
µ-calculus Pushdown Module Checking with
Imperfect State Information

Benjamin Aminof1, Axel Legay2, Aniello Murano3, and Olivier Serre4

1 Hebrew University, Jerusalem 91904, Israel.
2 University of Liège, Belgium.

3 Università degli Studi di Napoli “Federico II”, 80126 Napoli, Italy.
4 LIAFA, CNRS & Université Paris VII, France.

Abstract. The model checking problem for open systems (module checking)
has recently been the subject of extensive study. The problem was first studied
by Kupferman, Vardi, and Wolper for finite-state systems and properties ex-
pressed in the branching time logicsCTL andCTL∗. Further study continued
mainly in two directions: considering systems equipped with a pushdown store,
and considering environments with imperfect information about the system.
A recent paper combined the two directions and considered theCTL pushdown
module checking problem in the imperfect information setting, i.e., in the case
where the environment has only a partial view of the system control states and
pushdown store content. It has been shown that this problem is undecidable
when the environment has imperfect information about the pushdown store
content, while it is decidable and 2Exptime-complete when the imperfect in-
formation only concerns control states. It was left open whether the latter
remains decidable also for more expressive logics. In this paper, we answer
this question in the affirmative, showing that the pushdown module check-
ing problem with imperfect information about the control states is decidable
and 2Exptime-complete for the propositional and the graded µ-calculus, and
3Exptime-complete forCTL∗.

1 Introduction

A main distinction in system modeling is between closed systems, whose behav-
ior is totally determined by the program, and open systems, which are systems
where the program interacts with an external environment [HP85, Hoa85]. In
order to check whether a closed system satisfies a required property we trans-
late the system into a formal model (such as a transition system), specify the
property with a temporal-logic formula (such as CTL [CE81], CTL∗ [EH86],
and µ-calculus [Koz83]), and check formally that the model satisfies the for-
mula. This process is called model checking ([CE81, QS81]). Checking whether
an open system satisfies a required temporal logic formula is much harder, as
one has to consider the interaction of the system with all possible environments.

In this paper, we consider open systems which are modeled in the framework
introduced by Kupferman, Vardi, and Wolper. Concretely, in [KV96, KVW01],
an open finite-state system is described by an extended transition system called
a module, whose set of states is partitioned into system states (where the sys-

333

334 B. Aminof, A. Legay, A. Murano, O. Serre

tem makes a transition) and environment states (where the environment makes
a transition). Given a module M, describing the system to be verified, and a
branching time temporal logic formula ϕ, specifying the desired behavior of the
system, the problem of model checking a module, called module checking, asks
whether for all possible environments, M satisfies ϕ. In particular, it might be
that the environment does not enable all the external choices. Module check-
ing thus involves not only checking that the full computation tree obtained by
unwinding M (which corresponds to the interaction of M with a maximal en-
vironment) satisfies the specification ϕ, but also that every tree obtained from
it by pruning children of environment nodes (this corresponds to the different
choices of different environments) satisfies ϕ. For example, consider an ATM
machine that allows customers to deposit money, withdraw money, check bal-
ance, etc. The machine is an open system, and an environment for it is a subset
of the set of all possible infinite lines of customers, each with their own plans.
Accordingly, there are many different possible environments to consider.

The finite-state system module checking problem, forCTL andCTL∗ formu-
las, has been investigated in [KV96, KVW01]; while for propositional µ-calculus
formulas it has been investigated in [FM07]. In all these cases, it has been shown
that module checking is exponentially harder than model checking. However,
an interesting aspect of these results is that they bear on the corresponding
automata-based results for closed systems [KVW00], which gives the hope for
practical implementations and applications.

Recently, the module checking idea has been extended to pushdown systems
[BMP05], and it has been shown that CTL and µ-calculus pushdown mod-
ule checking is 2Exptime-complete, whileCTL∗ pushdown module checking is
3Exptime-complete [BMP05, FMP07]. Another extension of the module check-
ing idea has been the investigation of environments with imperfect information.
The first results on the subject were dedicated to finite-state systems [KV97].
In this framework, every state of the module is a composition of visible and
invisible variables, where the latter are hidden from the environment. While a
composition of a module M with an environment with perfect information cor-
responds to arbitrary disabling of transitions in M, the composition of M with
an environment with imperfect information is such that whenever two compu-
tations of the system differ only in the values of invisible variables along them,
the disabling of transitions along them coincide. In [KV97] it has been shown
thatCTL andCTL∗ module checking with imperfect information is harder than
module checking with perfect information. The results in [KV97] were recently
extended in [AMV07] to pushdown systems. In this framework, environments
with imperfect information about the system’s control state and pushdown
store content are considered. Like in the finite-state case, the control states
are assignments to Boolean control variables, some of which are visible and
some of which are not. Similarly, symbols of the pushdown store are assign-
ments to Boolean visible and invisible pushdown store variables. It has been
shown in [AMV07] that in the presence of imperfect information, CTL push-
down module-checking becomes undecidable, and that the undecidability relies

Lecture Notes in Computer Science 335

upon hiding information about the pushdown store. Indeed, it was shown that
CTL pushdown module checking with imperfect state information but visible
pushdown store is decidable and 2Exptime-complete.

[AMV07] left open the question whether the pushdown module checking
problem with imperfect state information, but visible pushdown store, is still
decidable when more expressive logics are considered. In this paper we answer
this question in the affirmative. Our main contribution is showing that this
problem is decidable and 2Exptime-complete for the propositional µ-calculus
and the graded µ-calculus [KSV02]1, and 3Exptime-complete for CTL∗. The
lower bound follows from the known perfect information case. For the upper
bound we use an automata theoretic approach, and reduce the problem to
the emptiness problem of a semi-alternating pushdown parity tree automaton
(PD-SPT). These are alternating pushdown parity tree automata that behave
deterministically on the pushdown store content. That is, two copies of the
automaton that read the same input, from two configurations that have the
same top of pushdown store, must push the same value into the pushdown store.
In this paper, we show that unlike alternating pushdown parity tree automata,
for which the emptiness problem is undecidable2, the emptiness problem for
PD-SPT is solvable in 2Exptime, which allows us to get the required upper
bound for our problem.

2 Preliminaries

In this section, we first recall the concept of open system. Then, we introduce
the logics that will be model checked.

2.1 Open Systems.

Let Υ be a finite set. An Υ -tree is a prefix closed subset T ⊆ Υ ∗. The elements
of T are called nodes and the empty word ε is the root of T . For v ∈ T , the
set of children of v (in T) is child(T, v) = {v · x ∈ T | x ∈ Υ}. Given a node
v = u · x, with u ∈ Υ ∗ and x ∈ Υ , we define last(v) to be x. The complete
Υ -tree is the tree Υ ∗. For v ∈ T , a (full) path π of T from v is a minimal set
π ⊆ T , such that v ∈ π and for each v′ ∈ π, such that child(T, v′) ̸= ∅, there
is exactly one node in child(T, v′) belonging to π. Note that every w ∈ Υω can
be thought of as an infinite path in the tree Υ ∗, namely the path containing all

1 The graded µ-calculus extends the propositional µ-calculus by allowing graded modalities,
which enable statements about the number of successors of a state.
2 Since the emptiness problem of the intersection of two context free languages is undecid-
able [HU79], the emptiness problem of alternating pushdown automata is undecidable, already
in the case of finite words.

336 B. Aminof, A. Legay, A. Murano, O. Serre

the finite prefixes of w. For an alphabet Σ, a Σ-labeled Υ -tree is a pair ⟨T, V ⟩
where T is an Υ -tree and V : T → Σ maps each node of T to a symbol in Σ.

An open system is a system that interacts with its environment and whose
behavior depends on this interaction. We consider the case where the environ-
ment has imperfect information about the system, i.e., when the system has
internal variables that are not visible to its environment. We describe such a
system by a module M = ⟨AP, Ws, We, w0, R, L,∼=⟩, where AP is a finite set of
atomic propositions, Ws is a set of system states, and We is a set of environment
states. We assume that Ws ∩We = ∅, and call W = Ws ∪We the set of M’s
states. The state w0 ∈ W is the initial state, R ⊆ W ×W is a total transition
relation, L : W → 2AP is a labeling function that maps each state of M to the
set of atomic propositions that hold in it, and ∼= is an equivalence relation on
W . A module M is closed if We = ∅. States that are indistinguishable by the
environment are equivalent according to ∼=. We write [W] for the set of equiv-
alence classes of W under ∼=. For the environment, the states of the system
are actually the equivalence classes themselves. The equivalence class [w] of a
state w ∈ W is called the visible part of w. We write vis(w), instead of [w], to
emphasize this.

Given ⟨w, w′⟩ ∈ R, w′ is a successor of w. For each state w ∈ W , we denote
by succ(w) the set (possibly empty) of w’s successors. A computation of M is
a sequence w0 · w1 · · · of states, such that for all i ≥ 0 we have ⟨wi, wi+1⟩ ∈ R.
The set of all (maximal) computations of M starting from the initial state w0

can be described by an AP -labeled W -tree ⟨TM, VM⟩ called a computation tree,
which is obtained by unwinding M in the usual way. Each node v = v1 · · · vk

of ⟨TM, VM⟩ describes the (partial) computation w0 · v1 · · · vk of M, with the
root ε corresponding to w0. The children of v are exactly all nodes of the form
v1 · · · vk · w, where w ranges over all the successors of vk in M. We extend
the definition of vis to nodes in the natural way. Thus, the visible part of a
node v is vis(v) = vis(v1) · · · vis(vk). The labeling VM of a node v depends on
the state it corresponds to (its last state), i.e., VM(v) = L(last(v)). Also, if v
corresponds to an environment state we say that v is an environment node.

Whenever M interacts with an environment ξ, its possible moves from envi-
ronment states (i.e., states in We) depend on the behavior of ξ. We can think of
an environment to M as a strategy ξ : [W]∗ → {⊤,⊥} that maps a finite his-
tory s of a computation, as seen by the environment, to either ⊤ or ⊥, meaning
that the environment respectively allows or disallows M to trace s (obviously,
if s is a successor of a system state, the decision whether to trace s or not is
made by the system, and we ignore the environment’s value of ξ(s)). Observe
that if an environment disallows M to trace s, it effectively disallows M to
trace any of the successors of s. Note that one can either require that for every
y ∈ [W]∗, if ξ(x) = ⊥ then ξ(x · y) = ⊥, or simply ignore the value ξ(x · y). We
chose the latter. We say that the tree ⟨[W]∗, ξ⟩ maintains the strategy applied
by ξ, and we call it a strategy tree. We denote by M✁ ξ the AP -labeled W -tree
induced by the composition of ⟨TM, VM⟩ with ξ; that is, the AP -labeled W -tree
obtained by pruning from ⟨TM, VM⟩ subtrees according to ξ. Note that by the

Lecture Notes in Computer Science 337

definition above, ξ may disable all the children of a node v. Since we usually do
not want the environment to completely block the system, we require that at
least one child of each node is enabled. In this case, we say that the composition
M✁ ξ is deadlock-free. Given a module M, and a strategy tree ⟨[W]∗, ξ⟩ for an
environment ξ, an AP -labeled W -tree ⟨T, V ⟩ corresponds to M ✁ ξ iff:

– The root of T corresponds to w0.
– For v ∈ T with last(v) ∈ Ws, we have child(T, v) = {v ·w1, . . . , v ·wn}, where

succ(last(v)) = {w1, . . . , wn}.
– For v ∈ T with last(v) ∈ We, there exists a nonempty subset {w1, . . . , wk}

of succ(last(v)) such that child(T, v) = {v · w1, . . . , v · wk}. Furthermore,
for all w in {w1, . . . , wk} we have that ξ(vis(v · w)) = ⊤, while for all w in
succ(last(v)) \ {w1, . . . , wk} we have that ξ(vis(x · w)) = ⊥.

– For every node v ∈ T , we have that V (v) = L(last(v)).

For a module M and a temporal logic formula ϕ defined over AP , we say that
M reactively satisfies ϕ, denoted M |=r ϕ, if M✁ ξ satisfies ϕ, for every envi-
ronment ξ for which M ✁ ξ is deadlock-free. The problem of deciding whether
M |=r ϕ is called the module checking problem with imperfect information.

2.2 Logics.

In this paper, we consider ϕ to be either a CTL∗ or a propositional/graded
µ-calculus formula. The syntax and semantics ofCTL∗ and µ-calculus are well
known, and we assume that the reader is familiar with them (for references,
see [Koz83] and [KVW00]). In the rest of this section, we focus on graded µ-
calculus, which is an extension of the propositional µ-calculus that allows graded
modalities. These modalities are denoted by ⟨n⟩ (“exist at least n-successors”)
and [n] (“all but at most n successors”), respectively.

Formally, we have the following. Let AP and Var be finite and pairwise
disjoint sets of atomic propositions and propositional variables. The set of graded
µ–calculus formulas is the smallest set such that (i) true and false are formulas;
(ii) p and ¬p, for p ∈ AP , are formulas; (iii) x ∈ Var is a formula; (iv) if ϕ1

and ϕ2 are formulas, n is a non negative integer, and y ∈ V ar, then ϕ1 ∨ ϕ2,
ϕ1∧ϕ2, ⟨n⟩ϕ1, [n]ϕ1, µy.ϕ1(y), and νy.ϕ1(y) are also formulas. Observe that we
use positive normal form, i.e., negation is applied only to atomic propositions.
We often refer to the graded modalities ⟨n⟩ϕ1 and [n]ϕ1 as, respectively, atleast
formulas and allbut formulas, and assume that the integers in these operators
are given in binary coding: the contribution of n to the length of each of the
formulas ⟨n⟩ϕ and [n]ϕ is ⌈log n⌉, rather than n.

The definition of the semantics of graded µ-calculus w.r.t an AP -labeled W -
tree ⟨T, V ⟩ is similar to that of the standard µ-calculus, except for the graded
modalities. Informally, an atleast formula ⟨n⟩ϕ holds at a node w of the tree if
ϕ holds in at least n + 1 children of the node. Dually, the allbut formula [n]ϕ

338 B. Aminof, A. Legay, A. Murano, O. Serre

holds in a node of the tree K if ϕ holds in all but at most n of its successors.
Due to space limitation, we refer the reader to [KSV02] (also [BLMV06]) for a
formal description of the full semantics.

3 Imperfect Information Pushdown Module Checking

In this section, we consider infinite-state modules which are induced by Open
Pushdown Systems (OPD) [AMV07]. In our framework, the environment has
imperfect information about the internal control states of the system, but the
pushdown store is visible.

Definition 1. An OPD is a tuple S = ⟨AP, Q, q0,Γ, ♭, δ, η, Env⟩, where AP is a
finite set of atomic propositions; Q is a finite set of (control) states ; and q0 ∈ Q
is an initial state. We assume that Q ⊆ 2V ∪H , where V and H are disjoint
finite sets of visible and invisible control variables, respectively. Γ is a finite
pushdown store alphabet; ♭ ̸∈ Γ is the pushdown store bottom symbol, and we
use Γ♭ to denote Γ ∪ {♭}. The transition relation δ ⊆ (Q × Γ♭) × (Q × Γ ∗

♭) is
finite; η : Q × Γ♭ → 2AP is a labeling function; and Env ⊆ Q × Γ♭ is used to
specify the set of environment configurations. The size |S| of S is |Q|+ |Γ |+ |δ|,
with |δ| =

∑
((p,γ),(q,β))∈δ |β|.

A configuration of S is a pair (q,α), where q is a control state and α ∈ Γ ∗ ·♭ is
a pushdown store content. We write top(α) for the leftmost symbol of α, and call
it the top of the pushdown store α. The OPD moves according to the transition
relation. Thus, ((p, γ), (q,β)) ∈ δ implies that if the OPD is in state p, and the
top of the pushdown store is γ, then it can move to state q, pop γ and push
β. We assume that ♭ is always present at the bottom of the pushdown store,
and nowhere else. Note that we make this assumption also about the various
pushdown automata we use later. For a control state q ∈ Q, the visible part of q
is vis(q) = q∩V . The visible part of a configuration (q,α), is thus vis((q,α)) =
(vis(q),α). As for modules, the designation of a configuration of an OPD as an
environment configuration is known to the environment. Thus, we require that
for every two configurations (q,α) and (q′,α′), such that vis(q) = vis(q′), it
holds that (q, top(α)) ∈ Env iff (q′, top(α′)) ∈ Env.

Definition 2. An OPD S = ⟨AP, Q, q0,Γ, ♭, δ, η, Env⟩ induces an infinite-state
module MS = ⟨AP, Ws, We, w0, R, L,∼=⟩, possibly with invisible information,
where AP is a set of atomic propositions; Ws ∪ We = Q × Γ ∗ · ♭ is the set
of configurations; We is the set of configurations (q,α) such that (q, top(α)) ∈
Env; w0 = (q0, ♭) is the initial configuration; R is a transition relation, where
((q, γ · α), (q′,β)) ∈ R iff there exist ((q, γ), (q′,β′)) ∈ δ such that β = β′ · α;
L((q,α)) = η(q, top(α)) for all (q,α) ∈ W ; and for every two configurations
w, w′ ∈W , we have that w ∼= w′ iff vis(w) = vis(w′).

Lecture Notes in Computer Science 339

To describe the interaction of an OPD S with its environment we consider the
interaction of the environment with the induced module MS . Indeed, every
environment ξ of S can be represented by a strategy tree ⟨[W]∗, ξ⟩, and the
composition MS ✁ ξ of ⟨[W]∗, ξ⟩ with ⟨TMS , VMS ⟩ describes all the computa-
tions of S allowed by the environment ξ.

We consider the pushdown module checking problem with imperfect state in-
formation, i.e., given an OPD S and a formula ϕ, decide whether MS |=r ϕ.

The pushdown module checking problem with imperfect state information is
known to be 2Exptime-complete when ϕ is a CTL formula [AMV07]. In this
paper, we answer an open question of [AMV07] and show that the problem
remains 2Exptime-complete when considering ϕ to be a propositional or a
graded µ-calculus formula, and that it becomes 3Exptime-complete when ϕ is
aCTL∗ formula. For the upper bound, we reduce our problem to the emptiness
problem of a semi-alternating pushdown parity tree automata.

3.1 Semi-Alternating Pushdown Tree Automata.

We start with the definition of semi-alternating pushdown parity tree automata
(PD-SPT), first introduced in [AMV07] w.r.t. a Büchi acceptance condition.
A PD-SPT is a tuple A = ⟨Σ, D,Γ, Q, q0, ♭, δ, F ⟩, where Σ is a finite input
alphabet, D is a finite set of directions, Γ is a finite pushdown store alphabet,
Q is a finite set of states, q0 ∈ Q is the initial state, ♭ ̸∈ Γ is the pushdown store
bottom symbol, and F is a parity acceptance condition (to be defined later).
Moreover, δ is a finite transition relation defined as a function δ : Q×Σ×Γ♭ →
B+(D × Q × Γ ∗

♭), where, as usual, Γ♭ = Γ ∪ {♭}, and B+(D × Q × Γ ∗
♭) is the

set of all finite positive Boolean combinations of triples (d, q,β), where d is a
direction, q is a state, and β is a word made of pushdown store symbols. We
also allow the formulas true and false. We write S ∈ δ(p,σ, γ) to denote that
S is a set of tuples (d, q,β) that satisfy δ(p,σ, γ).

What makes the automaton semi-alternating is the requirement that for
every d ∈ D, σ ∈ Σ, p, p′ ∈ Q (possibly the same state), and γ ∈ Γ , if (d, q,β)
appears in δ(p,σ, γ), and (d, q′,β′) appears in δ(p′,σ, γ), then β = β′. That is,
two copies of the automaton that read the same input, from two configurations
that have the same top symbol of the pushdown store, and proceed in the same
direction, must push the same value into the pushdown store. In particular, it
follows that in every run, two copies of the automaton that are reading the
same node of an input tree have the same pushdown store content. Note that if
we remove the semi-alternation requirement the resulting automaton is called
alternating pushdown parity tree automaton (PD-APT).

As a special case of PD-APT, we consider nondeterministic pushdown parity
tree automata (PD-NPT), where the concurrency feature (i.e., the ∧ operator
in δ) is not allowed. That is, whenever a PD-NPT visits a node x of the input
tree, it sends to each successor (direction) of x at most one copy of itself. More

340 B. Aminof, A. Legay, A. Murano, O. Serre

formally, a PD-NPT is a PD-APT in which δ is in disjunctive normal form, and
in each conjunct each direction appears at most once. Note that if A is a PD-
APT with Γ = ∅, its pushdown store is neutralized, hence, A is simply called
an alternating parity tree automaton (APT), and we can abbreviate and write
A = ⟨Σ, D, Q, q0, δ, F ⟩, where δ : Q × Σ → B+(D × Q). Similarly, a PD-NPT
with an empty pushdown store alphabet is called a nondeterministic parity tree
automaton (NPT).

A run of a PD-SPT A, on a Σ-labeled tree ⟨T, V ⟩, with T = D∗, is a
(D∗× Q × Γ ∗ · ♭)-labeled N-tree ⟨Tr, r⟩, such that the root is labeled with
(ε, q0, ♭) and the labels of each node and its successors satisfy the transition
relation. Formally, a (D∗×Q×Γ ∗ · ♭)-labeled tree ⟨Tr, r⟩ is a run of A on ⟨T, V ⟩
iff

– r(ε) = (ε, q0, ♭), and
– for all x ∈ Tr such that r(x) = (y, p, γ · α), there is an n ∈ N such that the

successors of x are exactly x·1, . . . x·n, and for all 1 ≤ i ≤ n we have r(x·i) =
(y · di, pi,βi · α) for some {(d1, p1,β1), . . . , (dn, pn,βn)} ∈ δ(p, V (y), γ).

For a path π ⊆ Tr, let infr(π) ⊆ Q be the set of states that appear in the
labels of infinitely many nodes in π. For a parity condition F = {F1, F2, . . . , Fk},
with F1 ⊆ F2 ⊆ · · · ⊆ Fk = Q, we have that π is accepting iff the minimal index
i, for which infr(π) ∩ Fi ̸= ∅, is even. The number k is called the index of
the automaton. A run ⟨Tr, r⟩ is accepting iff all its paths are accepting. The
automaton A accepts an input tree ⟨T, V ⟩ iff there is an accepting run of A
on ⟨T, V ⟩. The language of A, denoted L(A), is the set of Σ-labeled trees with
branching degree D accepted by A. We say that an automaton A is nonempty
iff L(A) ̸= ∅. Given a PD-SPT A = ⟨Σ, D,Γ, Q, q0, ♭, δ, F ⟩, we define the size
of δ as the sum of the lengths of the satisfiable (i.e., not false) formulas that
appear in δ(q,σ, γ), for some q,σ, and γ.

3.2 Simulating a PD-SPT by a PD-NPT.

As mentioned in [AMV07], alternating pushdown automata are not equivalent
to nondeterministic ones. However, as we show here, the limitations imposed on
semi-alternating automata allow us to translate a PD-SPT to an equivalent PD-
NPT3. A key observation is that since a pushdown store operation performed by
a semi-alternating automaton does not depend on the current (or next) control
states, we can split the transition function of a PD-SPT into two functions:
a state transition function δQ, and a pushdown store update function δΓ , as
follows. Given a PD-SPT A = ⟨Σ, D,Γ, Q, q0, ♭, δ, F ⟩, let δQ : Q × Σ × Γ♭ →
B+(D×Q) be the projection of δ on B+(D×Q). That is, δQ(q,σ, γ) is obtained

3 The translation used in [AMV07], for semi-alternating pushdown Büchi tree automata,
made a crucial use of the Büchi acceptance condition, and can not be extended to the parity
acceptance condition.

Lecture Notes in Computer Science 341

from δ(q,σ, γ) by replacing every element (d, q,β) that appears in δ(q,σ, γ) with
(d, q). The pushdown store update function δΓ : Σ × Γ♭ ×D → Γ ∗

♭ , is a partial
function; for every (p,σ, γ) ∈ Q × Σ × Γ♭ and every (d, q,β) ∈ D × Q × Γ ∗

♭ ,
such that (d, q,β) appears in δ(p,σ, γ), we let δΓ (σ, γ, d) = β. Since A is semi-
alternating, δΓ is well defined. Observe that for every (p,σ, γ) ∈ Q×Σ×Γ♭ we
have that δ(p,σ, γ) can be obtained from δQ(p,σ, γ) by replacing every (d, q)
that appears in δQ(p,σ, γ) with (d, q, δΓ (σ, γ, d)).

Consider a Σ-labeled tree ⟨T, V ⟩, with T = D∗. Note that for every node
x ∈ T and every run of A on ⟨T, V ⟩, the pushdown store content of all the
copies of A that visit x is the same, and only depends on x. We can thus define
a function ∆Γ : T → Γ ∗

♭ , giving for every node x its associated pushdown
store content, as follows: (1) ∆Γ (ε) = ♭, and (2) for all x · d ∈ T we have
∆Γ (x · d) = δΓ (V (x), γ, d) · β, where ∆Γ (x) = γ · β, and γ ∈ Γ♭.

Annotating input trees with pushdown store symbols enables us to simulate
a PD-SPT by an APT running on the annotated version of an input tree. Given
a Σ-labeled tree ⟨T, V ⟩, we define its ΓA-annotation to be the (Σ×Γ♭)-labeled
tree ⟨T, U⟩, obtained by letting U(x) = (V (x), top(∆Γ (x))), for every x ∈ T .

Lemma 1. Let A = ⟨Σ, D,Γ, Q, q0, ♭, δ, F ⟩ be a PD-SPT. There is an APT Ã,
such that A accepts ⟨T, V ⟩ iff Ã accepts the ΓA-annotation of ⟨T, V ⟩.

Proof. Consider the APT Ã = ⟨Σ × Γ♭, D, Q, q0, δ̃, F ⟩, where δ̃(q, (σ, γ)) =
δQ(q,σ, γ). It is not hard to see that every run r = ⟨Tr, r⟩ of A on ⟨T, V ⟩
induces a corresponding run r′ = ⟨Tr, r′⟩ of Ã on the ΓA-annotation of ⟨T, V ⟩,
and vice versa. The connection between r and r′ being that for every x ∈ Tr,
we have that r(x) = (y, p,α) iff r′(x) = (y, p) and ∆Γ (x) = α. ⊓'

By [MS87], every APT can be translated to an equivalent NPT. Hence,
Lemma 1 implies that if A is a PD-SPT, then there is an NPT A′ such that
A accepts ⟨T, V ⟩ iff A′ accepts the ΓA-annotation of ⟨T, V ⟩. This allows us to
translate A to an equivalent PD-NPT A′′ (running on the same input trees as
A). Given a Σ-labeled tree, A′′ generates on the fly its ΓA-annotation and runs
A′ on the annotated tree. Formally, we have the following:

Theorem 1. Every PD-SPT can be translated to an equivalent PD-NPT.

Proof. Let A = ⟨Σ, D,Γ, Q, q0, ♭, δ, F ⟩ be a PD-SPT and Ã = ⟨Σ×Γ♭, D, Q, q0, δ̃,
F ⟩ be an APT derived from A by Lemma 1. By [MS87], Ã has an equiv-
alent NPT A′ = ⟨Σ × Γ♭, D, Q′, q′0, δ

′, F ′⟩. Consider the PD-NPT A′′ =
⟨Σ, D,Γ, Q′, q′0, ♭, δ

′′, F ′⟩, where for every (p,σ, γ) ∈ Q′ ×Σ × Γ♭, we have that
δ′′(p,σ, γ) is obtained from δ′(p, (σ, γ)) by replacing every (d, q) that appears
in δ′(p, (σ, γ)), with (d, q, δΓ (σ, γ, d)). Since A′ is nondeterministic, so is A′′.
Given a Σ-labeled tree ⟨T, V ⟩, it is not hard to see that for every x ∈ T , the
pushdown store of every copy of A′′ that visits x contains exactly ∆Γ (x). Hence,
A′′ accepts ⟨T, V ⟩ iff A′ accepts the ΓA-annotation of ⟨T, V ⟩, i.e., iff A accepts
⟨T, V ⟩. ⊓'

342 B. Aminof, A. Legay, A. Murano, O. Serre

3.3 The Emptiness Problem of PD-SPT.

Looking at the automata transformations performed in Theorem 1 and Lemma 1
we see that the only transformation that incurs a blowup in the size of the
automaton is the transformation of the APT Ã to the NPT A′. By [MS87],
given an APT with n states and index k, running over D∗ trees, one can build
an equivalent NPT with (nk)O(nk) states, an O(nk) index, and a transition
relation of size (nk)O(|D|nk). Hence, starting with a PD-SPT A with n states
and index k, our algorithm yields an equivalent PD-NPT A′′ with (nk)O(nk)

states, an O(nk) index, and a transition relation of size (nk)O(|D|nk). It is worth
noting that the blowup is independent of the size of the transition relation of
A. By [KPV02], the emptiness of A′′ can be decided in time exponential in
the product of the number of states, the index, and the size of the transition
relation of A′′. Overall, we get the following corollary:

Corollary 1. The emptiness problem for a PD-SPT with n states and index k,
running on D∗ trees, can be solved in time double-exponential in |D|nk.

4 Solving Pushdown Module Checking with Imperfect
State Information

We first show that the pushdown module checking problem with imperfect state
information, for µ-calculus, graded µ-calculus, andCTL∗, can be reduced to the
emptiness problem of PD-SPT.

Basically, we extend the automata theoretic approach used in [AMV07]
for CTL pushdown module checking with imperfect state information. Before
presenting the formal reduction, let us briefly recap the approach taken by
[AMV07], and discuss the main changes required to adapt it to the problem we
address. Given an OPD S, and aCTL formula ϕ, one builds an automaton AS,ϕ

that accepts {⊤,⊥}-labeled trees corresponding to strategies ξ, whose compo-
sition with MS is deadlock-free and satisfies ϕ. Intuitively, a run of AS,ϕ on
an input strategy tree ξ proceeds by simulating an unwinding of the module
MS , pruned at each step accordingly to the strategy ξ; copies of the automaton
which simulate nodes in the computation tree of MS that are indistinguishable
by the environment are sent to the same direction in the input tree. The re-
sulting run tree of AS,ϕ on ξ is basically a replica of the composition MS ▹ ξ,
and the fact that it satisfies the formula ϕ is checked on the fly, by employing
in AS,ϕ the classical alternating-automata approach for model checkingCTL.

When considering CTL∗ or µ-calculus, adapting the construction used in
[AMV07] basically amounts to replacing the embedded alternating automaton
that does the on-the-fly model checking: instead of using an automaton that
handlesCTL, one uses an automaton that handlesCTL∗ (or µ-calculus). Since
an alternating automaton that does µ-calculus model checking is linear in the

Lecture Notes in Computer Science 343

size of the formula, while one that doesCTL∗ model checking is exponential in
the size of the formula [KVW00], the automaton AS,ϕ has O(|S| ∗ |ϕ|) states
in the case of µ-calculus, and O(|S| ∗ 2|ϕ|) states in the case of CTL∗. It is
important to note that the acceptance condition of AS,ϕ is essentially that of
the embedded model checking automaton. Hence, unlike in [AMV07], where a
Büchi condition was enough, for the more expressive logics that we consider
here, we need a stronger acceptance condition, namely, a parity condition, for
which solving the emptiness problem requires stronger machinery.

The extension of the construction used in [AMV07] is slightly more deli-
cate when considering graded µ-calculus. Given a graded µ-calculus formula
ϕ, one possible approach is to translate ϕ into an equivalent µ-calculus for-
mula (without graded modalities). Essentially, as pointed out in [KSV02], one
introduces new atomic propositions p1, . . . , pb, (where b is the largest number
used in the graded modalities in ϕ) and replaces every atleast formula ⟨n⟩ψ by∨

{i1,...,in+1}⊆{1,...,b}
∧

1≤j≤n+1⟨0⟩(ψ ∧ pij), and dually for allbut formulas. One
also has to conjoin ϕ with a formula stating that exactly one of the p1, . . . , pb

holds at each state, and that successors that are labeled with the same pi agree
on their label with respect to all the formulas in the closure of ϕ. Unfortunately,
since the numbers in the graded modalities are coded in binary, such a trans-
lation may result in a µ-calculus formula which is exponentially larger than ϕ;
resulting in an overall exponentially worse complexity for the graded µ-calculus,
compared to the un-graded one. In order to avoid this extra exponent, in the
context of satisfiability, [KSV02] introduced graded automata. However, graded
automata do not transfer directly to the imperfect information setting. Fortu-
nately, there is another solution. Instead of expanding the graded modalities
at the formula stage, as suggested above, we can expand them as we build the
transition relation of AS,ϕ. Thus, for example, the transition relation of AS,ϕ

will specify that a copy of the automaton, that is responsible for verifying that
an atleast formula ⟨n⟩ψ holds at a certain configuration of the OPD, should
send n + 1 copies of itself to one of the exponentially many possible subsets
of n + 1 successors of the current configuration. This expansion of the graded
modalities allows AS,ϕ to handle graded µ-calculus formulas using an embed-
ded regular µ-calculus model checker (without graded modalities). This comes
at the price of AS,ϕ having an exponentially larger transition relation than if
graded modalities were not present; but does not affect the number of states,
or the index, of AS,ϕ. Since our algorithm for checking the emptiness of PD-
SPT is such that its complexity does not depend on the size of the transition
relation of the PD-SPT, we handle graded µ-calculus formulas with the same
complexity as we do regular µ-calculus formulas.

Theorem 2. Consider an OPD S and a propositional, or a graded, µ-calculus
(resp. CTL∗) formula ϕ, over S’s atomic propositions. There is a PD-SPT
AS,ϕ with O(|S| ∗ |ϕ|) states (resp. O(|S| ∗ 2|ϕ|)), and an index O(|ϕ|), such
that L(AS,ϕ) is exactly the set of strategies ξ for which MS ▹ ξ is deadlock-free
and satisfies ϕ.

344 B. Aminof, A. Legay, A. Murano, O. Serre

Proof (Sketch). We give the construction of AS,ϕ for the graded µ-calculus.
The construction for the propositional µ-calculus is very similar, and the one
forCTL∗ is obtained by replacing the embedded classical alternating-automata
model checker with a CTL∗ one.

We first give some extra definitions regarding graded µ-calculus. From now
on, we refer to µ and ν as fixpoint operators. A propositional variable y occurs
free in a formula if it is not in the scope of a fixpoint operator, and bounded
otherwise. We use λ to denote a fixpoint operator µ or ν. For a formula λy.ϕ(y),
we write ϕ(λy.ϕ(y)) to denote the formula that is obtained from λy.ϕ(y) by
one-step unfolding; i.e., ϕ(λy.ϕ(y)) is obtained by replacing each free occurrence
of y in ϕ with λy.ϕ(y). For technical convenience, we restrict our attention to
formulas without free variables (also called sentences). The closure cl(ϕ) of a
graded µ-calculus sentence ϕ is the smallest set of graded µ-calculus formulas
that contains ϕ and is closed under sub-formulas (that is, if ψ is in the closure,
then so do all its sub-formulas that are sentences) and fixpoint applications (that
is, if λy.ϕ(y) is in the closure, then so is ϕ(λy.ϕ(y))). As proved in [BLMV06],
for every graded µ-calculus formula ϕ, the number of elements in cl(ϕ) is linear
in the length of ϕ. Accordingly, we define the size |ϕ| of ϕ to be the number of
elements in cl(ϕ).

Let S = ⟨AP, Q, q0,Γ, ♭, δ, η, Env⟩ be an OPD, let ϕ be a graded µ-calculus
formula (guarded4, without free variables, and in positive normal form), and
let MS = ⟨AP, Ws, We, w0, R, L,∼=⟩ be the module induced by S. We build an
automaton AS,ϕ that accepts {⊤,⊥}-labeled trees corresponding to strategies
ξ, whose composition with MS is deadlock-free and satisfy ϕ. Intuitively, a run
of AS,ϕ on an input strategy tree ξ, proceeds by simulating an unwinding of
the module MS , pruned at each step according to the strategy ξ; copies of the
automaton simulating nodes in the computation tree of MS that are indistin-
guishable by the environment are sent to the same direction in the input tree.
The resulting run tree of AS,ϕ on ξ is essentially a replica of the composition
MS ▹ ξ, and the fact that it satisfies the formula ϕ is checked on the fly
by employing in AS,ϕ the usual alternating-automata approach for µ-calculus
model checking. In the full computation tree of MS , the set of directions is
G = {(q,β) | ((p,α), (q,β)) ∈ R for some p,α and β}. Since in S the pushdown
store is completely visible to the environment, the set of directions of the input
strategy trees is D = {(vis(q),β) | ((p,α), (q,β)) ∈ R for some p, q,α and β}.

Finally, due to the fact that all copies of the automaton sent to direction
(vis(q),β) push β into the pushdown store, the resulting automaton AS,ϕ is

4 A graded µ-calculus formula is guarded if for every variable y, all the occurrences of y that
are in a scope of a fixpoint modality λ are also in the scope of a graded modality that is itself
in the scope of λ. For example, the formula νy.(p∨ [0]y) is guarded, but the formula νy.(p∨y)
is not. Given a graded µ-calculus formula, we can construct in linear time an equivalent
guarded formula (see [KVW00] for a proof for µ-calculus, which is easily extendible to the
graded setting). Accordingly, we assume that all formulas are guarded. This is essential for
the correctness of our construction (it guarantees that transitions involving fixpoint formulas
are well defined).

Lecture Notes in Computer Science 345

semi-alternating. As in [KVW00] we are going to use a function split to avoid
the problem of having states with a component in cl(ϕ) that is a disjunction or a
conjunction. Without the use of split, a run of the automaton may have no states
that correspond to a fixpoint sub-formula of ϕ that is part of a conjunction or
a disjunction, which makes it impossible to correctly define the acceptance
condition.

We formally define AS,ϕ = ⟨{⊤,⊥}, D,Γ, Q′, q′0, ♭, δ
′, F ⟩, where

– Q′ = (Q× (cl(ϕ) ∪ {p⊤})× {∀, ∃}× {pe, ps})∪ {q′0}. States with the compo-
nent p⊤ are used to check that the composition of MS with the strategy is
deadlock-free, while states with a component in cl(ϕ) check that this compo-
sition satisfies ϕ. The components pe and ps are used to flag that the currently
simulated node, of the computation tree of MS , is a child of an environment
or a system node, respectively. Clearly, the simulation should respect the
strategy pruning specifications only if they correspond to children of envi-
ronment nodes; that is, only if the current state q contains pe. Every state
is either in an existential or a universal mode, as specified by the ∀ and ∃
components. When the automaton is in a universal state (q,ϕ, ∀, pe) with a
pushdown store content α, it accepts all strategies for which (q,α) in MS is
either pruned or satisfies ϕ (where p⊤ is satisfied iff the root of the strategy
is labeled ⊤). When the automaton is in an existential state (q,ϕ, ∃, pe) with
a pushdown store content α, it accepts all strategies for which (q,α) in MS

is not pruned and satisfies ϕ.
– δ′ is a function δ′ : Q′×Σ×Γ♭ → B+(D×Q′×Γ ∗

♭). Before giving the formal
definition, we show an example. Consider, a transition from the configuration
(⟨p, ∀Xψ, ∃, pe⟩, γ ·α), where (p, γ) ∈ Env. First, if the transition to (p, γ ·α)
is disabled (that is, the automaton reads ⊥), then, as the current mode is
existential, the run is rejecting. If the transition to (p, γ · α) is enabled, then
the successors of (p, γ · α) that are enabled should satisfy ψ. Note that all
the successors of (p, γ · α) that are indistinguishable by the environment are
sent by the automaton to the same direction v. This guarantees that either
all these successors are enabled by the strategy (in case the letter to be read
in direction v is ⊤) or all are disabled (in case the letter in direction v is
⊥). In addition, since the requirement to satisfy ψ concerns only successors
of (p, γ · α) that are enabled, the mode of the new states is universal. The
copies of AS,ϕ that check the composition with the strategy to be deadlock-
free guarantee that at least one successor of (p, γ · α) is enabled. As noted
earlier, the enable/disable instructions of the strategy are ignored in every
configuration (p, γ ·α) that is a successor of a system configuration. Also note
that since we assume that no configuration in MS has no successors, the
conjunctions and disjunctions in δ′ cannot be empty.
We now formally define the transition function δ′. For (p, γ · α) ∈ W , we
define the set of successors of (p, γ · α) in MS, to be s(p, γ) = {(q,β) |
((p, γ), (q,β)) ∈ δ}. The transition function δ′ : Q′×Σ×Γ♭ → B+(D×Q′×Γ ∗

♭)
is defined as follows. In the rules below, for the sake of succinctness, we

346 B. Aminof, A. Legay, A. Murano, O. Serre

consider m ∈ {∃, ∀}×{pe, ps}, h ∈ AP∪{true, false}. Also, given a transition
from (⟨p,ψ, m⟩,⊤, γ), we let px = pe if (p, γ) ∈ Env and px = ps, otherwise.

– δ′(q′0,⊥, ♭) = false and
δ′(q′0,⊤, ♭)= δ′(⟨q0, p⊤, ∃, ps⟩,⊤, ♭) ∧ δ′(⟨q0,ϕ, ∃, ps⟩,⊤, ♭).

– For all p,ψ, and γ, we have
δ′(⟨p,ψ, ∀, pe⟩,⊥, γ) = true and δ′(⟨p,ψ, ∃, pe⟩,⊥, γ) = false.

– For all p,ψ, and γ, we have
δ′(⟨p,ψ, ∀, ps⟩,⊥, γ) = δ′(⟨p,ψ, ∀, ps⟩,⊤, γ) and
δ′(⟨p,ψ, ∃, ps⟩,⊥, γ) = δ′(⟨p,ψ, ∃, ps⟩,⊤, γ).

– δ′(⟨p, p⊤, m⟩,⊤, γ) = (
∨

(q,β)∈s(p,γ)(vis(q,β), ⟨q, p⊤, ∃, px⟩,β))∧
(
∧

(q,β)∈s(p,γ)(vis(q,β), ⟨q, p⊤, ∀, px⟩,β)).
– δ′(⟨p, h, m⟩,⊤, γ) = true if h ∈ η((p, γ)), or h = true.
– δ′(⟨p, h, m⟩,⊤, γ) = false if h ̸∈ η((p, γ)), or h = false.
– δ′(⟨p,¬h, m⟩,⊤, γ) = true if h ̸∈ η((p, γ)), or h = false.
– δ′(⟨p,¬h, m⟩,⊤, γ) = false if h ∈ η((p, γ)), or h = true.
– δ′(⟨p,ψ1 ∧ ψ2, m⟩,⊤, γ) = split(δ′(⟨p,ψ1, m⟩,⊤, γ) ∧ δ′(⟨p,ψ2, m⟩,⊤, γ)).
– δ′(⟨p,ψ1 ∨ ψ2, m⟩,⊤, γ) = split(δ′(⟨p,ψ1, m⟩,⊤, γ) ∨ δ′(⟨p,ψ2, m⟩,⊤, γ)).
– δ′(⟨p, [n]ψ, m⟩,⊤, γ) =

split(
∨

Y ⊆s(p,γ)∧|Y |=|s(p,γ)|−n

∧
(q,β)∈Y (vis(q,β), ⟨q,ψ, ∀, px⟩,β)).

– δ′(⟨p, ⟨n⟩ψ, m⟩,⊤, γ) =
split(

∨
Y ⊆s(p,γ)∧|Y |=n+1

∧
(q,β)∈Y (vis(q,β), ⟨q,ψ, ∃, px⟩,β)).

– δ′(⟨p, µy.ϕ(y), m⟩,⊤, γ) = split(δ′(⟨p,ϕ(µy.ϕ(y)), m⟩,⊤, γ)).
– δ′(⟨p, νy.ϕ(y), m⟩,⊤, γ) = split(δ′(⟨p,ϕ(νy.ϕ(y)), m⟩,⊤, γ)).

The definition of the function split : B+(D×Q′×Γ ∗
♭)→ B+(D×Q′×Γ ∗

♭) is
a simple adaptation of the definition found in [KVW00]. For every d ∈ D, q ∈
Q, m ∈ {∃, ∀}× {pe, ps} and β ∈ Γ ∗

♭ we have the following:

– split(true) = true, split(false) = false.
– split(θ1 ∨ θ2) = split(θ1) ∨ split(θ2) and split(θ1 ∧ θ2) = split(θ1) ∧ split(θ2).
– If ψ ∈ cl(ϕ) is of the form p,¬p, [n]ψ′, ⟨n⟩ψ′, µy.ψ′(y) or νy.ψ′(y), then

split(d, ⟨p,ψ, m⟩,β) = (d, ⟨p,ψ, m⟩,β).
– split(d, ⟨p,ψ1 ∨ ψ2, m⟩,β) = split(d, ⟨p,ψ1, m⟩,β) ∨ split(d, ⟨p,ψ2, m⟩,β).
– split(d, ⟨p,ψ1 ∧ ψ2, m⟩,β) = split(d, ⟨p,ψ1, m⟩,β) ∧ split(d, ⟨p,ψ2, m⟩,β).

– It remains to define the acceptance condition F . Let d be the maximal
alternation level of (fixpoint) sub-formulas of ϕ. Denote by Gi the set
of all ν-formulas in cl(ϕ) of alternation level i. Denote by Bi the set of
all µ-formulas in cl(ϕ) of alternation depth less than or equal to i. Now,
F = {F0, F1, . . . , F2d}, where F0 = ∅ and for every 1 ≤ i ≤ d we have F2i−1 =
F2i−2∪(Q×Bi×{∀, ∃}×{pe, ps}), and F2i = F2i−1∪(Q×Gi×{∀, ∃}×{pe, ps}).
Clearly, F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ F2d. Since by the definition of PD-SPT a path
π of a run r is accepting if the minimal i with Inf(π)∩Fi ̸= ∅ is even, by our
definition of F , such an index i corresponds to the outermost fixpoint formula
that was visited infinitely often. Thus, the acceptance condition makes sure

Lecture Notes in Computer Science 347

that, if a fixpoint formula is visited infinitely often, then this is a greatest
fixpoint formula, and that all of its least fixpoint super-formulas are visited
only finitely many times.

Let us now discuss the size of AS,ϕ. It is easy to see that |Q′| = O(|Q| ∗ |ϕ|),
and |δ′| = O(|δ| ∗ |ϕ|). Hence, the size of AS,ϕ is O(|S| ∗ |ϕ|).

Finally, we show that AS,ϕ is semi-alternating. It is sufficient to show that
for every (t,β) ∈ D, σ ∈ Σ, p, p′ ∈ Q′, and γ ∈ Γ , if ((t,β), p′,β′) appears
in δ′(p,σ, γ) then β = β′. To see that, notice that ((t,β), p′,β′) appears in
δ′(p,σ, γ) only if vis(q,β′) = (t,β), for some q ∈ Q. Since by definition (because
the pushdown store is completely visible) we have that vis(q,β′) = (vis(q),β′),
and we are done. ⊓$

Theorem 2 implies that MS |=r ψ iff the language of the automaton AS,¬ψ
is empty. We can now show the main result of the paper.

Theorem 3. Given an OPD S and a formula ϕ, the pushdown module check-
ing problem with imperfect state information is 2Exptime-complete if ϕ is a
propositional or a graded µ-calculus formula, and 3Exptime-complete if ϕ is a
CTL∗ formula.

Proof. The lower bound follows from the known bound for pushdown module
checking with perfect information (see [FMP07] for propositional and graded
µ-calculus, and [BMP05] for CTL∗). For the upper bound, by Theorem 2,
it is enough to check that AS,¬ϕ is empty. Recall that when considering
propositional and graded µ-calculus (resp. CTL∗) AS,¬ϕ is a PD-SPT with
n = O(|S| ∗ |ϕ|) (resp. n = O(|S| ∗ 2|ϕ|)) states, and index k = O(|ϕ|).
Let MS = ⟨AP, Ws, We, w0, R, L,∼=⟩ be the module induced by S. Observe
that the set of directions of the strategy trees that are the input of AS,¬ϕ is
D = {(vis(q),β) | ((p,α), (q,β)) ∈ R for some p, q,α and β}, and it is bounded
from above by |S|. By Corollary 1, the emptiness of AS,¬ϕ can be decided in
time double exponential in |D|nk. Thus, deciding if MS |=r ϕ can be done in
time double-exponential in |S| ∗ |ϕ| when considering propositional and graded
µ-calculus, and triple-exponential in |S| ∗ |ϕ| when considering CTL∗. ⊓$

Acknowledgment. The first and third author wish to thank Nir Piterman
for useful discussions.

References

[AMV07] B. Aminof, A. Murano, and M.Y. Vardi. Pushdown module checking with imper-
fect information. In CONCUR ’07, LNCS 4703, pages 461–476. Springer-Verlag,
2007.

[BLMV06] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The complexity of enriched
µ-calculi. In ICALP’06, LNCS 4052, pages 540-551, 2006.

348 B. Aminof, A. Legay, A. Murano, O. Serre

[BMP05] Laura Bozzelli, Aniello Murano, and Adriano Peron. Pushdown module checking.
In LPAR’05, LNCS 3835, pages 504–518. Springer-Verlag, 2005.

[CE81] E.M. Clarke and E.A. Emerson. Design and verification of synchronization skele-
tons using branching time temporal logic. In Proceedings of Workshop on Logic
of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.

[EH86] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On branching
versus linear time. J. of the ACM, 33(1):151–178, 1986.

[FM07] A. Ferrante and A. Murano. Enriched µ–calculus module checking. In FOS-
SACS’07, volume 4423 of LNCS, pages 183-197, 2007.

[FMP07] A. Ferrante, A. Murano, and M. Parente. Enriched µ–calculus pushdown module
checking. In LPAR’07, volume 4790 of LNAI, pages 438–453, 2007.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In Logics

and Models of Concurrent Systems, volume F-13 of NATO Advanced Summer
Institutes, pages 477–498. Springer-Verlag, 1985.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

[Koz83] D. Kozen. Results on the propositional mu–calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[KPV02] O. Kupferman, N. Piterman, and M.Y. Vardi. Pushdown specifications. In
LPAR’02, LNCS 2514, pages 262–277. Springer-Verlag, 2002.

[KSV02] O. Kupferman, U. Sattler, and M.Y. Vardi. The complexity of the graded µ-
calculus. In CADE’02, LNAI 2392, pages 423-437, 2002.

[KV96] O. Kupferman and M.Y. Vardi. Module checking. In CAV’96, LNCS 1102, pages
75–86. Springer-Verlag, 1996.

[KV97] O. Kupferman and M. Y. Vardi. Module checking revisited. In Proc. 9th In-
ternational Computer Aided Verification Conference, LNCS 1254, pages 36–47.
Springer-Verlag, 1997.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata-Theoretic Approach to
Branching-Time Model Checking. J. of the ACM, 47(2):312–360, 2000.

[KVW01] O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. Information and
Computation, 164(2):322–344, 2001.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267–276, 1987.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent programs
in Cesar. In Proceedings of the Fifth International Symposium on Programming,
LNCS 137, pages 337–351. Springer-Verlag, 1981.

