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2 LIX, UMR 7161, Project INRIA TypiCal, École Polytechnique, 91128 Palaiseau, France,
jouannaud,strub@lix.polytechnique.fr

Abstract. We investigate here a new version of the Calculus of Inductive Construc-
tions (CIC) on which the proof assistant Coq is based: the Calculus of Congruent
Inductive Constructions, which truly extends CIC by building in arbitrary first-order
decision procedures: deduction is still in charge of the CIC kernel, while computa-
tion is outsourced to dedicated first-order decision procedures that can be taken from
the shelves provided they deliver a proof certificate. The soundness of the whole sys-
tem becomes an incremental property following from the soundness of the certificate
checkers and that of the kernel. A detailed example shows that the resulting style of
proofs becomes closer to that of the working mathematician.

1 Introduction

Proof assistants based on the Curry-Howard isomorphism such as Coq [9] allow to
build the proof of a given proposition by applying appropriate proof tactics available
from existing libraries or that can otherwise be developed for achieving a specific task.
These tactics generate a proof term that can be checked with respect to the rules of
logic. The proof-checker, also called the kernel of the proof assistant, implements the
deduction rules of the logic on top of a term manipulation layer. In this model, the
mathematical correctness of a proof development relies entirely on the kernel. Trusting
the kernel is therefore vital.
The (intuitionist) logic on which Coq is based is the Calculus of Constructions (CC)

of Coquand and Huet [10], an impredicative type theory incorporating polymorphism,
dependent types and type constructors. Unlike logics without dependent types, CC
enjoys a powerful type-checking rule, called conversion, which incorporates compu-
tations within deductions, making decidability of type-checking a non-trivial property
of the calculus.
In CC, computation reduces to (pure) functional evaluation in the underlying

lambda calculus. The notion of computation is richer in the Calculus of Inductive
Constructions of Coquand and Paulin (CIC), obtained from CC by adding inductive
types and the corresponding rules for higher-order primitive recursion [11]. The re-
cent versions of Coq are based on a slight generalization of this calculus [15]. Still,
such a simple function as reverse of a dependent list cannot be defined in CIC as
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one would expect, because (reverse l :: l ′) and (reverse l′) :: (reverse l), assuming ::
is list concatenation, have non-convertible types list(n+m) and list(m+n), assuming
(reverse l) has for type the type of its argument l. This is so because the usual definition
of + by induction on one of its arguments does not reduce the proof of m+n= n+m
to a computation.
We do believe that scaling up the proof development process requires being able to

mimic the mathematician when replacing the proof of a proposition P by the proof of
an equivalent proposition P’ obtained from P thanks to possibly complex calculations
in which easy steps are hidden away. It is our program to make this view a reality.
A way to incorporate decision procedures to Coq is by developing a tactic and

then use a reflexion technique to omit checking the proof term being built by proving
the decision procedure itself. But the soundness of the entire mechanism cannot be
guaranteed in general [12]. Further, this does not answer the question of hiding easy
steps away.
A first attempt towards our goal is the Calculus of Algebraic Constructions (CAC),

obtained by adding to CC user-defined computations as rewrite rules [5, 3]. Although
conceptually quite powerful since CAC captures CIC [4], this paradigm does not yet
fulfill all needs. In particular, the user needs to hide away the easy steps by himself,
that is by giving the necessary rewrite rules and by verifying that they satisfy the as-
sumptions of the general schema [5, 3].
The proof assistant PVS uses a potentially stronger paradigm than Coq by com-

bining its deduction mechanism with a notion of computation based on the powerful
Shostak’s method for combining decision procedures [20], a framework dubbed little
proof engines by Shankar [19]. Indeed, the little engines of proof hide away the easy
computational steps, without any user assistance. Unfortunately, proof-checking is not
decidable in PVS. Further, since the little engines of proofs involve complex coding,
as well as Shostak’s algorithm itself, one can only believe a PVS proof, while one can
check and trust a Coq proof.
Two steps in the direction of integrating decision procedures into CC are Stehr’s

Open Calculus of Constructions (OCC) [21] and Oury’s Extensional Calculus of Con-
structions (ECC) [17]. Implemented in Maude, OCC allows for the use of an arbitrary
equational theory in conversion. ECC can be seen as a particular case of OCC in which
all provable equalities can be used in conversion,which can also be achieved by adding
the extensionality and Streicher’s axioms to CC [22], hence the name of this calculus.
Unfortunately, strong normalization and decidability of type checking are then lost,
which shows that we should seek for more restrictive extensions.
In a preliminary work, we designed a new, quite restrictive framework, the Calculus

of Congruent Constructions (CCC), which incorporates the congruence closure algo-
rithm in CC’s conversion [7], while preserving the good properties of CC, including
the decidability of type checking. In [6], we have described CCN, in which the deci-
sion procedurewas Presburger arithmetic and strong elimination ruled out. The present
work is a continuation of the latter.
Theoretical contribution. Our main theoretical contribution is the definition and

the meta-theoretical investigation of the Calculus of Congruent Inductive Construc-
tions (CCIC), which incorporates arbitrary first-order theories for which entailment
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is decidable into deductions via an abstract conversion rule of the calculus. A major
technical innovation of this work lies in the computation mechanism: goals are sent
to the decision procedure together with the set of user hypotheses available from the
current context. Our main result shows that this extension of CIC does not compro-
mise its properties: confluence, strong normalization, coherence and decidability of
proof-checking are all preserved.
Unlike previous calculi, the difficulty with CCIC is not strong normalization, for

which we have reused the strong normalization proof of CAC [3]. A major diffi-
culty was a traditional step towards subject-reduction: compatibility of conversionwith
products. Decidability of type checking required restricting conversions below recur-
sors [23].
Practical contribution. We give several examples showing the usefulness of this

new calculus, in particular for using dependent types such as dependent lists, which has
been an important weakness of Coq until now. Further studies are needed to explore
other potential applications, to match inductive definition-by-case modulo theories of
constructors-destructors, another very different weakness of Coq. A detailed example
shows that the resulting style of proofs becomes closer to that of the working mathe-
matician.
Methodological contribution. The safety of proof assistants is based on their ker-

nel. In the early days of Coq, the safety of its kernel relied on its small size and its clear
structure reflecting the inference rules of the intuitionist type theory, CC, on which it
was based. The slogan was that of a readable kernel. Moving later to CIC allowed to
ease the specification tasks, making the system very popular among proof developers,
but resulted in a more complex kernel that can now hardly be read except by a few
specialists. The slogan changed to a provable kernel, and indeed one version of it was
once provedwith an earlier version (using strong normalization as an assumption), and
a new safe kernel extracted from that proof.
Of course, there has been many changes in the kernel since then, and its correctness

proof was not maintained. This is a first weakness with the readable kernel paradigm:
it does not resist changes. There is a second which relates directly to CCIC: there is
no guarantee that a decision procedure taken from the shelf implements correctly the
complex mathematical theorem on which it is based, since carrying out such a proof
may require an entire PhD work. Therefore, these procedures cannot be part of the
kernel.
Our solution to these problems is a new shift of paradigm to that of an incremental

kernel. The calculus on which a proof assistant is based should come in two parts:
a stable calculus implementing deduction, CIC in our case, which should satisfy the
readable or provable kernel paradigm; a collection of independent decision procedures
implementing computations, that produce checkable proof certificates. The certificate
checker should of course itself satisfy the readable or provable code paradigm. Note
that a Coq proof is a particular case of a checkable certificate.
This paradigm has many advantages. First, it allows for a modular, cooperative

development of the system, by separating the development of the kernel from that
of the decision procedures. Second, it allows for an unsafe mode in case a decision
procedure is used that does not have a certificate generator yet. Third, it allows to



352 F. Blanqui, J.-P. Jouannaud, P.-Y. Strub

better trace errors in case the system rejects a proof, by using decision procedures
that output explanations when they fail. Last, it allows the user to use any decision
procedure she needs by simply hooking it to the system, possibly in unsafe mode.
This incremental schema is quite flexible, assuming that decision procedures come

one by one. However, even so, they are not independent, they must be combined. Com-
bining first-order decision procedures is not a new problem, it was considered in the
early 80’s by Nelson and Oppen on the one hand, by Shostak on the other hand, and has
generated much work since then. There are several possibilities to build in this mecha-
nism: in the kernel, via a certificate generator and checker again, or by reflection. This
design decision has not been made yet.

2 Congruent Inductive Constructions

The Calculus of Congruent Inductive Constructions (CCIC) is an extension of CIC
which embeds in its conversion rule the validity entailment of a fixed first order theory.
First, we recall the basics of CIC before to introduce parametric multi-sorted algebras
and then embed these first-order algebras into CIC. We are then able to define our cal-
culus relative to a specific congruence that is defined last. For simplicity, we will only
consider here the particular case of parametric lists and that of the natural numbers
equipped with Presburger arithmetic. This simple case allows us to build lists of nat-
ural numbers, as well as lists of lists of natural numbers, and so on. It indeed has the
complexity of the whole calculus, which is not at all the case when natural numbers
only are considered as in [6].

2.1 Calculus of Inductive Constructions

Terms.We start our presentation by first describing the terms of CIC.
CIC uses two sorts: ⋆ (or Prop, or object level universe), ! (or Type, or predicate

level universe) and△. We denote {⋆,!,△}, the set of CIC sorts, byS .
Following the presentation of Pure Type Systems (PTS) [14], we use two classes

of variables: X ⋆ and X ! are countably infinite sets of term variables and predicate
variables such thatX ⋆ andX ! are disjoint. We writeX forX ⋆∪X !.
We shall use u for a list (u1, . . . ,un), s for a sort in S , x,y, . . . for variables inX ⋆,

X ,Y, . . . for variables inX !.

Definition 1 (Pseudo-terms). The algebraL of pseudo-terms of CIC is defined by:
t,u,T,U, . . . := s ∈S | x ∈X | ∀(x : T ). t | λ [x : T ]. t

| t u | Ind(X : t){Ti} | t [n] | Elim(t : T [ui]→U){wj}

The notion of free variables is as usual - the binders being λ , ∀ and Ind (in Ind(X :
t){Ti}, X is bound in the Ti’s). We write FV(t) for the set of free variables of t. We say
that t is closed if FV(t) = /0. A variable x freely occurs in t if x ∈ FV(t).
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Inductive types. The novelty of CIC was to introduce inductive types, denoted by
I = Ind(X : T ){Ci} where the Ci’s describe the types of the constructors of I, and T
the type (or arity) of I which must be of the form ∀(x i : Ti).⋆. The k-th constructor of
the inductive type I, of typeCk{X "→ I}, will be denoted by I [k].
As an easy first example, we define natural numbers: nat := Ind(X : ⋆){X ,X → X}.

We shall use 0 and S as constructors for natural numbers, of respective types nat and
nat→ nat, obtained by replacingX by nat in the above two expressions X and X→ X .
Elimination rules for nat are as follows:

ElimN(0,Q){v0,vS}
ι−→ v0

ElimN(Sx,Q){v0,vS}
ι−→ vS x(ElimN(x,Q){v0,vS}) with Q : nat→ s, ∈S .

Similarly, we now define parametric lists: list := λ [T : ⋆]. Ind(X : ⋆){X ,T → X → X}. We
shall use nil and cons as constructors for parametrized lists, of respective types
∀(T : ⋆). list(T ) and ∀(T : ⋆).T → list(T )→ list(T ). Elimination rules for list are:

ElimL(nil,Q){vnil,vcons}
ι−→ vnil

ElimL(consx l,Q){vnil ,vcons}
ι−→ vcons x l ElimL(l,Q){vnil,vcons})

Finally, we define dependent words over an alphabet A:

word = Ind(X : nat→ ⋆){X 0,A→ X (S0),∀(y, z : nat).X y→ X z→ X(y+ z)}

We shall use ε , char and app for its three constructors, of respective types word0,
A→word(S0), and ∀(n,m : nat).wordn→ wordm→word(n+m) obtained as pre-
viously by replacing X by word in the three expressions X 0,A→ X (S0), and
∀(y,z : nat).X y→ X z→ X(y+ z). Elimination rules for dependent words are:

ElimW(ε ,Q){vε ,vchar,vapp}
ι−→ vε

ElimW(charx,Q){vε ,vchar,vapp}
ι−→ vchar x

ElimW(appnml l ′,Q){vε ,vchar,vapp}
ι−→ vapp nml l ′ (ElimW(l,Q){vε ,vchar,vapp})

(ElimW(l ′,Q){vε ,vchar,vapp})

Definitions by induction. We can now define functions by induction over natural
numbers, lists or words. Since using the CIC syntax is a bit painful, we give only a
quite simple example defining append (written @) for lists of natural numbers, of type
∀(T : ⋆). list(T )→ list(T )→ list(T ):

@ := λ [l : listnat][l ′ : listnat].ElimL(l,Q)

⎧
⎨

⎩l
′,

λ [x : nat][l′′ : listnat].
λ [l1 : listnat][l2 : listnat].

λ [L :Ql1 l2].consxL

⎫
⎬

⎭

Strong and Weak reductions. CIC distinguishes strong ι-elimination when the
typeQ of terms constructed by induction is at predicate level, fromweak ι-elimination
when Q is at object level. Strong elimination is restricted to small inductive types to
ensure logical consistency [24].
Typing judgments. A typing environment Γ is a sequence of pairs xi : Ti made of a

variable xi and a term Ti (we say that Γ binds xi to the type Ti), such that Γ does not
bind a variable twice. The typing judgments are classically written Γ ⊢ t : T , meaning
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that the well formed term t is a proof of the proposition T (has type T ) under the well
formed environment Γ . xΓ will denote the type associated to x in Γ , and we write
dom(Γ ) for the domain of Γ as well.
The typing rules of CIC given in 1 are made of the typing rules for CC and the

typing rules for inductive types, given for the particular case of nat and list.

[AX-1]
⊢ ⋆ :!

[AX-2]
⊢! :△

Γ ⊢ T : sT Γ , [x : T ] ⊢U : sU
[PROD]

Γ ⊢ ∀(x : T ).U : sU

Γ ⊢ ∀(x : T ).U : s Γ , [x : T ] ⊢ u :U
[ABS]

Γ ⊢ λ [x : T ].u : ∀(x : T ).U

Γ ⊢ t : ∀(x :U).V Γ ⊢ u :U
[APP]

Γ ⊢ t u :V{x $→ u}

Γ ⊢V : s Γ ⊢ t : T s ∈ {⋆,!}
x ∈X s−dom(Γ ) [WEAK]

Γ , [x :V ] ⊢ t : T

x ∈ dom(Γ )∩X sx Γ ⊢ xΓ : sx
[VAR]

Γ ⊢ x : xΓ

Γ ⊢ t : T Γ ⊢ T ′ : s′ T βι←→∗ T ′ [CONV]
Γ ⊢ t : T ′

⊢ τ f : s ∈ {⋆,!}
[SYMB]

⊢ f : τ f

Γ ⊢ Q : nat→ s ∈ {⋆,!}
Γ ⊢ n : nat Γ ⊢ v0 : Q0

Γ ⊢ vS : ∀(p : nat).Q p→ Q(S p)
[ELIM]

ElimN(n,Q){v0,vS} :Qn

Γ ⊢ T : ⋆ Γ ⊢ p : nat Γ ⊢ l : listT p
Γ ⊢Q : ∀(n : nat). listT n→ s ∈ {⋆,!}

Γ ⊢ vnil :Q0(nilT )

Γ ⊢ vcons :
∀(x : T )(n : nat)(l : listT n).
Qnl→ Q(Sn)(consT xnl)

[ELIM]
ElimL(l,Q){v0,vS} : Q pl

Fig. 1 CIC typing rules for nat and list

We did not give the general typing elimination rule for arbitrary inductive types,
which is quite complicated. Instead, we gave the elimination rules obtained for our
three inductive types nat, list and word. We refer to [18, 24] for the general case, and
for the precise typing rule of ElimW.

2.2 Parametric sorted algebras

Parametric sorted signature. Order-sorted algebras were introduced as a formal
framework for the OBJ language in [13], before to be generalized asmembership equa-
tional logic in [8]. We use here a polymorphic version of a restriction of the latter, by
assuming given a signature (Λ ,Σ), Λ for the sort constructors, and Σ for the function
symbols made of a set of constructors for each sort constructor, and of a set of defined
symbols. We shall use the notation f : ∀α.σ1× · · ·×σn→ τ for symbol declarations.
As an example, we describe natural numbers and parametric (non-dependent) list using
an OBJ-like syntax. We rule out here partiality, as introduced in practice by destructor
symbols, for sake of clarity.
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We shall use V = {α,β , . . .} for the set of sort variables, andT (Σ ,V ) = {σ ,τ, . . .}
for the set of sort expressions.

sort nat : ∗
sort list : ∗→ ∗
svar α : ∗
cons 0 : nat

cons S : nat→ nat
fun +̇ : nat×nat→ nat
cons nil : list(α)
cons cons : α× list(α)→ list(α)
fun @ : list(α)× list(α)→ list(α)

Definition 2 (Terms). For any sort σ , let X σ be a countably infinite set of variables
of sort σ , s.t. all the X σ ’s are pairwise disjoint. Let X =

⋃
σ X σ . For any x ∈X ,

we say that x has sort σ if x ∈X σ . For any sort σ , the set Tσ (Σ ,X ) of terms of sorts
σ with variablesX is the smallest set s.t.:

1. if x ∈X τ , then x ∈ Tτ(Σ),
2. if t1, · · · , tn ∈Tσ1ξ (Σ ,X )× · · ·×Tσ2ξ (Σ ,X ) where f : ∀α.σ1× · · ·×σn→ τ and

ξ is a sort substitution, then f (t1, . . . ,tn) ∈ Tτξ (Σ ,X ).

Let T (Σ ,X ) =
⋃

σ (Tσ (Σ ,X )). A term t has sort σ if t ∈ Tσ (Σ ,X ).

Note that the sets X σ play the role of a typing context.

Example 1. Assuming that x is a variable of sort nat, then 0 and 0+ x are of sort nat,
while nil is of sort list(α), list(nat), list(list(nat)), etc.

Definition 3 (Equations). Equations t =σ u are pairs of terms of the same sort σ .

Example 2. Assuming x of sort nat and l of sort list(list((nat)), x+ 0 =nat x is an
equation of sort nat and cons(x,nil) = list(nat) car(l) is an equation of sort list(nat).

We can therefore as usual build parametrized algebras for list, algebras for nat
and therefore get algebras for nat, list(nat), etc. Satisfaction of an equation in these
algebras is defined as usual. In practice, type superscripts may be omitted when they
can be infered from the context.

2.3 Embedding parametric algebras in CIC

Our purpose here is to embed parametric multi-sorted algebra into CIC. As a result,
two different, but related kinds of symbols will coexist, in CIC and in the embedded
algebraic sub-world. We shall distinguish them by underlying symbols in CIC.
The first step of the translation maps, respectively sort constructors and constructor

symbols to CIC inductive types and constructors.We start with natural numbers and its
sort constructor nat. Constructor symbols of nat are simply all the constructors sym-
bols whose codomain is nat, i.e. here 0 and S. We thus define nat (the CIC inductive
type attached to nat) as an inductive type with two constructor types (one for 0, and
one for S): nat := Ind(X : ⋆){C1(X),C2(X)}.
The constructor types of nat are simply the arities of 0 and S where nat is replaced

with the constructor type variable: C1(X) = X and C2(X) = X → X . As expected, we
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obtain here the standard inductive definition of natural numbers given in Section 2.1:
Ind(X : ⋆){X ,X → X}. The translation 0 of 0 (resp. S of S) is then simply nat [1] (resp.
nat[2]).
Translating list is not very different. Being of arity 1, with two associated construc-

tor symbols (nil and cons), list is mapped to the already seen parametrized inductive
type list = λ [A : T ]. Ind(⋆){X ,A→ X → X}. Translation of constructors is done the
same way. We just need to care about curryfication of symbols, and to replace sort
variables with CIC type variables.
Finally, defined symbols are mapped to CIC defined symbols, after translating their

type appropriately.

2.4 Building in a first-order theory

We now start describing our new calculus CCIC.
Terms. CCIC uses the same set of sortsS = {⋆,!,△} and sets of variablesX =

X ⋆∪X ! of CIC. For any sort σ ∈Λ , letXσ ⊆X ⋆ a infinite set of variables of sort
σ s.t. {Xσ}σ is a family of pairwise disjoint sets. We also assume that X −

⋃
σ Xσ

is infinite.
LetA = {r,u} a set of two constants, called annotations, totally ordered by u≺A r,

where r stands for restricted and u for unrestricted. We use a for an arbitrary annota-
tion. The role of annotations will be explained later.

Definition 4 (Pseudo-terms of CCIC). Given a parametric sorted signature (Λ ,Σ),
the algebraL of pseudo-terms of CCIC is defined as:

t,u,T,U, . . . := s ∈S | x ∈X | ∀(x :a T ). t | λ [x :a T ]. t | t u | f ∈ Σ | σ ∈Λ
| =̇ | EqT (t) | Ind(X : t){Ti} | t [n] | Elim(t : T [ui]→U){wj}

In order to make definitions more convenient, we assume in the following that Λ
contains the symbols =̇,nat and list, and that Σ contains the symbols 0,S and Eq.
Compared with CIC, the differences are:

– the internalization of the first-order symbols,
– the internalization of the equality predicate:
- t =̇T u denotes the equality of the two terms (of type T ) t and u,
- EqT (t) represents the reflexivity proof of t =̇T t.

– annotations in products and abstractions are used to control the formation of appli-
cations as it can be seen from the new [APP] rule given at Figure 2.

Notation 2.1 When x is not free in t, ∀(x :a T ). t is written T →a t. The default anno-
tation, when not specified in a product or abstraction, is the unrestricted one.

As usual, there is a layered set of syntactic classes forL :

Definition 5 (Syntactic classes). The pairwise disjoint syntactic classes of CCIC
called objects (O), predicates (P), kinds (K ), kinds predicates (M ), and △ are de-
fined as usual:
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− O ::= X ⋆ | f ∈ Σ | O O | O P | λ [x⋆ :a P].O | λ [x! :a K ].O | Elim(O :P [O]→ O){O}
−P ::= X ! | σ ∈Λ | P O | P P | λ [x⋆ :a P].P | λ [x! :a K ].P

| Elim(O :P [O]→P){P} | ∀(x⋆ :a P).P | ∀(x! :a K ).P
−K ::= ⋆ | K O | K P | λ [x⋆ :a P].K | λ [x! :a K ].K | ∀(x⋆ :a P).K | ∀(x! :a K ).K
−M ::=! | ∀(x⋆ :a P).M | ∀(x! :a K ).M
− △ ::=△
This enumeration defines a successor function +1 on classes (O + 1 = P , P + 1 = K ,

K +1= M ,M +1=△).We also defineClass(t)= D if t ∈D andD ∈ {O,P,K ,M ,△}.

From now on, we only consider well-constructed terms (i.e. terms whose class is
not ⊥) and well-constructed substitution (i.e. substitutions s.t. Class(x) = Class(xθ )
for any x in its domain). It is easy to check that if t is a well-constructed term and θ
a well-constructed substitution, then Class(t) = Class(tθ ). It is also well-known that
β ι−→-reduction preserves term classes.

Definition 6 (Pseudo-contexts of CCIC). The typing environments of CIC are de-
fined as Γ ,∆ ::= [] |Γ , [x :a T ] s.t. a variable cannot be declared twice. We use dom(Γ )
for the domain of Γ and xΓ for the type associated to x in Γ .

The rules defining the CCIC typing judgment Γ ⊢ t : T are the same as for CIC
except the rules for application and conversion given at Figure 2.

Γ ⊢ t : ∀(x :a U).V Γ ⊢ u :U
if a= r andU β−→∗ t1 =̇T t2 with t1, t2 ∈ O

then t1∼Γ t2 must hold [APP]
Γ ⊢ t u :V{x *→ u}

Γ ⊢ t : T Γ ⊢ T ′ : s′ T ∼Γ T ′
[CONV]

Γ ⊢ t : T ′

Fig. 2 CCIC modified typing rules

2.5 Conversion

We are now left with defining the conversion relation∼Γ , whose definition needs some
preparation, since:

– conversion is defined on CCIC terms, but the first-order decision procedures operate
on algebraic terms. We therefore need to translate CCIC terms into algebraic terms,
a process we call algebraisation.

– conversion will operate on weak terms only, a notion introduced in Section 2.5.
Non-weak terms will be converted with β ι-reduction only, to forbid lifting up in-
consistencies from the object level to the type level. This is crucial to avoid breaking
strong normalization, and therefore decidability of type-checking in presence of in-
consistent user’s assumptions.

Algebraisation. Our calculus has a complex notion of computation reflecting its
rich structure made of three ingredients: the typed lambda calculus, the inductive types
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with their recursors and the integration of the first order theoryT in its conversion. To
achieve this integration, goals are sent to the first order theory T together with a set
of proof hypotheses extracted from the current context.
Algebraisation is the first step of this extraction: it allows transforming a CCIC

term into its first-order counterpart. We illustrate this with an example, T being Pres-
burger’s arithmetic.
We begin by the simplest case, directly taken from CCN, the extraction of pure

algebraic, non parametric, equations. Suppose that the proof environment contains
equations of the form c=̇1+ d and d =̇2 with c and d variables of sort nat. What
is expected is that the set of hypotheses sent to the theory T contains the two well
formed T -formulas c = 1+ d and d = 2. This leads to a first definition of equations
extraction:

1. a term is algebraic if it is of the form 0, or St, or t + u, or x ∈ XN. The al-
gebraisation A (t) of an algebraic term is then defined by induction: A (0) = 0,
A (St) = S(A (t)),A (t+u) = A (t)+A (u) and A (xN) = xN,

2. a term is an extractable equation if it is of the form t =̇uwith t and u algebraic terms.
The extracted equation is thenA (t) = A (u).

The definition becomes harder for parametric signatures. The theory of lists gives
us a paradigmatic example. From the definition of embedding a polymorphic multi-
sorted algebra into CIC, we know that the symbol @ has ∀(T : ⋆). listT → listT → listT
for type. Thus, a fully applied, well formed term having the symbol @ at head posi-
tion must be of the form (@T l1 l2), T being the type of the elements of the lists l1
and l2. Algebraisation of such a term will erase all type parameters: in our example,
A (@T l1 l2) =@(A (l1),A (l2)).
Algebraisation of non-pure algebraic terms is done by abstracting non-algebraic

subterms with fresh variables. For example, algebraisation of 1+t with t non-algebraic
will lead to 1+ xnat where xnat is an abstraction variable of sort nat for t. Of course, if
the proof context contains two equations of the form c=̇1+ t and d =̇1+u with t and
u β ι-convertible, t and u should be abstracted by a unique variable so that c = d can
be deduced in T from c= 1+ ynat and d = 1+ ynat. The problem is harder for:

– parametric symbols: in (consT t (nilU))with t non algebraic, should t be abstracted
by a variable of sort nat or list(nat) ?

– ill-formed terms: should (consT 0(consT (nilU)(nilT ))) be abstracted as a list of
natural numbers or as a list of lists ?

Our solution is to postpone decisions: A (t) will be a function from Λ to the terms of
T s.t. A (t)(σ) is the algebraisation of t under the condition that t is a CCIC repre-
sentation of a first order term of sort σ .
We now give the formal definition ofA (·). We assume:
- a Λ -sorted family {Yσ}σ of pairwise disjoint countable infinite sets of variables

of sort σ . Let Y =
⋃

σ Yσ ;
- for any equivalence relation R and sort σ ∈ Λ , we assume a function π σ

R :
CCIC(X )→ Yσ s.t. πσ

R(t) = πσ
R(u) if and only if t R u (i.e. π σ

R(t) is the element
of Yσ representing the class of t moduloR).
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Definition 7 (Well applied term).A term is well applied if it is of the form f [Tα ]α∈α t1 · · · tn
with f : ∀α.σ1× · · ·×σn→ σ .

Example 3. Example of well applied terms are 0, St, or consT xl, T being the type
parameter here. Note that we do not require the term to be well formed.

In case of partial symbols, such as car for lists, this definition must be changed
slightly by adding a new argument, the proof that the input satisfies the appropriate
guard, here that it is not nil.

Definition 8 (Algebraisation). The algebraisation of t ∈ CCIC modulo an equiva-
lence relation R is the functionA R(t) :Λ → T (X ⋆∪Y ) defined by:

A R(xσ )(σ) = xσ
A R( f T [ui]i∈n)(τξ ) = f (A R(u1)(σ1ξ ), . . . ,A R(un)(σnξ ))

A R(t)(τ) = πτ
R(t) otherwise

where f : ∀α .σ1× · · ·σn→ σ , f T [ui]i∈n is well applied, and ξ is a Λ -substitution.
For any relation R, A R is defined as A R where R is the smallest equivalence

relation containingR. We call σ -alien (or alienwhen the context is clear) a subterm of t
abstracted by a variable inYσ , and say that t is algebraicw.r.t.σ if contains noσ -alien.
We denote byA lgσ the set of algebraic terms w.r.t. σ , and byA lg=

⋃
σ∈Λ A lgσ the

set of algebraic terms.

Example 4. Let t ≡ consT 0(consU (nilV )(nilU)), R be a relation on CCIC terms,
σ = list(nat), and xnat,ylist,znat,xα and yα be abstraction variables. Then:

A R(t)(σ ) = cons(A R(0)(nat),A R(consU(nilV )(nilU))(σ ))
= cons(0,cons(A R(nilV )(nat),A R(nilU)(σ ))) = cons(0,cons(xnat,nil))

A R(t)(list(σ )) = cons(A R(0)(σ ),A R(consU(nilV )(nilU))(list(σ )))
= cons(ylist,cons(A R(nilV )(σ ),A R(nilU)(list(σ )))) = cons(ylist,cons(nil,nil))

A R(t)(list(α)) = cons(xα ,cons(yα ,nil)) andA R(t)(nat) = znat.
It is clear from the above example that the algebraisation of a term depends on the

expected sort of the result: when abstracting the (heterogeneous and ill-formed) list
0 :: nil :: nil as a list of lists, 0 is seen as an alien which must be abstracted. When this
list is abstracted as a list of natural numbers or as a polymorphic list, 0 is considered
algebraic and the first occurrence of nil as an alien to be abstracted. Finally, if the list
is algebraised as a natural number, it is abstracted by a variable.

Weak terms.We first distinguish a class of terms called weak. This class of terms
will play an important role in the following as they restrict the interaction between the
conversion at object level and the strong ι-reduction.
An example of non weak term is

t = λ [x : nat].ElimS (x : nat []→Q){nat,λ [x : nat][T : Qx].nat→ nat}

Such a term is problematic in the sense that when applied to convertible terms, it can
β ι-reduce to type-level terms that are not β ι-convertible. Suppose that the conversion
relation is canonically extended to CCIC. Assume a typing environmentΓ s.t. 0∼Γ S0,
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and hence, by congruence, t 0∼Γ t (S0). Now, it is easy to check that t 0
β ι−→∗nat and

t (S0) β ι−→∗(nat→ nat). Strong normalization of β -reduction is then broken by encod-
ing the term ω = λ [x : nat].xx.
In contrast, weak terms lift no inconsistencies from object level to a higher level:

Definition 9 (Weak terms). A term is weak if it contains no i) applied type-level vari-
able, and ii) term of the form Elim(t : I [u]→Q){ f} with t open.

Extractable terms. From now on, let O + be an arbitrary set of CCIC terms. This
set will be used in the conversion definition to restrict the set of extractable equations
of a given environment: only equation of the form t =̇u with t and u in O + will be
considered.
At the moment, we only require O + to be a subset of O . Note that taking O+ = O

does not compromise the standard calculus properties (subject reduction, type unic-
ity, strong normalization of β ι-reduction, . . .) but the decidability. E.g., if T is the
Presburger arithmetic, allowing the extraction of

λ [x :a nat]. f x=̇λ [x :a nat]. f (x +̇2)

would require - for checking conversion - to decide any statement of the form

T ! (∀x. f (x) = f (x+2))→ t = u,

which is well known to be impossible.
Conversion relation.We have now all necessary ingredients to define our conver-

sion relation ∼Γ :

Definition 10 (Conversion relation).Rules of Figure 3 define a family {∼Γ } of CCIC
binary relations indexed by a (non-necessarily well-formed) context Γ .

Note that the rule [DED] performing deductions in the first order theory, here Pres-
burger arithmetic, outputs a certificate [ , , ] made of the environment and the two
terms to be proved equivalent under this environment, each time it is called. While this
certificate must depend on these three data, it may of course carry additional informa-
tion depending on the considered first-order theory.
The main differences with the calculus CCN defined in [6] are the following:

– The [APP] rule has been split into two rules: [APPS ] and [APPW ]. Conversion for
strong terms is restricted to β ι-conversion.

– Conversion for the first argument of an Elim is restricted to β ι-conversion.
– The rules for transitivity and symmetry have been removed, which eases the proofs,
notably that the deduction part of the conversion relation works at object level only.
We prove later that the conversion relation is transitive and symmetric on well
formed terms, thus recovering type unicity.

– The rules for β ι-conversion perform one reduction step only, which also eases
proofs. Therefore u β ι←→∗ v should be understood as ∃w s.t. u

β ι−→w and v β ι−→w.
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[REFL]
t∼Γ t

[x :r T ] ∈ Γ T βι−→∗ t =̇u t,u ∈ O+
[EQ]

t∼Γ u

T ∼Γ U t∼Γ ,[x:aT ] u
[LAM]

λ [x :a T ]. t∼Γ λ [x :a U ].u

T ∼Γ U t∼Γ ,[x:aT ] u
[PROD]

∀(x :a T ). t∼Γ ∀(x :a U).u

t βι−→ t ′ t ′ ∼Γ u [β ι -LEFT]
t∼Γ u

t, t ′, f , f ′ are weak
t βι←→∗ t ′ I∼Γ I′ Q∼Γ Q′ v∼Γ v′ f ∼Γ f ′

Elim(t : I [v]→ Q){ f}∼Γ Elim(t ′ : I′ [v′]→ Q′){ f ′}

u βι−→u′ t∼Γ u′ [β ι -RIGHT]
t∼Γ u

t1∼Γ u1 t2∼Γ u2 ti,ui are weak
[APPW ]

t1 t2∼Γ u1 u2

E !A ∼Γ (t)(τ) = A ∼Γ (u)(τ) t,u ∈ O+

E = {A ∼Γ (w1)(σ ) = A ∼Γ (w2)(σ )
| w1∼Γ w2,σ ∈Λ ,w1,w2 ∈ O+}

[DED]
t∼Γ u [Γ , t,u]

Fig. 3 CCIC conversion relation

2.6 Decidability of type-checking

CCIC enjoys all needed meta-theoretical properties (strong normalization, confluence,
subject reduction), and therefore consistency follows:

Theorem 1. There is no proof of ∀(x : ⋆).x in the empty environment.

All proofs are similar to those made for PTSs with the same succession of meta-
theoretical lemmas, but need more preparation. This is in particular the case with the
substitution lemma which is much harder than usual.
As said, type-checking in a dependent type theory is non-trivial, since the rule

[CONV] is not syntax-oriented. The classical solution to this problem is to eliminate
[CONV] and replace [APP] by the following rule.The proof is not difficult.

Γ ⊢ t : ∀(x :a U).V Γ ⊢ u :U ′ U∼Γ U ′

if a= r andU β−→∗ t1 =̇T t2 with t1, t2 ∈ Othen t1∼Γ t2 must hold [APP]
Γ ⊢ t u :V{x *→ u}

Decidability of type-checking in CCIC therefore reduces to decidability of ∼Γ , the
environment Γ being arbitrary, possibly containing ill-formed terms or even being in-
consistent. To show that ∼Γ is decidable, we proceed as previously, by modifying the
definition in order to make it syntax-oriented: we show that two arbitrary terms are
convertible iff their β ι-normal forms are convertible by the syntax-orientedweak con-
vertibility relation≈Γ given at Figure 4, in which, to any environmentΓ , we associate
the set Eq(Γ ) = {t = u | [x :u T ] ∈ Γ ,xΓ −→∗ t =̇u, t,u ∈A }.
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Lemma 1. Given Γ an environment and t,u two terms, t∼Γ u iff t ↓β ι ≈Γ u ↓β ι .

This is the main technical result of the decidability proof, which proceeds by
induction on the definition of ∼Γ . Note that the numerous conditions of the form
T ,Eq(Γ ) ̸! 0 = 1 in the rules defining ≈Γ are required to make them mutually ex-
clusive.

[REFL-⋆]
⋆≈Γ ⋆

[REFL-"]
"≈Γ "

x ∈X T ,Eq(Γ ) ̸! 0= 1 or x ̸∈X ⋆

[REFL-X ]
x≈Γ x

t,u ∈O T ,Eq(Γ ) ! 0= 1
[UNSAT]

t≈Γ u

T ≈Γ U t≈Γ ,[x:aT ] u
T ,Eq(Γ ) ̸! 0= 1 or

λ [x :a T ]. t and λ [x :a U ].u not in O
[LAM]

λ [x :a T ]. t≈Γ λ [x :a U ].u

T ≈Γ U t≈Γ ,[x:aT ] u
[PROD]

∀(x :a T ). t≈Γ ∀(x :a U).u

t = t ′ I≈Γ I′ Q≈Γ Q′ v≈Γ v′ f ≈Γ f ′

t, t ′, f , f ′ are weakT ,Eq(Γ ) ̸! 0= 1 or
Elim(t, . . .){. . .} and Elim(t ′, . . .){· · ·} not in O

[W ]
Elim(t : I [v]→ Q){ f}≈Γ Elim(t ′ : I′ [v′]→ Q′){ f ′}

t1 ≡ u1 t2 ≡ u2
T ,Eq(Γ ) ̸! 0= 1 or
t1 t2 and u1 u2 not in O

t1 t2 or/and u1 u2 is not weak [APPS ]
t1 t2≈Γ u1 u2

t1≈Γ u1 t2≈Γ u2 ti,ui weak
T ,Eq(Γ ) ̸! 0= 1 or
t1 t2 and u1 u2 not in O

[APPW ]
t1 t2≈Γ u1 u2

T ,Eq(Γ ) ̸! 0= 1)
t =Ct [a1, . . .,ak] u=Cu[ak+1, . . . ,ak+l ]
Ct or Cu is a non-empty algebraic context
all the ai’s have empty algebraic caps

the ci’s are fresh constants s.t. ci = c j iff ai≈Γ b j
T ,Eq(Γ ) !Ct [c1, . . . ,ck] =Cu [ck+1, . . . ,ck+l ] [DED]

t≈Γ u

Fig. 4 CCIC syntax-oriented conversion

Example 5. Let Γ = [c : nat], [p :r (λ [x : nat].x)0=̇c]. Then (λ [x : nat].x+ x)0≈Γ c
and (λ [x : nat].x+ x)0≈Γ c, using congruence and deduction of ∼Γ and≈Γ .
In contrast, β -reducing (λ [x : nat].x+ x)0 yields 0 +̇0∼Γ c, but not 0 +̇0≈Γ c. In-

deed, (λ [x : nat].x +̇x)0 and 0 +̇0 are no more ≈Γ -convertible, a direct consequence
of removing β ι-reduction from ∼Γ : the equation (λ [x : nat].x)0=̇c cannot be used
anymore, since 0 +̇0 is not ≈Γ convertible to (λ [x : nat].x)0).
Now, normalizing all terms as well as the environment Γ , we can recover convert-

ibility for ≈: 0 +̇0≈Γ↓βι c, the extractable equation of Γ↓β ι being now 0=̇c.

As a consequence, we obtain:

Theorem 2. ∼Γ is decidable for any environment Γ when taking for O + the set of
terms that are reducible to an algebraic terms.

and therefore, our main result follows:

Theorem 3. The type-checking relationship Γ ⊢ t : T is decidable in CCIC.
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3 Using CCIC

We give here a detailed example illustrating the advantages of CCIC, based on the
inductive type of words introduced in Section 2.1.
In Coq. First, we give a development in Coq, therefore based on CIC.
Variable T : Set.

Inductive word : nat -> Set :=
| epsilon : word 0
| char : T -> word 1
| append : forall n p, word n -> word p -> word (n+p).

Lemma plus_n_0_transparent : forall n, n+0=n.
Proof. induction n as [| n IHn]; simpl;
[idtac | rewrite -> IHn]; trivial. Defined.

Lemma plus_n_Sm_transparent: forall n m, n+(S m)=S(n+m).
Proof. intros n m; induction n as [| n IHn];
simpl; [idtac | rewrite -> IHn]; trivial. Defined.

Lemma plus_assoc_transparent: forall n p q, (n+p)+q=n+(p+q).
Proof. intros n p q; elim n; [trivial | intros k].
simpl; intros H; rewrite -> H; trivial. Defined.

Definition reverse_acc : forall n, word n -> forall p, word p -> word (p+n).
Proof. intros n wn; induction wn as [| c | n p wn IHwn wp IHwp];
intros k wk. rewrite plus_n_0_transparent; exact wk.
rewrite plus_n_Sm_transparent; rewrite plus_n_0_transparent;

exact (append (char c) wk).
rewrite <- plus_assoc_transparent; exact (IHwp _ (IHwn _ wk)). Defined.

Fixpoint reverse n (w : word n) {struct w} : word n :=
match w in word k return word k with
| epsilon => epsilon
| char c => char c
| append n1 n2 w1 w2 => reverse_acc w2 w1 end.

The example of palindromes as words satisfying the property word_eq m reverse m

is carried out in Strub’s thesis (see his website). It yields a much more complex Coq
development than the above, since it involves the equality over (quotients) of words.
In CCIC.We nowmake the similar development in CCIC, using a self-explanatory

syntax. The definition of reverse reduces then to:
Fixpoint reverse n (w : word n) {struct w} : word n := match w with
| epsilon => epsilon
| char c => char c
| append _ _ w1 w2 => append (reverse w2) (reverse w1) end.

Typing of the third clause of reverse will use here Presburger’s arithmetic, since
append n1 n2 w1 w2 has type word (n1 + n2), while append n2 n1 w2 w1 has
type word (n2 + n1), two types that are not convertible in CIC, but which become
convertible in CCIC. We can easily see with this example the immense benefit brought
by internalizing Presburger’s arithmetic. Note that a single certificate is generated for
this conversion:
[n1 : nat, n2: nat, w1 : word n1, w2: word n2, n1 + n2, n2 + n1]
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4 Conclusion

CCIC is an extension of CIC by arbitrary first-order decision procedures for equality.
We have shown here with a detailed example using Presburger’s arithmetic the bene-
fit of the approach with respect to the current implementation of Coq based on CIC:
more terms can be typed especially in presence of types such as dependent lists which
become easy to use; many proofs get automated, making the life of the user easier
(developing the example of reverse for dependent lists in the currently distributed ver-
sion of Coq took us a day of work, and we don’t believe this can be shrinked to one
hour); and proofs are much smaller, some seemingly complex proofs becoming simple
reflexivity proofs. We believe that the resulting style of proofs becomes much closer
to that of the working mathematician.
We have also explained the advantage of the approach insofar as it allows to clearly

separate computation from deduction, therefore allowing for an incremental develop-
ment of the kernel of the system.
So far, we have considered only decidable -equality- theories. However, thanks

to the decidability assumption, a decidable non-equality theory can always be trans-
formed into a decidable equality theory over the type Bool of truth values equipped
with its usual operations.
There are still many directions to be investigated. A first is to embed membership

equational logic in CIC along the lines of the simpler embedding described here. A
second is to consider the case of dependent algebras instead of the simpler parametric
algebras. This is a much more difficult question, which requires using a stronger no-
tion of conversion in the main argument of an elimination, but would further help us
addressing other weaknesses of Coq.
Finally, we strongly believe that the use of decision procedures outputing certifi-

cates when they succeed and explanations when they fail will change our way of mak-
ing formal, and enlarge the audience of proof assistants.
Acknowledgement.We thank the Coq group for many useful discussions and sug-

gestions, and the referees for their useful remarks.
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