform k iterations on the second equation after setting X1 := a(k)

1 ; by monotonicity,
this yields a lower bound a(k)

2 of the second component. Repeating this procedure we
finally obtain a lower bound a(k)

n of the n-th component. It is easy to see that ν (k)
i ≤
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a(k)
i holds, i.e, the decomposed method converges at least as fast as the method that
performs k iterations on the whole system. Now, let δ (k)

i = 1− a(k)
i be the error of

the decomposed method. A simple analysis reveals that δ (k)
i+1 ≥

√
δ (k)
i holds for every

1 ≤ i < n. By Fact 5 we have δ (2n−1)
1 = (1/2)2n−1, and so we get δ (2n−1)

n ≥ 1/2, i.e.,
ν(2n−1)
n ≤ 1/2.

So, intuitively, the problem of non-strongly connected systems is that the error gets
“amplified” when we move up the graph of strongly connected components.
For MSPs that are not strongly connected, Newton’s method still has linear conver-

gence order, but a worse rate [8]:

Theorem 4. Let f (X) be a clean (see below) MSP such that µ f is finite. There is a
number t f such that for every i≥ 0:

β (t f + i · (n+1) ·2n)≥ i .

In particular, the Newton sequence has linear convergence order.

In order to make sure that Newton’s method stays well-defined (i.e. that the matrix
inverses exist) Theorem 4 assumes that the MSP is clean, i.e., (µ f ) i > 0 for all i.
An MSP can easily be made clean in linear time by identifying and removing the
components with (µ f )i = 0: (µ f )i = 0 holds iff (κ (n))i = 0.
The rate in Theorem 4 is worse than in the strongly connected case: Newton’s

method needs (in the worst case) about 2n iterations per bit, instead of only 1 as in
the strongly connected case. This worst case is attained by the MSPE in Equation (5)
above, so the exponential rate in Theorem 4 cannot be avoided. Unfortunately, we do
not have an upper bound on the threshold t f in this general case.

5.3 min-max-MSPEs

Theorem 4 forms the basis for the convergence analysis of a recent extension [6] of
Newton’s method to min-max-MSPEs, i.e., MSPEs where minimum and maximum
are allowed as additional operators. Here is an example of a min-max-MSPE:

X = max{0.7Y +0.3 , 0.6XY +0.4}
Y = min{X , 0.8Y 2+0.2}

Such systems arise, for instance, in extinction games. Those games add two adversarial
players to Galton’s setting from the beginning: There are n species, each of which is
controlled by one of two players, the terminator and the rescuer. Each player can
apply actions to the individuals controlled by her; an action transforms an individual
(probabilistically) into zero or more individuals. The terminator tries to extinguish all
individuals, whereas the rescuer tries to save them. Natural questions are: What are
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optimal strategies2 for the terminator and the rescuer, and what is the probability of
extinction of all individuals, assuming that there is a single initial individual and the
players follow optimal strategies?
The MSPE above can be thought of as an equation system for the extinction prob-

abilities of two species X and Y . Species X is controlled by the terminator, whereas
Y is controlled by the rescuer. The terminator can apply one of two possible actions
to an X-individual: the first one kills the X-individual with probability 0.3, but with
probability 0.7 transforms it to a Y -individual; the second action kills the X-individual
with probability 0.4, but, with probability 0.6, keeps the X-individual and creates a
Y -individual. What can the rescuer do with a Y -individual? She can choose between
transforming it to an X-individual and a second action which kills the Y -individual
with probability 0.3 and adds another Y -individual with probability 0.7.
It turns out that the X-component (resp. Y -component) of the least solution of the

MSPE above equals the extinction probability assuming a single initial X-individual
(resp. Y -individual) if both the terminator and the rescuer follow optimal strategies.
Such systems also arise in the analysis of recursive simple stochastic games [14, 15].
In order to approximate the least solution of a min-max-MSPE, one could use

Kleene iteration. But, as we have seen before (Fact 4), Kleene iteration may converge
very slowly even without minimum and maximum. Therefore, in [6] we propose two
methods for approximating the least solution of a min-max-MSPE. Both are iterative
procedures based on Newton’s method.

– The first method linearizes each polynomial appearing in the system (possibly inside
a minimum or a maximum expression) by computing the “tangent” at the current
iterate. One obtains a min-max-MSP whose polynomials have degree at most 1. Its
least fixed-point can be computed exactly by a method from [18] that uses strategy
iteration and linear programming. The result is the next iterate.

– The second method linearizes each max-polynomial appearing in the system (pos-
sibly inside a minimum expression) by computing the “tangent” at the current iter-
ate. (A special “tie breaking” policy must be adhered to if the current iterate is at
the “edge” between two polynomials inside a maximum expression.) One obtains
a min-MSP whose polynomials have degree at most 1. Its least fixed-point can be
computed exactly by solving a single linear program. The result is the next iterate.

Both methods have at least linear convergence order [6]:

Theorem 5. Let f (X) be a min-max-MSP such that µ f is finite. There is a number t f
such that for every i≥ 0:

β (t f + i ·m · (n+1) ·2n)≥ i ,

where m is the number of possible strategies of the players. In particular, the two
extensions of Newton’s method have linear convergence order.

The first method converges somewhat faster whereas a single step of the second
method is cheaper. The second method also computes ε-optimal strategies for the
2 A strategy tells a player which action to apply to the individuals controlled by her.
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terminator, i.e., strategies that achieve as extinction probabilities at least the current
iterate.
We have used the second method to approximate the extinction probabilities as-

suming perfect strategies: A population that starts with a single X-individual (resp.
Y -individual) becomes extinct with probability 0.475 (resp. 0.250). We have obtained
those numbers after performing 3 iterations and then rounding, but in this case those
numbers are already the exact solution. The optimal strategy for the terminator is to
apply the first action to the X-individuals. The rescuer should choose her second action
for her Y -individuals.

6 Conclusions

We have shown that Newton’s method is not only efficient but also remarkably robust
when applied to monotone systems of fixed-point equations (MSPEs). Unlike for arbi-
trary systems, the method always converges when started at 0. For strongly connected
systems the method always reaches a point, the threshold, after which it is guaranteed
to gain at least one bit of accuracy per iteration (in favourable cases it doubles the num-
ber per iteration). In fewer words, after crossing the threshold the method has linear
convergence order with rate 1. If the system is not strongly connected the method still
has linear convergence, but the rate deteriorates.
The threshold of the strongly connected case is inversely proportional to the log-

arithm of the minimal component of the least fixed-point. Therefore, if some kind
of analysis can establish that the least fixed-point is not very small, then the method
quickly enters the one-bit-per-iteration zone. We still do not have any threshold for the
general, non-strongly-connected case.
Newton’s method still works for MSPEs that are not strongly connected. We have

shown that the convergence order is still linear, albeit the rate may deteriorate expo-
nentially with the dimension.
Newton’s method can be extended to min-max-MSPEs, preserving its linear con-

vergence order.
MSPEs appear in a large number of stochastic systems. In [1] we have designed a

formal system for establishing the reputation of the individuals of a social network.
The reputation of the individuals (defined as the stationary distribution of a Markov
chain) is the least solution of a MSPE. These case studies lead to very large MSPEs,
and computing their least solutions is an exciting challenge for future research.
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