
Inverse Problems Have Inverse Complexity

Tobias Berg and Harald Hempel

Fakultät für Mathematik und Informatik
Friedrich-Schiller-Universität Jena

07740 Jena, Germany
tberg@minet.uni-jena.de

hempel@uni-jena.de

Abstract. In this paper we show that inverting problems of higher com-
plexity is easier than inverting problems of lower complexity. While inverting
Σp

i 3CNFSAT is known to be coNP-complete [6] for i = 1 we prove that it
remains coNP-complete for i = 2 and is in P for all i ≥ 3. Relatedly, we show
that inverting Σp

i 3DNFSAT is in P for all i ≥ 1.

1 Introduction

Do problems of higher complexity also always have inverse problems of higher
complexity? We answer this question to the negative by showing that within the
polynomial hierarchy complete problems from higher levels have easier inverse
problems than those from lower levels. More precisely, we prove that while
inverting Σp

i 3CNFSAT is coNP-complete for i = 1 [6] it is also coNP-complete
for i = 2, yet is in P for all i ≥ 3. In contrast, inverting Σp

i 3DNFSAT is easy,
i.e., in P, for all i ≥ 1.

Standard NP decision problems A are of the nature given an object x find
out if there exists a proof for the membership of x in A. The inverse problem
would then be given a set of proofs for membership in A does there exist an
object x such the proofs for membership of x in A are exactly the given ones?
For example, while the well known satisfiability problem SAT asks if a given
Boolean formula has a satisfying assignment, the computational problem IN-
VERSE SAT is defined as follows: Given a set of assignments does there exist
a Boolean formula F such that the given assignments are exactly the satisfying
assignments of F . While INVERSE SAT is (trivially) in P it has been shown
that INVERSE 3SAT is coNP-complete [6]. Note that our proofs showing that
inverting Σp

i 3CNFSAT as well as inverting Σp
j 3DNFSAT is in P for i ≥ 3 and

j ≥ 1, respectively, are constructive. Hence, not only the decision if a formula
F such that the given assignments are exactly the satisfying assignments of F
exists but also actually finding F can be done in polynomial time.

In general, the study of inverse problems contributes to the field of identifying
meaningful structures in data and efficient knowledge representation. Finding
a computationally appealing representation for a given set of data can only be
an easy problem if the corresponding inverse problem is easy. Furthermore, the

73

74 T. Berg, H. Hempel

study of inverse NP-problems may be helpful in gaining more insight into the
nature of NP-completeness and may also be helpful in characterizing ”natural”
verifiers.

It has been shown that for many NP-complete problems inverting their nat-
ural verifier is coNP-complete [6, 2, 7]. However, the complexity of inverse prob-
lems in general heavily depends on the underlying verifier [2]. Formally, NP is
the set of all languages A such that there exists a polynomial time computable
2-ary predicate V (also called a polynomial-time-verifier or NP-verifier) such
that for all x ∈ Σ∗ we have x ∈ A if and only if there exists a polynomial size
bounded string π such that (x,π) ∈ V . The inverse NP-problem of A relative to
V , INVSV , is given a set of strings {π1,π2, . . . ,πk} does there exist a string x
such that {π1,π2, . . . ,πk} = {π : (x,π) ∈ V }? There are NP-complete problems
that have NP-verifiers that can be inverted in P while the inversion of other of
their NP-verifiers is Σp

2 -complete [2]. Despite these results we feel that studying
the inverse problems relative to the canonical (natural) NP-verifiers will give
the true answer concerning the complexity of the inverse problems.

In this paper we study inverse problems from the classes Σp
i from the poly-

nomial hierarchy thereby giving answers to some open questions posed in [2].
We introduce the notion of a verifier for the classes Σp

i and define the in-
verse problem for such verifiers. After giving upper bounds for the complexity
of these inverse problems based on Σp

i -verifiers we study the inverse problem
for some specific Σp

i -complete satisfiability problems such as Σp
i 3DNFSAT and

Σp
i 3CNFSAT, yielding the above mentioned results.
We mention in passing that inverse NP-problems in a slightly different set-

ting, namely in a setting where the solutions are not given explicitely as a list
but implicitely in form of a boolean circuit accepting exactly those solutions
have been studied in [4]. Also, lower and upper bounds for the inversion of RE
problems have been found by the authors [1].

This paper is organized as follows: After formally introducing some notation
and giving some remarks on previous results in Section 2, we will translate
these concepts to problems from Σp

i in Section 3. In Section 3 we will also
give an upper bound for inverting a reasonable restricted subset of verifiers for
Σp

i -languages. We will furthermore examine the inverse complexity of some nat-
ural verifiers for specific Σp

i -complete satisfiability problems yielding the above
mentioned results that are interesting beyond the scope of inverse problems.

2 Preliminaries

We assume the reader to be familiar with the basic concepts and notations of
complexity theory (see [9, 5]).

Our alphabet will be Σ = {0, 1}. For a string α ∈ Σ∗ let αi denote the ith
letter of α, i.e., α = α1α2α3 . . .α|α|. As is standard in complexity theory an
assignment for a Boolean formula F with variables x1, x2, . . . , xn is a length n

Inverse Problems Have Inverse Complexity 75

string α = α1α2α3 . . .αn which, for all 1 ≤ i ≤ n, assigns the Boolean value αi

to the variable xi. Recall that a 3CNF (3DNF) formula is a Boolean formula in
conjunctive (disjunctive) normal form having exactly 3 literals per clause.

Verifiers, the language associated with a verifier, sets of proofs, and inverse
problems relative to a given verifier can in general be defined as follows:

Definition 1. 1. A relation V is called a verifier if and only if V ⊆ Σ∗ ×Σ∗.
2. For any verifier V and any string x ∈ Σ∗, the set of proofs for x with respect

to V , short V (x), is defined as

V (x) = {π ∈ Σ∗ : (x,π) ∈ V }.

3. The language associated with V , L(V), is defined as

L(V) = {x ∈ Σ∗ : V (x) ̸= ∅}.

4. The inverse problem relative to a verifier V , INVSV , is defined as

INVSV = {Π ⊆ Σ∗ : (∃x ∈ L(V))[V (x) = Π]}.

One could also define the inverse problem as INVSV = {Π ⊆ Σ∗ : (∃x ∈
Σ∗)[V (x) = Π]}. However, this marginal change in definition – adding the
empty set to the inverse problem – should not result in any differences regard-
ing the complexity of both types of inverse problems. We take the freedom to
sometimes write V (x,π) instead of (x,π) ∈ V for verifiers V and strings x and
π.

The class NP can be viewed as the class of languages having polynomial-time
verifiers.

Definition 2. A verifier V is called a polynomial-time verifier if and only if

1. V ∈ P and
2. there is a polynomial p such that for all x,π ∈ Σ∗, (x,π) ∈ V → |π| ≤ p(|x|).

In this paper polynomial-time verifiers will also be called NP-verifiers. It is
well-known that a language A is in NP if and only if there exists an NP-verifier
V such that A = L(V).

Inverse NP-problems are exactly the inverse problems relative to NP-verifiers
and have been introduced in [2]. Clearly, it does not make sense to speak of
inverting NP-problems without specifying the verifier. And in fact, inverting
different NP-verifiers for one and the same NP-problem has different complexity.
In [2] it has been shown that for every problem A ∈ NP there exists an NP-
verifier V such that L(V) = A and INVSV ∈ P . Here one can even show that
there exists such a verifier that is fair [2].

Definition 3. [2] An NP-verifier V is called fair if and only if there exists a
polynomial q such that for all x ∈ L(V) there exists a string x′ ∈ L(V) such
that V (x) = V (x′) and |x′| ≤ q(||V (x)||), where ||V (x)|| denotes the length of
the encoding of the set V (x).

76 T. Berg, H. Hempel

In contrast, it has been shown that several NP-problems have NP-verifiers
such that the inverse problem relative to those verifiers is coNP-complete [6, 2,
7]. And it is also known that there is a tight Σp

2 upper bound for inverting fair
NP-verifiers [2], where Σp

2 denotes the second level of the polynomial hierarchy.
Recall that for a complexity class C the classes PC and NPC are defined as

the classes of languages that can be accepted by polynomial-time deterministic
and nondeterministic, respectively, oracle Turing machines that make queries to
a language from C. Based on this concept the Σp

i levels of the polynomial-time
hierarchy are defined as follows.

Definition 4. [8, 10] The complexity classes Σp
i are inductively defined via

1. Σp
0 = P and

2. Σp
i+1 = NPΣ

p
i for all i ≥ 1.

A useful characterization of the classes Σp
i was proven in [8].

Theorem 1. [8] A language A ⊆ Σ∗ belongs to Σp
i if and only if there exists a

predicate V ∈ P and polynomials p1, ..., pi such that for all x ∈ Σ∗ the following
holds:

x ∈ A↔ (∃y1 ∈ Σ∗)(∀y2 ∈ Σ∗)(∃y3 ∈ Σ∗) . . . (Qyi ∈ Σ∗)[|y1| ≤
p1(|x|) ∧ ... ∧ |yi| ≤ pi(|x|) ∧ (x, y1, ..., yi) ∈ V].

If i is even then Q = ∀ and if i is odd then Q = ∃.

As we have pointed out earlier the complexity of inverse problems heav-
ily depends on the underlying verifier. In order to study inverse NP-problems
researchers have focused on inverting “natural” NP-verifiers, i.e., NP-verifiers
that have proofs that closely reflect the canonic statement of the original NP-
problem. For instance, in the case of SATISFIABILITY the most natural proof
would be an assignment and a natural NP-verifier for SATISFIABILITY would
be

VSAT = {(F,α) : F is a Boolean formula and α satisfies F}.

The first ”natural” NP-verifiers have been studied in [6], where the com-
plexity of inverting various syntactically constrained satisfiability problems has
been studied. Following this line of research the coNP-completeness of the in-
verse problem (with respect to some ”natural” NP-verifier) for some more NP-
complete problems has been shown :

– 3SAT [6]
– CLIQUE, EXACT COVER, VERTEX COVER, SUBSET SUM (=KNAP-

SACK), STEINER TREE IN GRAPHS, PARTITION [2]
– HAMILTONIAN CIRCUIT, 3-D MATCHING [7]

For formal definition of these problems see [3].

Inverse Problems Have Inverse Complexity 77

3 The Inverse Problem for Σp
i

It has been suggested in [2] to examine the inverse problems for classes different
than NP. In this section we will lay the ground for studying inverseΣp

i problems.
The class Σp

i is defined as the class of all languages that can be decided by a
nondeterministic polynomial-time oracle Turing machine with queries to a Σp

i−1

oracle, Σp
i = NPΣ

p
i−1 . This leads to the following definition of a Σp

i -verifier.

Definition 5. A verifier V is called a Σp
i -verifier if and only if

1. V ∈ PΣ
p
i−1 ,

2. there exists a polynomial p such that for all x,π ∈ Σ∗, (x,π) ∈ V → |π| ≤
p(|x|).

Observation 1 For every language A ⊆ Σ∗, A is in Σp
i if and only if there

exists a Σp
i -verifier V such that L(V) = A.

Fair Σp
i -verifiers can be defined in analogy to Definition 3.

Definition 6. A Σp
i -verifier V is called a fair Σp

i -verifier if and only if there
exists a polynomial q such that (∀x ∈ L(V))(∃x′ ∈ L(V))[V (x) = V (x′) ∧ |x′| ≤
q(||V (x)||)], where ||V (x)|| denotes the length of the encoding of the set V (x).

Informally, a Σp
i -verifier is called fair if for any set of proofs Π either

– there exists a polynomially length-bounded string (theorem) x′ with exactly
the proofs from Π or

– there exists no theorem with the set of proofs Π .

With this definitions in mind, what is an upper complexity bound for inverting
a fair Σp

i -verifier?

Theorem 2. If V is a fair Σp
i -verifier (i ≥ 1), then INVSV ∈ Σp

i+1.

Proof. The case i = 1 has been shown in [2]. So let i ≥ 2 and let V be a fair
Σp

i -verifier, i.e., V ∈ PΣ
p
i−1 and there exist two polynomials p and q such that

1. for all x,π ∈ Σ∗, (x,π) ∈ V → |π| ≤ p(|x|)
2. for all x ∈ L(V) there exists x′ ∈ L(V) such that both V (x) = V (x′) and

|x′| ≤ q(||V (x)||).

We define the following set A:

A = {(Π, x) : Π ⊆ Σ∗ ∧ x ∈ Σ∗ ∧
(∀π ∈ Σ∗ : π ≤ p(|x|))[π ∈ V (x) ⇐⇒ π ∈ Π]}.

It is not hard to see that A ∈ Πp
i since V ∈ PΣ

p
i−1. Observe that the set A

can be also written as A = {(Π, x) : Π ⊆ Σ∗∧x ∈ Σ∗ ∧ V (x) = Π}. It follows
that

78 T. Berg, H. Hempel

INVSV = {Π ⊆ Σ∗ : (∃x ∈ Σ∗)[V (x) = Π]}
= {Π ⊆ Σ∗ : (∃x ∈ Σ∗ : |x| ≤ q(||Π ||))[V (x) = Π]}
= {Π ⊆ Σ∗ : (∃x ∈ Σ∗ : |x| ≤ q(||Π ||))[(Π, x) ∈ A]}

and thus INVSV ∈ Σp
i+1.

Even though inverting fair Σp
i -verifiers has, in general, an upper complexity

bound of Σp
i+1, inversion of fair Σp

i -verifiers can be very easy in special cases.

Lemma 1. For all i ≥ 1 and all B ∈ Σp
i there exists a fair Σp

i -verifier S such
that INVSS ≡log

m B.

Proof. The proof is based on a proof given in [2]. Let B be a set from Σp
i and let

R be a Σp
i -verifier such that L(R) = B. Consider the verifier S that is defined

by ((x,π), x) ∈ S ↔ (x,π) ∈ R for all x,π ∈ Σ∗. Clearly, S is a Σp
i -verifier.

It is straightforward to verify that S is also a fair Σp
i -verifier. Note that for all

(x,π), the set S((x,π)) contains at most one proof, namely x itself.
We will now show that x ∈ B ↔ {x} ∈ INVSS which yields the claim. First

assume that x ∈ B and thus there exists a certificate π such that (x,π) ∈ R
and thus ((x,π), x) ∈ S. Since S((x,π)) ⊆ {x} it follows that S((x,π)) = {x}.
We conclude that {x} ∈ INVSS .

For the other direction assume that x /∈ B and hence for all π ∈ Σ∗ it holds
that (x,π) /∈ R and thus ((x,π), x) /∈ S for all certificates π. It follows that
S((x,π)) = ∅ for all π ∈ Σ∗ which implies {x} /∈ INVSS .

3.1 The Inverse Problem for Σp
i 3CNFSAT

In the next two subsection we would like to examine the inverse complexity
of natural verifiers for some selected complete problems in Σp

i . In particular
we will look at the quantified versions of 3CNF-SAT and 3DNF-SAT and their
natural verifiers.

Definition 7. An i+1-tuple (F, X, Y1, Y2, . . . , Yi−1) is called a type-i-formula if
and only if F is a Boolean formula with variables from the set X∪Y1∪ ...∪Yi−1

and X, Y1, ..., Yi−1 are pairwise disjoint sets. The set Σp
i SAT is defined as

Σp
i SAT = { (F, X, Y1, . . . , Yi−1) : (F, X, Y1, . . . , Yi−1) is a type-i-formula ∧

(∃α ∈ {0, 1}|X|)(∀β1 ∈ {0, 1}|Y1|) . . .

(Q βi−1 ∈ {0, 1}|Yi−1|)[F (α,β1, ...,βi−1) = 1]}

where Q = ∀ if i is even and Q = ∃ if i is odd. Here F (α,β1, ...,βi−1) denotes
the truth value of F when using α as a truth assignment for the variables of X
and for all 1 ≤ j ≤ i− 1 using βj as a truth assignment for the variables of Yj .

Inverse Problems Have Inverse Complexity 79

It is well know that for all i ≥ 1, the language Σp
i SAT is Σp

i -complete [10].
When restricting the formulas in Σp

i SAT to 3CNF or 3DNF formulas the set

Σp
i 3CNFSAT = {F : F ∈ Σp

i SAT ∧ F is a 3CNF-formula}

is Σp
i -complete for odd i’s [10]. If i is even then the set

Σp
i 3DNFSAT= {F : F ∈ Σp

i SAT ∧ F is a 3DNF-formula}

is Σp
i -complete [10].

Let i ≥ 1 be a natural number. The natural choice for a Σp
i -verifier for

Σp
i SAT is certainly Si, where

Si(F,α) ↔ (F, X, Y1, . . . , Yi−1) is a type-i-formula ∧ (∀β1 ∈ {0, 1}|Y1|)
(∃β2 ∈ {0, 1}|Y2|) . . . (Q βi−1 ∈ {0, 1}|Yi−1|)[F (α,β1, ...,βi−1) = 1]

and Q = ∀ if i is even and Q = ∃ if i is odd. Analogously, the natural verifiers
for Σp

i 3CNFSAT and Σp
i 3DNFSAT are Ci and Di, where

(F,α) ∈ Ci ↔ F is a type-i-formula in 3CNF ∧ (F,α) ∈ Si,

(F,α) ∈ Di ↔ F is a type-i-formula in 3DNF ∧ (F,α) ∈ Si,

and Q = ∀ if i is even and Q = ∃ if i is odd.
In this subsection we will concentrate on the inverse problem for the verifier

Ci. In the next subsection we will proof results for the verifier Di.

Lemma 2. For all i ≥ 1 it holds that INVSCi ⊆ INVSCi+1 .

Proof. The proof is obvious, since every type-i-formula (F, X, Y1, ..., Yi−1) in
3CNF has exactly the same satisfying assignments as the type-i + 1-formula
(F, X, Y1, ..., Yi−1, Yi) in 3CNF, where Yi = ∅.

Next we will show a partial converse to Lemma 2, i.e., that INVSC1 =
INVSC2 (Theorem 3). Before formally stating and proving the theorem we will
recall some helpful concepts and prove some lemmata.

Definition 8. [6]

1. Let Π ⊆ {0, 1}n be a set of Boolean vectors, Π = {π1,π2, . . . ,πk}. We call a
Boolean vector m ∈ {0, 1}n 3-compatible with Π if for any triple of indices
(i1, i2, i3), 1 ≤ i1 ≤ i2 ≤ i3 ≤ n, there exists a vector πj ∈ Π such that
mi1 = πi1

j and mi2 = πi2
j and mi3 = πi3

j .
2. A set Π ⊆ {0, 1}n of Boolean vectors is called a 3CNF-set if and only if there

is a 3CNF formula F such that the set of satisfying assignments of F is equal
to Π .

Informally put, a vector m ∈ {0, 1}n is 3-compatible with a set of Boolean
vectorsΠ if and only for any sequence of three bit positions there exists a string
in Π that agrees with m in these three positions.

80 T. Berg, H. Hempel

The following Lemma from [6] gives a very tight connection between the
notions of 3-compatibility and 3CNF-sets, namely, a set of Boolean vectors is a
3CNF-set if and only if it is closed under 3-compatibility.

Lemma 3. [6] Let Π ⊆ {0, 1}n be a set of assignments. Then Π is a 3CNF-set
if and only if for all m ∈ {0, 1}n that are 3-compatible with Π we have m ∈ Π.

As an easy example consider the set Π := {0111, 1011, 1101, 1110}. The
Boolean vector 1111 is 3-compatible with Π . But since 1111 /∈ Π we conclude
by Lemma 3 that there can not exist a 3CNF-formula F with exactly the
satisfying assignments from Π .

Lemma 4. Let Π ⊆ {0, 1}n be a 3CNF-set. For all i, 1 ≤ i ≤ n, and all
c ∈ {0, 1} the set

Cutic(Π) := { α : α ∈ Π ∧ αi = c }

is a 3CNF-set.

Proof. Let Π ⊆ {0, 1}n be a 3CNF-set, let 1 ≤ i ≤ n, and c ∈ {0, 1}. In order
to show that Cutic(Π) is a 3CNF-set we use Lemma 3. We need to show that
for all assignments α it holds that whenever α is 3-compatible with Cutic(Π) it
also is an element of Cutic(Π). We will give a proof by contradiction.

So assume that α ∈ {0, 1}n is 3-compatible with Cutic(Π) yet α /∈ Cutic(Π).
Hence α /∈ Π or αi ̸= c. We now argue that in both cases we have a contradic-
tion. So assume that α /∈ Π . Since α is 3-compatible with Cutic(Π) it is also
3-compatible with any superset of Cutic(Π) and thus also 3-compatible with
Π . However, by Lemma 3 we have that Π contains every assignment that is
3-compatible with Π , a contradiction. In case αi ̸= c we have an outright con-
tradiction with the fact that α is 3-compatible with Cutic(Π). By definition for
any three positions 1 ≤ i1 ≤ i2 ≤ i3 ≤ n there exists a vector in Cutic(Π) that
agrees with α in these three positions yet αi ̸= c and all vectors β ∈ Cutic(Π)
satisfy βi = c.

Lemma 5. Let Π ⊆ {0, 1}n be a 3CNF-set. For all 1 ≤ i, j ≤ n and all c1, c2 ∈
{0, 1} the set

Cuti,jc1,c2
(Π) := { α : α ∈ Π ∧ (αi = c1 ∨ αj = c2) }

is a 3CNF-set.

The proof is quite similar to the proof of Lemma 4 and thus omitted. We are
now prepared to state and prove the main results of this section.

Theorem 3. INVSC1 = INVSC2 .

Proof. Due to Lemma 2 it suffices to show INVSC2 ⊆ INVSC1 .
Let Π ∈ INVSC2 . By definition of INVSC2 we have Π ̸= ∅ and there exists a

type-2-formula (F, X, Y) in 3CNF over the variable set X ∪ Y of the form F =

Inverse Problems Have Inverse Complexity 81

K1∧...∧Kp where each Ki is a clause of the form (z1∨z2∨z3), z1, z2, z3 ∈ X∪Y ,
such that C2(F) = Π . Recall that by definition of C2 it holds that (F,α) ∈ C2 if
and only if F is a type-2-formula in 3CNF and (∀β1 ∈ {0, 1}|Y |)F (α,β) = 1. In
the remainder of this proof an assignment for a type-2-formula (F ′, X ′, Y ′) in
3CNF will be denoted by αβ, where α is the part of the assignment that assigns
truth values to the variables from X ′ whereas β is the part of the assignment
that assigns truth values to the variables from Y ′.

We will now show that the set C2(F) = Π is itself a 3CNF-set and thus
Π ∈ INVSC1 . Observe that F does not contain a clause consisting solely
of literals from the variable set Y since otherwise C2(F) = Π = ∅, a con-
tradiction. Hence, each clause of F contains at least one literal from the
variable set X . We will construct a sequence of type-2-formulas in 3CNF
(F0, X, Y), (F1, X, Y), . . . , (Fn1 , X, Y), (Fn1+1, X, Y), . . . , (Fn1+n2 , X, Y) over
the variable set X ∪ Y such that C2(Fn1+n2) = Π . Indeed, we will prove by
induction that for each 0 ≤ i ≤ n1 + n2 the set C2(Fi) is a 3CNF-set.

Define F0 to be the 3CNF formula that consists of all clauses from F that
contain no literal from the variable set Y . Note that C2(F0) is a 3CNF-set since
F0 is satisfied independent of assignments to the variables from Y . Let n1 be
the number of clauses in F that contain exactly one literal from the variable
set Y . For each i, 0 ≤ i ≤ n1 − 1, let Fi+1 be a type-2-formula in 3CNF such
that Fi+1 = Fi ∧ K where K is a clause from F that contains exactly one
literal from the variable set Y and K is not part of Fi. We will now argue
that for all i, 1 ≤ i ≤ n1, C2(Fi) is a 3CNF-set. We will do this inductively.
Recall that C2(F0) is a 3CNF-set and assume that for some q, 1 ≤ q ≤ n1,
C2(Fq−1) is a 3CNF-set. Consider Fq. Let Fq = Fq−1 ∧ (ℓi ∨ ℓj ∨ ℓk) where ℓi
and ℓj are literals of the variables xi and xj , respectively, from X and ℓk is
a literal of the variable yk from Y . Observe that those assignments αβ for Fq

that (implicitly) assign the truth value 0 to ℓi, ℓj and ℓk can not satisfy Fq. It
follows that no assignment α that assigns the truth value 0 to ℓi and ℓj can be
in C2(Fq). On the other hand, any assignment from C2(Fq−1) that assigns 1 to
ℓi or ℓj or both is also in C2(Fq). Since trivially C2(Fq−1) ⊇ C2(Fq) we have
that C2(Fq) = Cuti,ja,b(C2(Fq−1)) where a = 1 if ℓi = xi and a = 0 if ℓi = xi and
similarly b = 1 if ℓj = xj and b = 0 if ℓj = xj . By Lemma 5 and the induction
hypothesis we conclude that C2(Fq) is a 3CNF-set.

Let n2 be the number of clauses in F that contain exactly two literals from
the variable set Y . Similar to the above inductive argument related to clauses
that contain exactly one literal from X one can easily show that C2(Fq) =
Cutia(C2(Fq−1)) for an appropriately chosen a ∈ {0, 1}. By Lemma 4 and the
induction hypothesis we have that C2(Fq) is a 3CNF-set.

To complete the proof observe that Fq = F and thus C2(F) = Π is a 3CNF-
set and hence Π ∈ INVSC1 .

It has been shown in [6] that INVSC1 is coNP-complete. Using the last the-
orem we have the following corollary.

Corollary 1. INVSC2 is coNP-complete.

82 T. Berg, H. Hempel

Next we will show that except the two coNP-complete problems INVSC1

and INVSC2 all other problems INVSCi , i ≥ 3, are in P. We will do so by
showing that for every syntactically correct set of assignments Π there exists a
type-3-3CNF-formula with exactly the satisfying assignments from Π .

Theorem 4. For all n and all Π ⊆ Σn it holds that Π ∈ INVSC3 .

Proof. Let Π = {α1, ...,αp} ⊆ Σn for some n ∈ N. In order to show
Π ∈ INVSC3 we will construct a type-3-3CNF-formula (F, X, Y1, Y2) over the
variable sets X , Y1, and Y2 where |X | = n, |Y1| = 1, and |Y2| = 2p + 1 such
that C3(F) = Π .

We define an auxiliary set of assignments Π ′ ⊆ {0, 1}|X|+|Y1|+|Y2| as follows:

Π ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 0 000...00001,
α1 1 000...00011,
α2 0 000...00111,
α2 1 000...01111,

...
αp 0 001...11111,
αp 1 011...11111

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Claim: Π ′ is a 3CNF-set.

Proof of Claim: According to Lemma 3 it suffices to show that every
assignment γ ∈ Σn+2p+2 that is 3-compatible with Π ′ is also an element of Π ′.

So let γ ∈ Σn+2p+2 be an assignment that is 3-compatible with Π ′. Hence
it holds for any three positions k1, k2, and k3, 1 ≤ k1 ≤ k2 ≤ k3 ≤ n + 2p + 2,
that γ agrees with some γ′ ∈ Π ′ at these three positions. Since all assignments
in Π ′ have a 0 at position n +2 and 1 at position n+ 2p+ 2 and since γ due to
its 3-compatibility with Π ′ agrees with some assignment from Π ′ in particular
at positions n + 2, n + 2p + 2 and 1 it follows that γn+2 = 0 and γn+2p+2 = 1.
Hence, there exists a position k, n + 2 ≤ k ≤ n + 2p + 1, such that γk = 0 and
γk+1 = 1. Furthermore, for all positions k′, 1 ≤ k′ ≤ n + 2p + 2, there exists
an assignment γ′ ∈ Π ′ such that γ and γ′ are equal at the positions k, k + 1
and k′. However, there is only one assignment γ̂ ∈ Π ′ that has a 0 at position
k and a 1 at position k + 1. Hence γ̂ and γ have to agree at all positions k′,
1 ≤ k′ ≤ n + 2p + 2. It follows that γ = γ̂ and thus γ ∈ Π ′. This concludes the
proof of the claim.

By the claim there exists a 3CNF-formula F ′ for which Π ′ is exactly the set
of its satisfying assignments, C1(F ′) = Π ′. Let (F, X, Y1, Y2) denote a type-3-
3CNF-formula where F = F ′ and X , Y1, and Y2 are the sets of variables that
correspond to the first n, the n + 1st, and the last 2p + 1 truth values in each
assignment in Π ′. Now it is immediate that C3(F) = Π .

Corollary 2. For all n and all Π ⊆ Σn it holds that a type-3-3CNF-formula
(F, X, Y1, Y2) such that Π = C3(F) can be constructed in time polynomial in
the size of Π.

Inverse Problems Have Inverse Complexity 83

The proof is immediate from the proof of Theorem 4 and the fact that given
a set of assignments a so called candidate formula for that set of assignments
can be constructed in polynomial time [2].

Note that INVSC3 already contains all possible syntactically correct proof
sets Π for C3, i.e., all proof sets where all certificates have the same length. To
decide if Π belongs to INVSC3 one therefore simply has to test if all certificates
of Π have the same length, which can be tested in polynomial time in the
size of Π . By Lemma 2 we furthermore have that for all i ≥ 3 it holds that
INVSCi = INVSC3 .

Corollary 3. For all i ∈ N, i ≥ 3, it holds

1. INVSCi = INVSC3 = {Π ⊆ {0, 1}∗ : (∃n ∈ N)[Π ⊆ {0, 1}n]}.
2. INVSCi ∈ P.

Summarizing the results from this section, we can state that the inverse
problems for the languages Σp

i 3CNFSAT (based on their natural verifiers Ci)
become easier with growing i.

3.2 The Inverse Problem for Σp
i 3DNFSAT

In this subsection we will focus on the inverse problems related to Σp
i 3DNFSAT

as defined in Subsection 3.1.
We start by examining the problem Σp

13DNFSAT. Note that Σp
13DNFSAT

belongs to P. Despite the fact that members of languages from P do not need
any certificate, we feel that the verifier D1 as defined in Section 3.1 is a natural
verifier for Σp

13DNFSAT. However, it is not immediately clear, that INVSD1 is
in P as well.

Theorem 5. INVSD1 ∈ P .

Proof. Let us first take a look at the structure of the proof set Π for a 3DNF-
formula F . Let F = M1 ∨ ... ∨Mm be a 3DNF-formula over the variable set
X = {x1, ..., xn} consisting of 3-monomials M1, . . . ,Mm. If M = (ℓi ∧ ℓj ∧ ℓk),
where 1 ≤ i < j < k ≤ n and either ℓt = xt or ℓt = xt for all t ∈ {i, j, k}, is
a monomial of the formula F then all assignments α ∈ {0, 1}n that assign the
truth value 1 to ℓi, ℓj , and ℓk are satisfying assignments for the monomial M.
We denote the set of assignments for the formula F that satisfy the monomial
M by ΠM, i.e.,

ΠM = {α ∈ {0, 1}n : α as an assignment for F satisfies M}.

It is obvious that for the set of satisfying assignments Π of the formula F we
have Π = ΠM1 ∪ ... ∪ΠMm .

In order to decide if a given set of assignments Π is contained in INVSD1

we have to test if there exist 3-monomials M1, ...,Mm such that Π = ΠM1 ∪

84 T. Berg, H. Hempel

...∪ΠMm . A deterministic polynomial-time algorithm for this decision problem
works as follows: On input Π ⊆ {0, 1}∗ test if there exists a natural number
n such that Π ⊆ {0, 1}n. If so continue and otherwise reject the input Π .
Next, test for each of the 8

(n
3

)
possible 3-monomials M over the variable set

X = {x1, ..., xn} if ΠM ⊆ Π . In case ΠM ⊆ Π mark all those assignments α in
Π that are contained in ΠM, otherwise continue with the next monomial. As
a final step, check if there are unmarked assignments in Π and accept if this is
not the case and reject otherwise.

Note that this algorithm runs in polynomial time in the size of Π . If all
assignments are marked in the final stage of the algorithm it is immediate that
the formula F , consisting of all 3-monomials M satisfying ΠM ⊆ Π , has exactly
the satisfying assignments from Π . If there is an unmarked assignment in Π
then there exists no 3DNF-formula F such that D1(F) = Π . This is since any
unmarked assignment in Π has to be the satisfying assignment for a 3-monomial
M that has additional assignments not contained in Π . This procedure can be
accomplished in polynomial time in the size of Π .

A close look at the proof of Theorem 5 reveals that following corollary holds.

Corollary 4. For all n and all Π ⊆ Σn it holds that a 3DNF-formula F over
n variables such that Π = D1(F) can be constructed in time polynomial in the
size of Π.

Regarding INVSDi for i ≥ 1 we can in analogy to Lemma 2 state the follow-
ing.

Lemma 6. For all i ≥ 1 it holds that INVSDi ⊆ INVSDi+1 .

Next we will introduce the main idea used in the proof of Theorem 6 at an
easy example, otherwise the proof of Theorem 6 would become slightly intricate.

Lemma 7. For all Π ⊆ {0, 1}∗ with |Π | = 1 it holds that Π ∈ INVSD2 .

Proof. Let Π ⊆ {0, 1}∗ such that |Π | = 1 and let α ∈ {0, 1}n denote the single
string contained in Π , i.e., Π = {α}.

We will define a Σp
2 -3DNF-formula (F, X, Y) with D2(F) = {α}, X =

{x1, x2, . . . , xn}, and Y = {y1, y2, . . . , yn−3}. The formula F is defined as

F = (xα
1

1 ∧ xα
2

2 ∧ y1) ∨
(y1 ∧ xα

3

3 ∧ y2) ∨
(y2 ∧ xα

4

4 ∧ y3) ∨
. . . ∨

(yn−4 ∧ xα
n−2

n−2 ∧ yn−3) ∨

(yn−3 ∧ xα
n−1

n−1 ∧ xα
n

n),

Inverse Problems Have Inverse Complexity 85

where for any variable z, z0 = z and z1 = z. It remains to show that D2(F) =
{α}.

First, observe that when assigning α to the variables from X the formula
F is satisfied independent of the assignment of the variables from Y . Second,
let α′ ∈ {0, 1}n, α ̸= α′, be an assignment for the variables from X . Since
α ̸= α′ there exists 1 ≤ i ≤ n such that αi ̸= α′i. However, it follows that the
assignment α′β, where βj = 0 for all j smaller than i − 2 and βj = 1 for all
other j, does not satisfy F .

This shows that the only assignment for the variables of X such that for all
assignments of the variables from Y the formula F is satisfied is indeed α.

The main idea of the proof of Lemma 7 can be also used to prove the main
result of this section. Similar to Theorem 4 we have that all syntactically correct
set of proof are contained in INVSD2 .

Theorem 6. For all n and all Π ⊆ {0, 1}n it holds that Π ∈ INVSD2 .

Proof. Let Π ⊆ {0, 1}n, Π = {α1,α2, . . . ,αk}. Just as in the proof of Lemma 7
we will construct a formula F such that D2(F) = Π . Informally, the formula F
will consist of k subformulas in 3DNF F1, F2, . . . , Fk such that for all 1 ≤ i ≤ k,
D2(Fi) = {αi}.

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn−3} be disjoint sets. For
each i, 1 ≤ i ≤ k we define a Σp

2 -3DNF-formula (Fi, X, Y) as follows:

Fi = (xα
1
i

1 ∧ x
α2

i
2 ∧ y1) ∨

(y1 ∧ x
α3

i
3 ∧ y2) ∨

. . . ∨

yn−3 ∧ x
αn−1

i
n−1 ∧ x

αn
i

n).

The Σp
2 -3DNF-formula (F, X, Y) is defined via F = F1 ∨ F2 ∨ . . . ∨ Fk.

It follows from the proof of Lemma 7 that for each i, 1 ≤ i ≤ k, there is
exactly one assignment α for the variables of X , namely αi, such that for all
assignments β for the variables of Y , we have that Fi(α,β) is satisfied. It follows
that D2(F) = Π .

The proof of Theorem 6 contains an algorithm that given a set of assignments
Π ⊆ Σn constructs a type-2-3DNF-formula (F, X, Y) such that D2(F) = Π .
We hence have the following corollary.

Corollary 5. For all n and all Π ⊆ Σn it holds that a type-2-3DNF-formula
(F, X, Y) such that Π = D2(F) can be constructed in time polynomial in the
size of Π.

In light of Lemma 6 we also have

Corollary 6. INVSDi ∈ P for all i ≥ 1.

86 T. Berg, H. Hempel

Rounding off this section, we recall the verifier Si (i ∈ N) defined as

Si(F,α) ↔ (F, X, Y1, . . . , Yi−1) is a type-i-formula ∧ (∀β1 ∈ {0, 1}|Y1|)
(∃β2 ∈ {0, 1}|Y2|) . . . (Q βi−1 ∈ {0, 1}|Yi−1|)[F (α,β1, ...,βi−1) = 1]

where Q = ∀ if i is even and Q = ∃ if i is odd. It can be seen as the natural
verifier for the language Σp

i SAT.

Corollary 7. INVSSi ∈ P for all i ≥ 1.

The corollary again is obvious since every type-i-3DNF-formula is a type-i-
formula.

Acknowledgments The authors would like to thank the anonymous ref-
erees for their very helpful comments.

References

1. Tobias Berg and Harald Hempel. Inverse problems have inverse complexity, 2008. Tech-
nical Report, FSU Jena.

2. Hubie Chen. Inverse NP problems. In Mathematical foundations of computer science
2003, volume 2747 of Lecture Notes in Comput. Sci., pages 338–347. Springer, Berlin,
2003.

3. Michael R. Garey and David S. Johnson. Computers and intractability. W. H. Freeman
and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness, A Series
of Books in the Mathematical Sciences.

4. Edith Hemaspaandra, Lane A. Hemaspaandra, and Harald Hempel. All superlinear in-
verse schemes are coNP-hard. Theoret. Comput. Sci., 345(2-3):345–358, 2005.

5. Lane A. Hemaspaandra and Mitsunori Ogihara. The complexity theory companion. Texts
in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2002.

6. Dimitris Kavvadias and Martha Sideri. The inverse satisfiability problem. SIAM J.
Comput., 28(1):152–163 (electronic), 1999.

7. Michael Krüger and Harald Hempel. Inverse Hamiltonian cycle and inverse 3-D matching
are coNP-complete. In Algorithms and computation, volume 4288 of Lecture Notes in
Comput. Sci., pages 243–252. Springer, Berlin, 2006.

8. Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular expres-
sions with squaring requires exponential space. In FOCS, pages 125–129. IEEE, 1972.

9. Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Com-
pany, Reading, MA, 1994.

10. Larry J. Stockmeyer. The polynomial-time hierarchy. Theoret. Comput. Sci., 3(1):1–22
(1977), 1976.

