
Literal Shuffle of Compressed Words

Alberto Bertoni1, Christian Choffrut2, and Roberto Radicioni1

1 Dip. di Scienze dell’Informazione, Università degli Studi di Milano,
Via Comelico 39/41, 20135 Milano - Italy

{bertoni,radicioni}@dsi.unimi.it
2 L.I.A.F.A. (Laboratoire d’Informatique Algorithmique,

Fondements et Applications),
Université Paris VII, 2 Place Jussieu, 75221 Paris - France

Christian.Choffrut@liafa.jussieu.fr

Abstract. Straight-Line Programs (SLP) are widely used compressed repre-
sentations of words. In this work we study the rational transformations and
the literal shuffle of words compressed via SLP, proving that the first preserves
the compression rate, while the second does not. As a consequence, we prove a
tight bound for the descriptional complexity of 2D texts compressed via SLP.
Finally, we observe that the Pattern Matching Problem for texts expressed by
the literal shuffle of compressed words is NP-complete. However, we present a
parameter-tractable algorithm for this problem, working in polynomial time
whenever the length of the pattern is polynomially related to that of the text.

1 Introduction

Straight-line programs (SLP) are a widely accepted representation of com-
pressed texts (see, for instance, [16, 13, 12, 11]). A SLP is a grammar in Chom-
sky Normal Form generating only one word; the grammar can be seen as a
compressed representation of the word. Such a representation suggests a nat-
ural measure of descriptional complexity for a word, consisting of the SLP of
smallest size that generates it. The compression rate of SLPs is comparable to
that of Lempel-Ziv factorization. Indeed, given the LZ-encoding of a word, it is
possible to obtain a SLP of the same compressed size, up to a log factor, that
generates the same word ([17]).

Since the output size of these compression techniques could be logarithmic
with respect to the length of the generated word, it is useful to design algorithms
for problems on compressed texts without full unpacking. Generally, in this con-
text, grammar compression is more convenient than LZ-factorization. For some
problems, such as Equality and Pattern Matching with grammar compressed
words as input, polynomial time algorithms have been found ([15, 9]); for other
problems, the compressed version becomes NP-hard (for instance, computing
Hamming distance, as proved in [9]).

In this work, we consider some operations on strings and study the problem of
implementing such operations in compressed representations. In particular, we
consider the rational transformations and the literal shuffle. The literal shuffle

87

88 A. Bertoni, C. Choffrut, R. Radicioni

consists of merging two words of equal length from left to right alternating ex-
actly one symbol of the first word and one of the second (for example the literal
shuffle of “lug” and “one” is “lounge”). The “inverse operation” R (L) consists
of selecting the subword composed by the symbols in odd (even, respectively)
position in the input word.

These operations play an important role in Cooley-Tukey Algorithm for the
fast computation of the Discrete Fourier Transform [3]. This technique is based
on a Divide and Conquer strategy which recursively breaks up a string by using
R and L operations, while the merging phase consists of applying the literal
shuffle to the partial solutions. A natural question is whether it is possible to
apply this technique in a compressed context, that is, to execute efficiently R,
L and the literal shuffle on grammar compressed strings.

First of all, we prove that rational transformations preserve the compression
rate, while, in general, this does not hold for literal shuffle. This fact is proved
by exploiting a construction that relates the circuital complexity of boolean
functions with the descriptional complexity defined in terms of SLPs.

This result is then applied to compressed pictures. 2D-texts can be com-
pressed by using a 2D version of SLPs. The structure of 2D SLPs is more
complex than that of SLPs. Indeed, it is known that, while factors of logarith-
mically compressible words are still logarithmically compressible, this does not
hold for 2D texts. In particular, there exists an infinite number of logarith-
mically compressible pictures having at least one section (row or column) not
logarithmically compressible ([2]). We obtain a bound for the descriptional com-
plexity of the sections of a compressed picture which depends on their position
in the picture. Such a bound is proved to be tight, in some sense.

Finally, we study the problem of deciding whether a word is a factor of a
text, where both the word and the text are represented by the literal shuffle of
compressed words given as input. We prove that the problem is NP-complete
also if the word to be searched for is 11. However, we present an algorithm
working in polynomial time whenever the length of the pattern is polynomially
related to that of the text.

2 Preliminaries

Given a word w ∈ Σ∗, we denote by w[i] the i-th symbol of w and by w[i, j]
the factor w[i] · · ·w[j] of w, where 1 ≤ i ≤ j ≤ |w|. We call Fact (w) the set of
the factors of w.

For the sake of simplicity, in the following we consider Σ = {0, 1}; given
a word x ∈ {0, 1}n, b(x) is the base-2 integer whose binary representation is
x and, with an abuse of notation, we intend x as the vector of components
b(x[1]), . . . , b(x[n]). By 0 (1), we denote a vector whose components are all 0
(1, respectively); its dimension is specified only in the case of ambiguity. Given

Literal Shuffle of Compressed Words 89

two vectors a = (a1, . . . , an) and b = (b1, . . . , bm), we denote by a ⊙ b the
concatenation (a1, . . . , an, b1, . . . , bm) and, if n = m, by a · b the sum

∑
i aibi.

2.1 Straight-Line Programs

A straight-line program (SLP) is a sequence of labelled instructions of the form

X1 = 0, X2 = 1, Xk = XiXj 0 < i, j < k, k = 3, . . . , n.

The output of a SLP Φ is the word generated by performing all the concatena-
tions from X3 to Xn and is denoted by eval(Φ), while we write evalΦ(Xk) for the
word obtained by performing the first k concatenations in Φ. The number n of
instructions in Φ is called its size and is denoted by |Φ|. For every w ∈ {0, 1}∗,
as descriptional complexity of w we consider the size g(w) of the smallest SLP
generating w.

Since the computational complexity of a word can be logarithmic with respect
of its size, many classical problems on words are studied in their compressed
version, that is, considering SLPs as input instead of words.

For instance, the input of the compressed version of Equality is a pair (Φ,Ψ)
of straight-line programs and the question is to decide whether eval(Φ) =
eval(Ψ). Analogously, the question of the compressed version of Pattern Match-
ing is to decide whether eval(Ψ) is a factor of eval(Φ). The first result in this
direction is in [15] where a polynomial time algorithm for Equality is shown,
while the best algorithm for Compressed Pattern Matching is presented in [9].

2.2 Lempel-Ziv Factorization

The LZ-factorization of a word w is a decomposition f1 · · · fk = w, where
f1 = w[1] and fi+1 is the shortest factor not appearing in f1 · · · fi. We call
LZ-factors of w the factors appearing in its LZ-factorization. The LZ-encoding
of w is the sequence LZ(w) = (f1, . . . , fk), where every LZ-factor fi = w[a, b]
is exclusively expressed by a and b. LZ-encoding gives a very efficient lossless
compression technique, used in several compression standards ([8, 7]).

The size of LZ(w) is the number of its LZ-factors and is denoted by |LZ(w)|.
In [17] it is shown that g(w) ≥ |LZ(w)| and g(w) = O(|LZ(w)| × log |w|)
for every w. Moreover, we give a simple lower bound for the size of a LZ-
factorization:

Lemma 1. For every w ∈ {0, 1}∗, |LZ(w)| ≥ |Fact (w) ∩ 10∗1|.

Proof. The LZ-factorization of w contains a LZ-factor for each first occurrence
of 10t1 with different t. Indeed, if we scan w from left to right and run into a

90 A. Bertoni, C. Choffrut, R. Radicioni

factor 10t1 for the first time, then two cases are possible: either we already ran
into a sequence of zeros of length s > t, and then a new LZ-factor necessarily
starts immediately after 10t1 in w, or the longest sequence of zeros has length
s < t, then a new LZ-factor starts from the (s + 1)th zero of 10t1. ⊓"

3 Rational Transformations and SLPs

In this section we study rational transformations of compressed words. First,
we recall the notion of deterministic rational transducer, defining from word to
word rational transformations. Then we prove that rational transformations on
compressed words preserve the compression rate.

A deterministic rational transducer is a 5-tuple A = (Σ,Γ, Q, q0, δ), where Σ
is the input alphabet, Γ is the output alphabet, Q is the set of states, q0 ∈ Q is
the initial state and δ = (δQ, δΓ) is the transition function, with δQ : Q×Σ → Q
and δΓ : Q×Σ → Γ ∗. We denote (δQ(q,σ), δΓ (q,σ)) as δ(q,σ).

The extension of δQ to Σ∗ is similar to the case of finite state automata,
we set δ∗Q(q, ϵ) = q and δ∗Q(q, wσ) = δQ(δ∗Q(q, w),σ) for every w ∈ Σ∗. The
extension of δΓ is different: we set δ∗Γ (q, ϵ) = ϵ, and

δ∗Γ (q, wσ) = δ∗Γ (q, w)δΓ (δ∗Q(q, w),σ),

where w ∈ Σ∗. The rational transformation applied by A to a word w ∈ Σ∗ is
the word A(w) = δ∗Γ (q0, w).

To our aim, we consider the set S = {w | δΓ (q,σ) = w, q ∈ Q,σ ∈ Σ}
and define the size of A as |A| = |Q| +

∑
w∈S |w|. Hence, in the context of

compressed words, we introduce the following problem:

Problem: Compressed Rational Transformation (CRT)
Instance: A deterministic rational transducer A and a SLP Φ;
Question: A SLP generating A(eval(Φ)).

The CRT problem can be solved in polynomial time, as stated in the following

Theorem 1. Given a rational transducer A and a SLP Φ, there is a O(|A|×|Φ|)
algorithm for the CRT problem with input A and Φ.

Proof. Let A = (Σ,Γ, Q, q0, δ) and n = |Φ|. We first compute a table T with
entries (Xk, q) with Xk ∈ Φ and q ∈ Q, such that T (Xk, q) = δ∗Q(q, evalΦ(Xk)).
The table T can be computed in time O(|Q| × |Φ|) by giving an order to the
pairs (Xk, qi) which preserves the order in Φ and then, for every instruction
Xk = XiXj and every q ∈ Q, computing the entry T (Xk, q) as T (Xj, T (Xi, q)).
If Xk = σ, then T (Xk, q) = δQ(q,σ).

We obtain a new SLP Ψ by translating each variable Xk of Φ in |Q| variables
X(k, q) of the form

Literal Shuffle of Compressed Words 91

X(k, q) =
{

X(i, q) X(j, T (Xi, q)) if Xk = XiXj,
Ψ(q,σ) if Xk = σ, σ ∈ Σ,

where Ψ(q,σ) is a SLP such that eval(Ψ(q,σ)) = δΓ (q,σ). By setting X(n, q0)
as the last variable of Ψ , we have evalΨ (X(n, q0)) = A(eval(Φ)) by construction.
Every Ψ(q,σ) has size at most |δΓ (q,σ)|, hence |Ψ | = O(|A|× |Φ|). ⊓$

A straightforward consequence of Theorem 1 is that the compression properties
of SLPs are preserved by rational transformations.

Corollary 1. Let A be a fixed rational transducer. Then, g(A(w)) = O(g(w))
for every w ∈ Σ∗.

Example 1. Consider the following rational transducer

A = ({0, 1}, {0, 1}, {q0, q1, q2}, q0, δ),

where δ(q0, 0) = (q1, ϵ), δ(q1, 0) = δ(q1, 1) = δ(q2, 0) = (q0, 0), δ(q0, 1) = (q2, ϵ)
and δ(q2, 1) = (q0, 1).

!!!"#$%&'(q1

0,1|0
"" !"#$%&'(q0

0|ϵ
##

1|ϵ
$$!"#$%&'(q2

0|0
%%

1|1

&&

Such a transducer reads the symbols of a word in {0, 1}∗ two by two, and writes
1 for 11 and 0 for 00, 01 and 10.

Let Φ = (X1 = 0, X1 = 1, [Xk = Xk−1Xk−2]k∈[2..6]) be the SLP that
generates the 6th Fibonacci word eval(Φ) = 10110101. Applying the algo-
rithm of Th. 1, we obtain the (opportunely simplified) straight-line program
Ψ = (X1 = 0, X2 = 1, X3 = X1X1, X4 = X1X2, X5 = X4X3), which generates
the word 0100.

4 Lohrey Strings

In this section we recall a construction due to Lohrey ([10]), useful for study the
computational complexity of some compressed word problems. The SubsetSum
problem consists in deciding, given as input a vector w of integers and a target
integer t, if there is at least one selection of entries in w whose sum is t. It can
be formally defined as

Problem: Subset Sum (SubsetSum)
Instance: w ∈ Nn, t ∈ N;
Question: does there exist x ∈ {0, 1}n such that x · w = t?

It is a well known NP-complete problem and its counting version, consisting in
defining the cardinality of the set {x ∈ {0, 1}n | x · w = t}, is ♯P -complete. In

92 A. Bertoni, C. Choffrut, R. Radicioni

the context of straight-line programs, it has been used to prove that computing
the Hamming distance of two compressed words is a ♯P -complete problem ([9]).
The proof makes use of the so called Lohrey strings [10], couples of words repre-
senting instances of SubsetSum problem that have an exponential compression
rate.

Let I = (w, t) be an instance of SubsetSum, with w ∈ Nn and define
s = 1 · w. The Lohrey strings of I are the two words

ξ(I) = (0t10s−t)2
n

ξ′(I) =
∏

x∈{0,1}n

b(x)=0..2n−1

(0x·w10s−x·w)

of length (s+1)2n. Informally, ξ(I) encodes t by 2n blocks of length s+1 made
of zeros in all places except in the (t + 1)-th. On the other hand, ξ′(I) encodes
the sums of all the possible subsets of w by setting to 1 the only bit in position
x · w in the x-th block, for every x ∈ {0, 1}n.

The relevance of Lohrey strings is depicted by the following

Lemma 2. Let I = (w, t) be an instance of SubsetSum with w ∈ Nn. Then,
g(ξ(I)), g(ξ′(I)) = nO(1).

Proof. This lemma is a special case of Theorem 6 in [10]. ⊓#

5 Literal Shuffle of Compressed Words

In this section we consider the operations of bitwise AND and literal shuffle
between words. Let x, y ∈ {0, 1}n, with n > 0; the bitwise AND x ∧ y is
(x ∧ y)[i] = x[i] ∧ y[i] for i = 1, . . . , n, while the literal shuffle ([1]) of x and y
is defined as

x ∃ y = x[1]y[1]x[2]y[2] · · ·x[n]y[n],

Its ”inverse operations” are L and R, where, for a word w ∈ {0, 1}2n,

L(w) = w[1]w[3] · · ·w[2n− 1], R(w) = w[2]w[4] · · ·w[2n].

Operations L, R and ∃ play an important role in many algorithms (such as Fast
Fourier Transform for analysis and compression of digital signals) and it would
be interesting to work using these operations in a compressed representation.
L and R preserve the compression rate, since it is easy to construct the de-
terministic rational transducers implementing such operations. Unfortunately,
this does not hold for the literal shuffle, as proved in this section.

First of all, we prove a technical lemma that allows to transform constructions
using boolean circuits into constructions using SLPs.

Lemma 3. Let C be a circuit computing the boolean function f(x) in the vari-
ables x1, . . . , xn. Then, there exist two SLP Φ and Ψ such that

Literal Shuffle of Compressed Words 93

– |Φ| , |Ψ | = |C|O(1);
– |eval(Φ)| = |eval(Ψ)| = 2n+m, with m = nO(1);
– f(x) = 1 =⇒ ∃!z ∈ {0, 1}m | eval(Φ)[b(xz)] = eval(Ψ)[b(xz)] = 1;
– f(x) = 0 =⇒ ∀z ∈ {0, 1}m | eval(Φ)[b(xz)] ∧ eval(Ψ)[b(xz)] = 0;

Proof. Without loss of generality, suppose C is built using NAND gates. Then,
it is easy to construct a 3-CNF formula φ for f with O(|C| + n) variables and
clauses by adding the boolean variables y1, . . . , y|C| to the initial x1, . . . , xn. Let
yk represent the output of a gate k in C and let a and b be its inputs. Then, φ
contains the clauses defining yk = a ∧ b. Moreover, it contains further clauses
for y|C| = 1, being y|C| the output of the circuit.

In this construction, if f(x) = 1 then there exists a unique y such that
φ(x, y) = 1, whereas if f(x) = 0 then φ(x, y) = 0 for all y.

By using a minor variant of the reduction from 3-Sat to SubsetSum (see, for
example, [6] and [4, pag. 223]), we can reduce φ(x, y) to an instance In(α,β, γ; t)
of SubsetSum, with

∣∣γ
∣∣ = nO(1), such that

– φ(x, y) = 1 implies ∃!w such that x · α+ y · β + w · γ = t;
– φ(x, y) = 0 implies x · α+ y · β + w · γ ̸= t for every w.

Let now ξ(In) and ξ′(In) be the Lohrey strings associated with the instance
In(α,β, γ; t). Then, we have two words of length 2n+m+|γ| such that

– f(x) = 1 =⇒ ∃!z ∈ {0, 1}m+|γ| | ξ(In)[b(xz)] = ξ′(In)[b(xz)] = 1;
– f(x) = 0 =⇒ ∀z ∈ {0, 1}m+|γ| | ξ(In)[b(xz)] ∧ ξ′(In)[b(xz)] = 0;

By Lemma 2, g(ξ(In)), g(ξ′(In)) = nO(1). ⊓(

Now, we are able to prove the main result of this section:

Theorem 2. For all n > 0, there exist two words wn and w′
n of equal length

such that g(wn), g(w′
n) = nO(1) and g(wn ∧ w′

n) = Ω(2n/2).

Proof. Let C be the circuit computing the boolean function

f(x, y) =
{

1 if b(x) = b(y)2
0 if b(x) ̸= b(y)2

A circuit C for f can be realized with O(|x|2) variables and O(|x|2) 3-clauses
by iterated sums.

Consider the instance In(α,β, γ; t) of SubsetSum defined for C as in Lem-
ma 3, fix the representation q(s) of the sth perfect square s2 and let z(s) be the
unique string such that q(s) · α+ z(s) · (β ⊙ γ) = t. Let now ξ(n) and ξ′(n) be
the Lohrey strings associated with In and let be ξ = ξ(n)∧ ξ′(n). The position
ts of the sth 1 in ξ is equal to b(q(s)z(s)). Since z(s) is unique, we have

s22M ≤ ts < s22M + 2M ,

where M = |z(s)|. It follows that

94 A. Bertoni, C. Choffrut, R. Radicioni

s2M+1 ≤ ts+1 − ts < (s + 1)2M+1.

This implies that ts+1− ts ̸= tj+1− tj whenever s ̸= j. As a consequence, fixing
ŝ = max{s | s2 < 2n}, it holds

|Fact (ξ) ∩ 10∗1| =
∣∣{10ts+1−ts1 | 1 ≤ s ≤ ŝ}

∣∣ = ŝ ≥ 2n/2 − 1.

By Lemma 1, we have |LZ(ξ)| ≥ |Fact (ξ) ∩ 10∗1|. Hence g(ξ) = Ω(2n/2), while
g(ξ(n)), g(ξ′(n)) = nO(1) by Lemma 2. ⊓'

In Example 1, we have a rational transducer A such that A(x ∃ y) = x ∧ y.
Hence, by exploiting Theorem 1, the previous result can be extended to the
literal shuffle of words.

Corollary 2. For all n > 0, there exist two words wn and w′
n of equal length

such that g(wn), g(w′
n) = nO(1) and g(wn

∃ w′
n) = Ω(2n/2).

5.1 Picture Straight-Line Programs

A natural representation of 2D texts can be obtained by using a 2D extension
of SLPs. Informally, a binary picture of width M and height N is a matrix
T ∈ {0, 1}N×M . We refer to the rows and columns of a picture as its sections.
A 2D-SLP of size n is a sequence of labelled instructions of the form

Xk = 1 | 0 | Xi ⊘Xj | Xi ⊖Xj , 0 < i, j < k k = 1, . . . , n.

The operator ⊘ is the horizontal concatenation between two pictures of equal
height, while ⊖ is the vertical concatenation of two pictures of equal width. The
output of a 2D-SLP Φ is a binary picture T = eval(Φ), obtained performing all
the concatenations in Φ; the descriptional complexity g(T) of a picture T is the
size of the smallest 2D-SLP generating T .

The structure of 2D-SLPs is more complex than that of SLPs. In particular,
while the factors of logarithmically compressible words are still logarithmically
compressible, an analogous property does not hold for subpictures of pictures.
For instance, in [2] it is proved that, for each n, there exists a picture Tn with
g(Tn) = n having at least one section wn with g(wn) = 2Ω(n).

Here, we prove a stronger result on the sections of compressed pictures.

Theorem 3. Let T be a N ×M picture and let ci be its i-th column and rj its
j-th row. Then, g(ci) ≤ g(T)×min{i, M − i} and g(rj) ≤ g(T)×min{j, N − j}.

Proof. Let Φ = (X1, . . . , Xn) be a 2D-SLP such that eval(Φ) = T . Then, we
construct a SLP Φs for the sth column of T in the following way. Without loss
of generality, suppose that s < ⌊M/2⌋ and, for each variable Xk of Φ, define s
variables of the form

Literal Shuffle of Compressed Words 95

Xk(s) =

⎧
⎪⎪⎨

⎪⎪⎩

σ if Xk = σ;
Xi(s)Xj(s) if Xk = Xi ⊖Xj ;
Xi(s) if Xk = Xi ⊘Xj and s ≤ |Xi| ;
Xj(s− |Xi|) if Xk = Xi ⊘Xj and s > |Xi| .

Then, |Φs| = s× |Φ| and evalΦs(Xn(s)) is the sth column of T . The technique
can be easily adapted for the columns of position grater that ⌈M/2⌉ and for all
the rows of T . ⊓)

The previous result gives an upper bound for the compression rate of the
sections of a picture. However, we would ask how much strict is this bound.
Next theorem proves that the bound is, in some sense, optimal.

Theorem 4. There exists an infinite number of pictures {Tn}n∈N such that, for
each column ci of Tn in position i, it holds g(ci) = (g(Tn)×min{i, M − i})Ω(1).

Proof. Consider the Lohrey strings ξ(n), ξ′(n) related with the instance of Sub-
setSum in the proof of Th. 2 and let l = |ξ(n)| = |ξ′(n)|. By Lemma 2,
we have two polynomial size SLPs Φ and Φ′ such that eval(Φ) = ξ(n) and
eval(Φ′) = ξ′(n). Moreover, let Zi be the 2i × 2i−1 picture containing all zeros.
For i = 1, . . . , k, all the Zi can be compressed by a SLP of size O(k). Then, we
can construct a polynomial size SLP for the picture T described recursively by

X1 = ξ(n)⊖ ξ′(n);
Xi+1 = (Zi ⊘Xi)⊖ (Xi ⊘ Zi), i = 1, . . . , 2n.

In this way, we obtain a picture T of size 22n+1 × (l + 22n − 1) of the form
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · · · · 0 a1 a2 · · · al

: · · · · · · · · · · · · 0 b1 b2 · · · bl

: · · · · · · · · · 0 a1 a2 · · · al 0
: · · · · · · · · · 0 b1 b2 · · · bl 0
: · · · · · · 0 a1 a2 · · · al 0 :
: · · · · · · 0 b1 b2 · · · bl 0 :

0 · · · . .
.

. .
.

. .
.

. .
.

. .
.

. .
.

: :
a1 a2 · · · al 0 · · · · · · · · · · · · 0
b1 b2 · · · bl 0 · · · · · · · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with ξ(n) = a1 · · · al and ξ′(n) = b1 · · · bl. Clearly, g(T) = nΘ(1). Note that
every column ci of T in position i such that l ≤ i < 22n contains all zeros
except a factor ξ(n) ∃ ξ′(n). So, g(ci) = nΘ(1) g(ξ(n) ∃ ξ′(n)) = (n2n)Θ(1).

The cases 1 ≤ i < l and 22n ≤ i < 22n + l are symmetric, so we focus
on the former. In this case, only the prefix pi = (ξ(n) ∃ ξ′(n))[1, 2i] appears
at the end of ci, while the rest of the column is all zeros. By Corollary 1,
O(g(pi)) = g(ξ[1, 2i]), where ξ = ξ(n) ∧ ξ′(n). The structure of ξ is such that

g(ξ[1, 2i]) ≥ |Fact (ξ[1, 2i]) ∩ 10∗1| = Ω(
√

i).

96 A. Bertoni, C. Choffrut, R. Radicioni

Hence, again g(ci) = (ni)Ω(1). ⊓"

Obviously, the same result holds for the case of rows of pictures.

6 Pattern Matching and Literal Shuffle

In this section, we represent a word w = eval(Φ) ∃ eval(Ψ) by means of the pair
(Φ,Ψ) with size |Φ| + |Ψ | and study the compressed pattern matching problem
in this representation. More formally, the problem can be stated as

Problem: Compressed Pattern Matching with ∃ (CPM ∃)
Instance: Four SLPs Φ,Ψ,Φ′,Ψ ′, such that

|eval(Φ)| = |eval(Φ′)| and |eval(Ψ)| = |eval(Ψ ′)|;
Question: is eval(Ψ) ∃ eval(Ψ ′) a factor of eval(Φ) ∃ eval(Φ′)?

It can be easily observed that CPM ∃ is reducible to the Compressed Pattern
Matching for pictures composed by two lines. So, it appears more difficult than
Compressed Pattern Matching for words, solvable in polynomial time ([9]), but
easier than Compressed Pattern Matching for pictures, which is ΣP

2 -complete
([2]).

CPM ∃ is clearly in NP . Moreover, it is NP -complete even if the pattern is
the string 11.

Theorem 5. The problem of deciding, given two SLPs Φ and Φ′, whether 11 is
a factor of eval(Φ) ∃ eval(Φ′) is NP -hard.

Proof. By reduction to SubsetSum. Let ξ(I) and ξ′(I) be the Lohrey strings
associated with an instance I of SubsetSum and let Φ and Φ′ be the as-
sociated SLPs of smallest size. Then, define a deterministic rational trans-
ducer A such that A(x) = 0x[1]0x[2] · · · 0x[|x|], for every word x. By Th. 1,
g(A(x)) = O(g(x)). Moreover, A(eval(Φ)) ∃ A(eval(Φ′)) contains the factor 11
if and only if the instance I of SubsetSum admits a solution. ⊓"

Despite this hardness result, we exhibit an algorithm for CPM ∃ working in
polynomial time if the length of the pattern is polynomially related with that
of the text.

We recall some notation about SLPs used in [9]. The positions 0 and n in a
word w ∈ Σn are the points immediately before w[1] and after w[n], respectively,
while a position i, with 1 ≤ i < n is the point between w[i] and w[i + 1]. A
factor w[i, j] touches a position k in w if i − 1 ≤ k ≤ j. Given a nonterminal
symbol Xk in a SLP Φ such that Xk = XiXj, its cut position is |evalΦ(Xi)|.

Finally, by the triple of nonnegative integers (p, d, r) we codify the arithmeti-
cal progression {p, p + d, p + 2d, . . . , p + rd} and recall the following result.

Lemma 4. Let (p, d, r) and (p′, d′, r′) be two arithmetical progressions, where
p, d, r, p′, d′, r′ are n-bits integers. Then, deciding if their intersection is empty
requires O(n2) time.

Literal Shuffle of Compressed Words 97

Proof. The problem of deciding if (p, d, r) ∩ (p′, d′, r′) is the empty set consists
of verifying the existence of two integers x, y such that

1. p + dx = p′ + d′y;
2. 0 ≤ x ≤ r and 0 ≤ y ≤ r′.

Such equations are equivalent to the diophantine equation Ax−By = C, where
c = MCD(d, d′, p′ − p) and A = d/c, B = d′/c, C = (p′ − p)/c.

If MCD(A, B) > 1, then the previous equation has no solution and (p, d, r)∩
(p′, d′, r′) = ∅. Otherwise, one solution (x0, y0) can be obtained by computing
the (h − 1)th convergent, where h is the number of terms in the continued
fraction for A/B ([14]).

All the other solutions are of the form x = c(x0 + kB), y = c(y0 + kA). By
setting

k = min{k | 0 ≤ c(x0 + kB)},
k = max{k | c(x0 + kB) ≤ r},
k′ = min{k | 0 ≤ c(y0 + kA)},
k
′
= max{k | c(y0 + kA) ≤ r},

one can conclude that (p, d, r) ∩ (p′, d′, r′) ̸= ∅ if and only if [k, k] ∩ [k′, k
′
] ̸= ∅.

The most expensive task in this process is the computation of the convergent
of a fraction of two n-bits integers, which takes O(n2) time. ⊓'

Many compressed pattern matching algorithms are based on the following
([5])

Lemma 5. Given two words w and v, all the occurrences of v in w touching a
fixed position form a single arithmetical progression.

Some compressed pattern matching algorithms use as a data structure the so
called AP -table, which we recall in a simplified version. Given two SLPs Φ and
Ψ , the AP -table for Φ and Ψ is a vector where, for every symbol Xk in Φ, the
k-th entry is the (possibly empty) arithmetical progression (p[Xk], d[Xk], r[Xk])
identifying the starting positions of the occurrences of eval(Ψ) that touch the
cut position of Xk. The AP -table for Φ and Ψ is computable in time O(|Φ|3×|Ψ |)
([9]).

Given a SLP Φ having variables X1, . . . , Xn, consider the following partial
function t : {X1, . . . , Xn} −→ {X1, . . . , Xn}, such that

t(Xk) =

⎧
⎨

⎩

Xi if Xk = XiXj and |evalΦ(Xi)| ≥ |evalΦ(Xk)| /2,
Xj if Xk = XiXj and |evalΦ(Xi)| < |evalΦ(Xk)| /2,
⊥ otherwise.

Now, select the path z1, . . . , zj in the derivation tree of eval(Φ), defined as
z1 = Xn, zi+1 = t(zi) for 1 ≤ i < j, where zj is the first occurrence of ⊥. Then,
this path identifies a sequence of factors f1, . . . , fj of eval(Φ), each of which is

98 A. Bertoni, C. Choffrut, R. Radicioni

a prefix or a suffix of its predecessor. Hence, their starting positions g1, . . . , gj

can be computed in time O(|Φ|2).
Now, suppose that |eval(Ψ)| > |eval(Φ)| /2. Then, the possible starting posi-

tions of eval(Ψ) in eval(Φ) are the elements defined in the arithmetical progres-
sions

ari(Φ,Ψ) = (gi + p[zi], d[zi], r[zi]), for i = 1, . . . , j.

Theorem 6. Let Φ, Ψ , Φ′ and Ψ ′ be four SLPs such that |eval(Φ)| = |eval(Φ′)| =
N and |eval(Ψ)| = |eval(Ψ ′)| = M . Then, the CPM ∃ problem can be solved in
time O(Nn4/M), where n = |Φ| + |Ψ | + |Φ′| + |Ψ ′|.

Proof. Suppose that N < 2M . Then,

eval(Ψ) ∃ eval(Ψ ′) ∈ Fact (eval(Φ) ∃ eval(Φ′))

if and only if, for some integers i, s, at least one of the following facts hold:

– ari(Φ,Ψ) ∩ ars(Φ′,Ψ ′) ̸= ∅;
– ari(Φ′,Ψ) ∩ ar′s(Φ,Ψ ′) ̸= ∅;

where ar′s(Φ,Ψ ′) is ars(Φ,Ψ ′) left-shifted by one, i.e., if ars(Φ,Ψ ′) = (g+p, d, r),
then ar′s(Φ,Ψ ′) = (g +p−1, d, r). By Lemma 4, non-emptiness of each intersec-
tion can be verified in O(n2) time and, since i and s range over [1, n], we can
solve the problem in time O(n4).

If, on the contrary, N ≥ 2M , then, for 0 ≤ i ≤ 2N/M − 2, we construct the
SLPs Φi, such that

eval(Φi) = eval(Φ)[i⌈M/2⌉+ 1, min{N, (i + 3)⌈M/2⌉}]

and we do the same for Φ′. This construction requires O(n2N/M) time and
guarantees that the following sentences are equivalent:

1. The word eval(Ψ) ∃ eval(Ψ ′) is a factor of eval(Φ) ∃ eval(Φ′).
2. There exists k (0 ≤ k ≤ N −M) such that at least one of these facts hold:

– eval(Ψ) is a factor of eval(Φ) and eval(Ψ ′) is a factor of eval(Φ′), both
starting in position k;

– eval(Ψ) is the factor of eval(Φ′) starting in position k and eval(Ψ ′) is the
factor of eval(Φ) starting in position k + 1.

3. There exists i (0 ≤ i ≤ 2N/M − 2) such that eval(Ψ) ∃ eval(Ψ ′) is a factor of
eval(Φi)

∃ eval(Φ′
i).

Since |Φi| = |Φ′
i| < 2M , for every i, we can verify whether eval(Ψ) ∃ eval(Ψ ′) is

a factor of eval(Φi)

∃ eval(Φ′
i) in time O(n4). Hence, the problem is solvable in

time O(n4N/M). ⊓,

Literal Shuffle of Compressed Words 99

7 Conclusions

We investigated the possibility of performing rational transformations and the
literal shuffle of words compressed via SLPs, without full unpacking. We proved
that the last operation does not preserve the compression rate; hence, some tech-
niques like Cooley-Tukey algorithm for FFT can not be applied in a compressed
context. On the other hand, rational transformations can be performed without
fully uncompressing the SLPs in input.

These results lead to a deeper insight into the relations between SLPs for
words and SLPs for pictures. Indeed we showed that the descriptional complex-
ity of the sections of a picture can strongly depend on their distance from the
borders.

The literal shuffle has been finally exploited as a compressed representation of
pictures having two lines. The associated compressed pattern matching problem
lies in the half way between the same problems for compressed words and for
compressed pictures. We proposed a parameter-tractable algorithm working in
polynomial time, where the parameter is the ratio between the length of the
text and that of the pattern.

Acknowledgements We would like to thank Antonio Restivo for some useful discussions.

References

1. Béatrice Bérard. Literal shuffle. Theoret. Comput. Sci., 51(3):281–299, 1987.
2. Piotr Berman, Marek Karpinski, Lawrence L. Larmore, Wojciech Plandowski, and Wo-

jciech Rytter. On the complexity of pattern matching for highly compressed two-
dimensional texts. In Combinatorial pattern matching (Aarhus, 1997), volume 1264
of Lecture Notes in Comput. Sci., pages 40–51. Springer, Berlin, 1997.

3. James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Math. Comp., 19:297–301, 1965.

4. Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman
and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series
of Books in the Mathematical Sciences.

5. Leszek Ga̧sieniec, Marek Karpinski, Wojciech Plandowski, and Wojciech Rytter. Ran-
domized efficient algorithms for compressed strings: the finger-print approach (extended
abstract). In Combinatorial pattern matching (Laguna Beach, CA, 1996), volume 1075
of Lecture Notes in Comput. Sci., pages 39–49. Springer, Berlin, 1996.

6. Richard M. Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown
Heights, N.Y., 1972), pages 85–103. Plenum, New York, 1972.

7. Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. IEEE Trans.
Information Theory, IT-22(1):75–81, 1976.

8. Abraham Lempel and Jacob Ziv. A universal algorithm for sequential data compression.
IEEE Trans. Information Theory, IT-23(3):337–343, 1977.

9. Yury Lifshits. Processing compressed texts: A tractability border. In Combinatorial Pat-
tern Matching, volume 4580 of Lecture Notes in Comput. Sci., pages 228–240. Springer,
Berlin, 2007.

100 A. Bertoni, C. Choffrut, R. Radicioni

10. Markus Lohrey. Word problems on compressed words. In Automata, languages and
programming, volume 3142 of Lecture Notes in Comput. Sci., pages 906–918. Springer,
Berlin, 2004.

11. Markus Lohrey. Word problems and membership problems on compressed words. SIAM
J. Comput., 35(5):1210–1240 (electronic), 2006.

12. N. Markey and Ph. Schnoebelen. A PTIME-complete matching problem for SLP-
compressed words. Inform. Process. Lett., 90(1):3–6, 2004.

13. Masamichi Miyazaki, Ayumi Shinohara, and Masayuki Takeda. An improved pattern
matching algorithm for strings in terms of straight-line programs. J. Discrete Algorithms
(Oxf.), 1(1):187–204, 2000.

14. C. D. Olds. Continued fractions. Random House, New York, 1963.
15. Wojciech Plandowski. Testing equivalence of morphisms on context-free languages. In

Algorithms—ESA ’94 (Utrecht), volume 855 of Lecture Notes in Comput. Sci., pages
460–470. Springer, Berlin, 1994.

16. Wojciech Plandowski and Wojciech Rytter. Complexity of language recognition problems
for compressed words. In Jewels are forever, pages 262–272. Springer, Berlin, 1999.

17. Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci., 302(1-3):211–222, 2003.

