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Abstract We investigate the equational theory of several fragments of CCS modulo
(strong) bisimilarity with special attention to restriction and relabelling. The largest
fragment we consider includes action prefixing, choice, parallel composition without
communication, restriction and relabelling. We present a finite equational base (i.e.,
a finite ground-complete and omega-complete axiomatisation) for it, including the
left merge from ACP as auxiliary operation to facilitate the axiomatisation of parallel
composition.

1 Introduction

The Calculus of Communicating Systems (CCS) was developed by Robin Milner in
the late 1970s [8]. This calculus introduced a formal language for describing processes,
using a transition system to give an operational meaning to the expressions in the lan-
guage. In this paper we pay special attention to the restriction and relabelling operators
of CCS.
The restriction operator takes a process and a set of actions as arguments. It delimits

the scope of actions by preventing the execution by the process of the actions in the
set. Restriction is often used to specify the communication topology of a system by
blocking the execution of interleaving actions of parallel processes so that only the
result of (synchronous) communication remains. Restriction is also present in ACP [3],
where it is called encapsulation.
The relabelling operator takes a process and a function from actions to actions. It

renames the actions in the process according to the function, and can be used to in-
stantiate a generic specification for specific needs. In CCS, relabelling is, e.g., used in
defining the so-called linking operation, which is at the core of many of the specifi-
cations offered in [9]. Relabelling is not present in ACP, but it can be added and then
it increases the expressiveness of the language. Namely, Baeten and Bergstra prove
in [2] that the process Queue cannot be specified by means of a finite guarded recur-

∗ A full version of this paper, including omitted proofs and auxilary lemmas is available as CS-
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sive specification over ACP, whereas it can be specified by means of a finite guarded
recursive specification over ACP with renaming.
In [6] (see also [9]), Hennessy andMilner propose an axiomatisation for CCS mod-

ulo bisimilarity that they prove ground-complete (i.e., all valid equations involving
terms without variables are equationally derivable from it). Their axiomatisation is in-
finite, which is unavoidable as proved by Moller [11]. For a finite axiomatisation it is
necessary to add auxiliary operators, e.g., the left merge and communication merge of
ACP [3].
We want to give an equational base (i.e., an axiomatisation that is not just ground-

complete but complete also for equations involving terms with variables) for CCS
modulo bisimilarity. Perhaps surprisingly, no complete axiomatisations of bisimilarity
over languages including restriction and relabelling have been given to date. In [7],
Milner studied an algebra of flowgraphs with operations of (parallel) composition,
restriction and relabelling, and provided a complete axiomatisation for it. In that ref-
erence, however, the notion of equivalence between expressions is purely “structural”,
since two expressions are equated when they denote the same flowgraph up to isomor-
phism.
In this paper we present finite equational bases for fragments of CCS modulo bisim-

ilarity that include restriction and relabelling operators. The largest fragment we con-
sider here includes all the operators from recursion-free CCS, but the parallel compo-
sition operator is limited to pure interleaving and does not allow for synchronisation
between parallel components. Our completeness proofs build on results and techniques
developed in [1], where a finite axiomatisation for the fragment of CCS without restric-
tion and relabelling operators is proved complete.
For our completeness proofs we adopt the classic normal form strategy. This entails

showing that all process terms can be proved equal to some normal form using the ax-
ioms, followed by the construction of a distinguishing valuation that ensures that two
normal forms are equal under this valuation only if they can be proved equal. Both the
above-mentioned steps involve non-trivial extensions of the techniques from [1] for the
languages we consider because, unlike for ground-complete axiomatisations, restric-
tion and relabelling cannot be eliminated from terms. This means that normal forms
may contain occurrences of these operations, and their form will be more complicated
than that considered thus far in the literature. Moreover, in order to implement the lat-
ter step in the above-mentioned proof technique, distinguishing valuations will need to
be defined in such a way that they allow us to detect the restrictions and relabellings
that occur in the normal forms.
For the shape of the normal forms in the present paper it is crucial that restriction

and relabelling distribute over parallel composition. This is the reason that we now
only consider an operator for parallel composition that is limited to pure interleaving;
neither restriction nor relabelling distribute over parallel composition in the presence of
synchronisation. So an obvious avenue for future work is the technically challenging
problem of giving a complete axiomatisation of full CCS modulo bisimilarity, with
restriction, relabelling and parallel composition that allows for synchronisation.
The paper is organised as follows. In Sect. 2 we introduce the fragments of CCS that

will be discussed in this paper. In Sects. 3–5 we propose equational bases for three
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fragments of CCS: first only with the restriction operator, then only with the relabelling
operator, and finally with both operators.

2 Preliminaries

In this section we introduce a process calculus that is obtained from Milner’s pure
CCS [9] by omitting recursion, replacing parallel composition by an operation for
pure interleaving (i.e., which does not include synchronisation between components),
and adding the left merge of Bergstra and Klop [3]. The calculus gives rise to a process
algebra P for which we will present a (finite) axiomatisation. The main result of this
paper states that this axiomatisation is complete.
We fix a set of action labels L , a set of co-action labels L disjoint fromL and a

bijection · :L →L . We define the set of actions A as L ∪L . The inverse of · we
shall also denote by ·, and thus a= a for each a ∈A . In [9], Milner assumes that L
andL are infinite. However, to obtain a finite axiomatisation, we need to require that
the sets L and L are finite. We also fix a countably infinite set of variables V . The
meta-variables a, b, and c generally range overA ; x, y, and z range over V .
A relabelling function is a function f : A → A such that f (a) = f (a) for each

a ∈ A . With every relabelling function f : A → A we associate a function f −1 :
P(A )→P(A ) such that f−1(A ′)= {a | f (a)∈A ′} for eachA ′ ⊆A . The identity
relabelling function Id is defined by Id(a) = a for each a ∈ A . For each relabelling
function f and L⊆L , we write f ! L for the relabelling function defined by

( f ! L)(a) =
{
f (a) if a ∈ L or a ∈ L,
a otherwise.

The meta-variables f and g generally refer to relabelling functions, and K and L
refer to subsets ofL .
The set of process terms T\,[] is generated by the following grammar:

T ::= 0 | x | a.T | T+T | T ∥ T | T ! T | T\L | T[ f ]

where a ∈ A , x ∈ V , L ⊆ L , and f : A → A is a relabelling function. The meta-
variables p, q and r generally range over T \,[]. We use the following convention for
the binding power of the operators in decreasing order: relabelling [ f ] and restriction
\ L (tightest binding), prefixing a. , parallel composition ∥ and left merge ! ,
alternative composition + . In the remainder of the paper we also need notation for
the following subsets of T\,[]: we use T\ to denote the set of all process terms without
occurrences of relabelling operators, and T [] to denote the set of all process terms
without occurrences of restriction operators.
Process terms that do not contain any variables are called closed. The set of closed

process terms is denoted by T C
\,[]. We give an operational semantics to closed terms
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using the binary relations a−→ (a ∈ A ) on T C
\,[] defined by means of the specification

in Table 2.1.

1
a.p a−→ p

2
p a−→ p′

p+q a−→ p′
3

q a−→ q′

p+q a−→ q′

4 p a−→ p′

p ∥ q a−→ p′ ∥ q
5

q a−→ q′

p ∥ q a−→ p ∥ q′
6 p a−→ p′

p ! q a−→ p′ ∥ q

7
p a−→ p′ a,a ̸∈ L
p\L a−→ p′ \L

8
p a−→ p′

p[ f ] f (a)−→ p′[ f ]

Table 2.1: Operational semantics

If p a−→ p′ for some a ∈A , then we call p′ a residual of p. If for a term p and an
action a there does not exist a term p ′ such that p a−→ p′, then we write p ̸ a−→.
It is technically convenient to extend the usage of the rules in Table 2.1 by letting

them define binary relations a−→ (a ∈A ) on the full set of terms T\,[]. (Since there are
no operational rules for variables, this effectively means that variables are assigned the
“same behaviour” as 0.)
The depth d(p) can then be defined for all process terms p ∈ T \,[] as the maximum

number of consecutive transitions that can be performed starting from p, i.e.,

d(p) =max{n | ∃p1,...,pn∈T\,[] s.t. p
a1−→ p1

a2−→ . . .
an−→ pn}.

The operational semantics assigns behaviour to closed terms. The notion of bisimi-
larity [12] relates closed process terms that exhibit equal behaviour.
Definition 1. A bisimulation is a symmetric binary relationR on T C

\,[] such that pR q
implies

if p a−→ p′, then there exists some q′ ∈ T C
\,[] such that q

a−→ q′ and p′ R q′.

Closed process terms p,q ∈ T C
\,[] are said to be bisimilar (notation: p↔ q) if a bisimu-

lation relationR exists such that pR q.
It is well-known that↔ is an equivalence relation.We denote by [p] the equivalence

class of a closed process term p∈T C
\,[] modulo bisimilarity, and byT C

\,[]/↔ the set of all
such equivalence classes. The rules in Table 2.1 are all in de Simone’s format [13], and
from this it follows that bisimilarity is compatible with the syntactic constructs of our
process calculus. So T C

\,[]/↔ is the universe of a process algebra with a distinguished
element 0, unary operators a. (for all a ∈ A ), [ f ] (for all relabelling functions f :
A →A ), and \L (for all L ⊆L ), and binary operators + , ∥ and ! defined
as follows:

0= [0] , [p] ∥ [q] = [p ∥ q] , [p]\L= [p\L] ,
a.[p] = [a.p] , [p] ! [q] = [p ! q] , [p][ f ] = [p[ f ] ] ,
[p]+ [q] = [p+q] .
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Henceforth we shall denote this process algebra by P. Members of P are called pro-
cesses and will be ranged over by p, q and r like process terms. This convention will
not lead to confusion because it will be clear from the context which is meant.
To be able to reason syntactically about P, we define how process terms can be used

to denote elements of P and present an inference system for the derivation of equations
between process terms that are valid in P.

Definition 2. A valuation is a mapping ν : V → P. Such a mapping may be applied to
process terms in T\,[] using the evaluation mapping [[·]]ν :T\,[]→ P defined inductively
by:

[[0]]ν = 0 , [[q+ r]]ν = [[q]]ν +[[r]]ν , [[q\L]]ν = [[q]]ν\L ,
[[x]]ν = ν(x) , [[q ∥ r]]ν = [[q]]ν ∥ [[r]]ν , [[q[ f ]]]ν = [[q]]ν[ f ] ,
[[a.q]]ν = a.[[q]]ν , [[q ! r]]ν = [[q]]ν ! [[r]]ν .

Note that the evaluation mapping maps process terms to members of the algebra
P, given an assignment of processes to variables. When an evaluation mapping is ap-
plied to a closed process term, the assignment is irrelevant and the evaluation mapping
amounts to interpreting the syntactic constructs as the corresponding operations of the
algebra. Thus, without fixing a specific evaluation mapping, we can use a closed term
to denote an element of P; this element of P is then, of course, the equivalence class
that contains the particular closed term. For example, the closed term a.0+b.0 denotes
the element [[a.0+b.0]]ν of P.

A process equation is a pair of process terms (p, q) written as p≈ q. The equation
p ≈ q is valid in P if [[p]]ν = [[q]]ν for all valuations ν : V → P. Henceforth, we write
p↔ q if p≈ q is valid in P.

(A1) x+ y ≈ y+ x
(A2) (x+ y)+ z ≈ x+(y+ z)
(A3) x+ x ≈ x
(A4) x+0 ≈ x

(LM1) x ! 0 ≈ x
(LM2) 0 ! x ≈ 0
(LM3) a.x ! y ≈ a.(x ∥ y)
(LM4) (x+ y) ! z ≈ x ! z+ y ! z
(LM5) (x ! y) ! z ≈ x ! (y ∥ z)

(M) x ∥ y ≈ x ! y+y ! x

(RS1a) x\ /0 ≈ x
(RS1b) x\L ≈ 0
(RS2) 0\L ≈ 0

(RS3) a.x\L ≈
{
0 if a,a ∈ L
a.(x\L) if a,a ̸∈ L

(RS4) (x+ y)\L ≈ x\L+ y\L
(RS5) (x ! y)\L ≈ x\L ! y\L
(RS6) (x\L)\K ≈ x\ (L∪K)

(RL1) x[Id] ≈ x
(RL2) 0[ f ] ≈ 0
(RL3) (a.x)[ f ] ≈ f (a).(x[ f ])
(RL4) (x+ y)[ f ]≈ x[ f ]+y[ f ]
(RL5) (x ! y)[ f ] ≈ x[ f ] ! y[ f ]
(RL6) (x[ f ])[g] ≈ x[g◦ f ]

(RR1) x[ f ]\L ≈ (x\ f−1(L))[ f ]
(RR2) (x\L)[ f ] ≈ (x\L)[g] if f ! (L −L) = g ! (L −L)

Table 2.2: The set of axioms E
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Table 2.2 presents a set of process equations E that are all well-known to be valid
in P (see, e.g., [6, 9, 5, 3]). We shall use the process equations in E as the axioms of an
inference system with as rules the familiar rules of equational logic [4]. Henceforth,
whenever we write p≈ q we mean that the process equation p≈ q is derivable within
this inference system. (In the cases in which we intend to highlight that only a proper
subset of the axioms in E is needed to derive p ≈ q, we shall explicitly mention the
needed axioms.)
Since the axioms are valid in P and the rules of equational logic preserve validity,

we have the following soundness result.

Proposition 1 (Soundness). For all process terms p,q ∈T\,[], if p≈ q, then p↔ q.

The main goal of this paper is to prove that the inference system is also complete,
i.e., that, for all process terms p,q ∈ T\,[], if p↔ q then p ≈ q; if this is the case,
then it follows that E is an equational base for the algebra P. Our completeness proof
proceeds according to the following strategy:

1. Identify an appropriate notion of normal form and prove that every term in T \,[] is
rewritable according to the axioms in E to a normal form. To establish completeness,
it is then enough to prove that s↔ t implies s≈ t for all normal forms s and t.

2. Associate with every two normal forms s and t a distinguishing valuation, i.e., a
valuation ∗ : V → P such that if s ̸≈ t, then [[s]]∗ ̸= [[t]]∗. From this it follows that
s↔ t implies s≈ t for all normal forms s and t.

The first step is fairly straightforward, even though the normal forms we need to con-
sider involve all the operations in the calculus; the crux of our completeness proof is to
find a suitable distinguishing valuation and prove the property described in the second
step. Our distinguishing valuation combines several ideas that are best explained sepa-
rately. To this end, we shall, as stepping stones towards our main result, first apply the
aforementioned strategy to obtain completeness results for the fragments T \ and T[]

of our calculus. In Sect. 3 we consider the fragment without relabelling. In Sect. 4 we
study the fragment without restriction. Finally, in Sect. 5 we consider the full calculus.
We use the summation ∑i∈I pi (modulo A1, A2 and A4) to denote an alternative

composition of the form p1+ p2+ . . . for a finite set I and processes pi (i∈ I). We also
define 0= ∑i∈ /0 pi for the empty index set. Furthermore, we shall use an abbreviation
for iterated prefixing, defining a0.0= 0 and ai+1.0= a.(ai.0).
We conclude this section with a few properties pertaining to the algebra P that we

shall need in the rest of the paper.
The binary relations a−→ (a ∈ A ) defined earlier for T C

\,[] induce binary relations
a−→ (a ∈A ) on P as follows: for all p, p ′ ∈ T C

\,[] we define that [p]
a−→ [p′] iff for all

q ∈ [p] there exists a q′ ∈ [p′] such that q a−→ q′.

Proposition 2. For all p,q,r ∈ P

1. p= 0 iff p ̸ a−→ for all a ∈A ;
2. a.p b−→ r iff a= b and p= r;
3. p+q a−→ r iff p a−→ r or q a−→ r;
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4. p ! q a−→ r iff there exists some p′ ∈ P such that p a−→ p′ and r = p′ ∥ q;
5. p ∥ q a−→ r iff p ! q a−→ r or q ! p a−→ r;
6. p\L a−→ r iff a,a ̸∈ L and there exists some q ∈ P such that p a−→ q and r = q\L;
7. p[ f ] b−→ r iff there exist some a ∈ A and q ∈ P such that f (a) = b, p a−→ q and
r = q[ f ].

Bisimulation equivalence preserves the notion of depth (i.e., the closed process
terms in an equivalence class have the same depth). Therefore we can define the depth
d(p) of a process p∈ P as the depth of any of its members. As a technical tool we shall
also need the notion of branching degree b(p) of a process p ∈ P defined by

b(p) = |{(a, p′) | p a−→ p′}|.

Lemma 1. For all p,q ∈ P, it holds that
1. b(0) = 0;
2. b(a.p) = 1;
3. b(p+q)≤ b(p)+b(q);
4. b(p ! q) = b(p);
5. b(p ∥ q)≥ b(p) and b(p ∥ q)≥ b(q).

An element p∈ P is parallel prime if p ̸= 0, and p= q ∥ r implies q= 0 or r= 0. A
parallel decomposition of p is a finite multiset [p1, . . . , pn] of parallel primes such that
p= p1 ∥ · · · ∥ pn. The following theorem and corollary are proved in [10].

Theorem 1. Every element of P has a unique parallel decomposition.

Corollary 1. Let p,q,r ∈ P. If p ∥ q= p ∥ r, then q= r.

3 Restriction

In this section we establish a completeness result for the fragment of our process cal-
culus that includes the restriction operators, but excludes relabelling operators.
The set of normal formsN\ is generated by the following grammar:

N ::= 0 | a.N | (x\L) !N | N+N

where a ∈ A , x ∈ V , and L ⊂ L . We refer to a.s and (x \L) ! s as simple normal
forms.

Lemma 2. Every process term p ∈ T\ has a normal form s ∈N\ such that p ≈ s is
provable using RS1a–RS6, LM1–LM5, and M.

Because of Lemma 2, each term can be written using the following general form:

∑
i∈I
ai.si + ∑

j∈J
(x j \Lj) ! s j (modulo A1, A2 and A4)
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for finite index sets I,J and with ai ∈A , si,s j ∈N\, x j ∈ V , and L j ⊂L .
For our completeness proof, we define a valuation that allows us to distinguish non-

bisimilar normal forms. The definitions of the distinguishing valuations we use in this
paper are geared towards achieving the properties stated in Lemmas 5 and 6 to follow
(or similar lemmas in the subsequent sections). In particular, distinguishing valuations
will allow us to tell apart the different types of simple normal forms (Lemma 5).

Definition 3. Let w ≥ 1 and let ⌈·⌉ : V → (N− {0,1}) be an injective function. We
define the valuation ⋄w for each variable x ∈ V by:

⋄w(x) = ∑
a∈L

a.ξ⌈x⌉·w with ξi = ∑
a∈L

i

∑
j=1

ai.0.

Note that if s is a simple normal form, then [[s]]⋄w has a unique residual. In the
following lemmas we establish some special properties pertaining to the valuation ⋄ w
when applied to normal forms. These properties will be used to show that ⋄ w is indeed
a distinguishing valuation.
First we state two properties of the process ξ⌈x⌉·w \L, which is a parallel component

of the unique residual of [[(x\L) ! s]]⋄w.

Lemma 3. For all i ≥ 1 and L ⊂ L , the process ξi \ L is parallel prime, and its
branching degree b(ξi \L) is i · |L −L|.

The valuation ⋄w is such that if the parameter w is greater than an estimated high-
est branching degree occurring already in s, then it is possible to determine from the
process [[s]]⋄w whether s has action prefixing or a left merge as head operator. This will
be explained in Lemma 5 below; first we formalise an appropriate estimation of the
highest branching degree occurring in a normal form s.

Definition 4. For all s ∈N\, the estimated highest branching degree esb(s) occurring
in s is defined inductively as follows:

esb(0) = 0, esb(s+ t) = esb(s)+ esb(t),
esb(a.t) =max(1,esb(t)), esb((x\L) ! t) =max(|L −L|,esb(t)),

with a ∈A , x ∈ V , L⊂L and t ∈N\.

Note 1. The lower bound |L −L| in the definition of esb((x\L) ! t) follows from the
definition of ⋄w (see Definition 3), since [[x\L]]⋄w

a−→ ξ⌈x⌉·w \L for all a ∈L −L.

The following lemma shows that the estimated branching degree of s is an upper
bound on the branching degree of [[s]]⋄w.

Lemma 4. For every normal form s ∈N\, b([[s]]⋄w)≤ esb(s).

Lemma 5. Let s,s′ ∈N\ with s simple, and let x ∈ V , L⊂L and w> esb(s).

1. If s= a.s′, then the branching degree of the unique residual of [[s]] ⋄w is smaller than
w.
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2. If s= (x\L) ! s′, then the branching degree of the unique residual of [[s]] ⋄w is larger
than w.

Proof. Assume that p is the residual of s: [[s]]⋄w
a−→ p for some a ∈L . We have the

following two cases:

1. If s= a.s′, then p= [[s′]]⋄w. Because esb(s) <w, by Definition 4 esb(s′)≤ esb(s) <w.
Hence, by Lemma 4, the branching degree of [[s ′]]⋄w is smaller than w.

2. If s= (x\L) ! s′, then p= (ξ⌈x⌉·w \L) ∥ [[s′]]⋄w. We have by Lemma 3 that b(ξ⌈x⌉·w \
L) = ⌈x⌉ ·w · |L −L| > w (given that L⊂L and ⌈x⌉> 1). Because [[s′]]⋄w does not
decrease the branching degree of the residual p (by Lemma 1), we may conclude
that the residual p has a branching degree that exceeds w. ⊓,

When it has been determined from the unique residual of [[s]] ⋄w that s has a left
merge as head operator, then the following key lemma allows us to determine which
variable occurs in its left argument, and by which proper subset of L this variable is
restricted.

Lemma 6. For i, j ≥ 1 and K,L⊂L , if ξi \K = ξ j \L, then K = L and i= j.

Proof. We first show that K = L. Assume that a ∈L −K. By Definition 3 and Propo-
sition 2(6) there exists some r ∈ P such that ξi \K

a−→ r. Therefore ξ j \L
a−→ r also

holds. However, by Proposition 2(6) this also means that a ∈ L − L. The case that
a ∈ L − L is symmetrical. Hence, since a ∈ L −K iff a ∈ L − L, it follows that
K = L.
Because K = L and ξi \K = ξ j \L, we know that b(ξi \K) = b(ξ j \K) and therefore

i · |L −K|= j · |L −K| by Lemma 3. Since K ⊂L , it follows that i= j. ⊓,

The following result states that the valuation ⋄w is indeed distinguishing.

Theorem 2. For every two normal forms s, t ∈N\ with w> esb(s),esb(t), it holds that
if [[s]]⋄w = [[t]]⋄w, then s≈ t modulo A1–A4.

Proof. Assume that [[s]]⋄w = [[t]]⋄w holds; we prove that s ≈ t is derivable using A1–
A4 by induction on the sum of the depths of s and t. We do this by showing that for
every summand si of s there exists a summand t j of t such that si ≈ t j modulo A1–A4.
Consider the following case analysis based on the syntax of an arbitrary summand s i
of s:

1. If si = a.s′i, then [[si]]⋄w
a−→ [[s′i]]⋄w. Because [[s]]⋄w = [[t]]⋄w, there must also be a sum-

mand t j of t such that [[t j]]⋄w
a−→ [[s′i]]⋄w. By Lemma 5 we know that t j must have the

form b.t ′j, because the branching degree of the unique residual of [[t j]]⋄w does not
exceed w.
Given that t j has this form, it can only perform one transition: [[t j]]⋄w

b−→ [[t ′j]]⋄w.
Since also [[t j]]⋄w

a−→ [[s′i]]⋄w it follows that a = b and [[s′i]]⋄w = [[t ′j]]⋄w. By induction
hypothesis we have that s′i ≈ t ′j modulo A1–A4. Hence, we may conclude that s i =
a.s′i ≈ b.t ′j = t j.
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2. If si = (x\K) ! s′i, then, since K ⊂L , [[si]]⋄w
a−→ p for some a ∈L −K. We know

that also a summand t j of t exists such that [[t j]]⋄w
a−→ p. Definition 3 gives us that

p = (ξ⌈x⌉·w \K) ∥ [[s′i]]⋄w. Similarly to the previous case, by Lemma 5 we also know
that t j must have the form (y\L) ! t ′j for some y ∈ V and L⊂L . The residual of t j
after performing an action a ∈L −L is (ξ⌈y⌉·w \L) ∥ [[t ′j]]⋄w (also by Definition 3).
This residual is equal to p, so we know that (ξ⌈x⌉·w\K) ∥ [[s′i]]⋄w= (ξ⌈y⌉·w \L) ∥ [[t ′j]]⋄w.
By Lemma 3 we have that the process ξ⌈x⌉·w \K is parallel prime and has a branch-
ing degree that exceeds w. This process cannot occur in the unique parallel decom-
position of [[t ′j]]⋄w because, by Lemmas 1 and 4, and the assumption of the theo-
rem that w> esb(t), the branching degrees of all processes in the decomposition of
[[t ′j]]⋄w do not exceed w. Conversely, this also holds in a symmetric way for the pro-
cess ξ⌈y⌉·w \L with respect to the unique parallel decomposition of [[s ′i]]⋄w. Hence,
ξ⌈x⌉·w \K = ξ⌈y⌉·w \L.
From ξ⌈x⌉·w \K = ξ⌈y⌉·w \L it follows by Lemma 6 that K = L and ⌈x⌉ ·w= ⌈y⌉ ·w.
Therefore, x= y by injectivity of ⌈·⌉.
We have established that K = L and x = y, so (ξ⌈x⌉·w \K) ∥ [[s′i]]⋄w = (ξ⌈y⌉·w \L) ∥
[[t ′j]]⋄w= (ξ⌈x⌉·w \K) ∥ [[t ′j]]⋄w, and hence, by Corollary 1, [[s′i]]⋄w= [[t ′j]]⋄w. By induction
hypothesis it follows that s′i ≈ t ′j modulo A1–A4, so we may conclude that s i = (x \
K) ! s′i ≈ (y\L) ! t ′j = t j modulo A1–A4.

It follows by a symmetric argument that every summand of t is also provably equal
to a summand of s using the above mentioned equations. Hence, s ≈ s+ t ≈ t modulo
A1–A4. ⊓,

Corollary 2. For all p,q ∈T\ it holds that p≈ q is provable using A1–A4, RS1a–RS6,
LM1–LM5, and M if, and only if, p↔ q.

Proof. The implication from left to right follows from Proposition 1.
For the proof of the implication from the right to the left, we assume that p↔ q. By

Lemma 2, there are two normal forms s and t such that the equations p≈ s and q≈ t
are provable using RS1a–RS6, LM1–LM5, and M. If p ↔ q, then by Proposition 1 and
transitivity of↔ we also know that s↔ t and thus [[s]]⋄w = [[t]]⋄w. Hence, by Theorem 2
we know that s≈ t is provable using A1–A4 and we can conclude that p≈ s≈ t ≈ q.

⊓,

4 Relabelling

In this section we establish a completeness result for the fragment of our process cal-
culus that includes relabelling operators, but excludes restriction operators.
The set of normal formsN [] is generated by the following grammar:

N ::= 0 | a.N | x[ f ] !N | N+N,

where a ∈ A , x ∈ V , and f :L →L is a relabelling function. We refer to a.N and
x[ f ] ! N as simple normal forms.
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Lemma 7. Every process term p ∈ T[] has a normal form s ∈N[] such that p ≈ s is
provable using RL1–RL6, LM1–LM5, and M.

Because of Lemma 7, each term can be written using the following general form:

∑
i∈I
ai.si+ ∑

j∈J
(x j[ f j]) ! s j (modulo A1, A2 and A4)

for finite index sets I,J and with ai ∈A , si,s j ∈N[], x j ∈ V , and relabelling functions
f j :L →L .
Our goal now is to find a distinguishing valuation for each pair of non-bisimilar

normal forms. In the following definitions and lemmas P denotes the set of prime
numbers.

Definition 5. Let ⌊·⌋ :L → P be an injective function, w a prime number larger than
any prime number in the range of ⌊·⌋, and let ⌈·⌉ : V → {m ∈ P | m > w} be another
injective function. We define the valuation ⋄w for each variable x ∈ V by:

⋄w(x) = a.ζ⌈x⌉,w with ζi,w = a.0+ ∑
b∈L

w

∑
j=1

bi·⌊b⌋
j
.0,

where a is an arbitrary action in A .

Our aim in defining the valuation ⋄w is again to be able to distinguish the different
types of simple normal forms that may occur as summands of a normal form. As in
Sect. 3, we will be able to distinguish summands of the form a.s from those of the
form x[ f ] ! s′ since the unique residual of terms with the latter form will have a larger
branching degree than the unique residual of action-prefixed terms—see Lemma 10 to
follow. However, in the definition of ⋄w we also want to ensure that terms of the form
ζi,w[ f ] are prime, and that the sequences of actions those terms afford “encode” the
relabelling function f . We obtain the primality of ζ i,w[ f ] by means of the summand a.0
of ζi,w, whereas we encode relabelling functions by taking sequences of actions whose
lengths are powers of distinct prime numbers. This is enough to ensure that if ζ i,w[ f ]
and ζi,w[g] are bisimilar, then f = g—see Lemma 11 to follow.

Lemma 8. For all i ≥ 1 and relabelling functions f :L →L , the process ζ i,w[ f ] is
parallel prime, and its branching degree is b(ζ i,w[ f ]) = 1+ |L | ·w.

Again, the distinguishing ability of the valuation ⋄w depends on the value of the pa-
rameter w being greater than an estimated highest branching degree occurring already
in s. This is explained in Lemma 10 below; first we formalise an appropriate estimation
of the highest branching degree occurring in a normal form s.

Definition 6. For all s ∈N[], the estimated highest branching degree esb(s) is defined
inductively as follows:

esb(0) = 0, esb(s+ t) = esb(s)+ esb(t),
esb(a.t) =max(1,esb(t)), esb(x[ f ] ! t) =max(1,esb(t)),
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with a ∈A , x ∈ V , relabelling function f :L →L and t ∈N [].

The following lemma shows that the estimated branching degree of s is an upper
bound on the branching degree of [[s]]⋄w.

Lemma 9. For every normal form s ∈N[], b([[s]]⋄w)≤ esb(s).

Lemma 10. Let s,s′ ∈N[] be simple normal forms, x ∈ V , f :L →L a relabelling
function and let w> esb(s).

1. If s= a.s′, then the unique residual of [[s]]⋄w has a branching degree smaller than w.
2. If s = (x[ f ]) ! s′, then the unique residual of [[s]]⋄w has a branching degree larger
than w.

When it has been determined from the unique residual of [[s]] ⋄w that s has a left
merge as head operator, then the following key lemma allows us to determine which
variable and which relabelling function occur in its left argument.

Lemma 11. For i, j ≥ 1 and relabelling functions f ,g :L →L , if ζ i,w[ f ] = ζ j,w[g],
then i= j and f = g.

Proof. From ζi,w[ f ] = ζ j,w[g] it follows that d(ζi,w[ f ]) = d(ζ j,w[g]) and therefore i ·
⌊b⌋w = j · ⌊b⌋w for that b ∈ L for which ⌊b⌋ is largest. Since ⌊b⌋ is positive, i =

j. It remains to prove that f = g. Let b ∈ L . Then ζ i,w[ f ] f (b)−→
(
b(i·⌊b⌋w)−1)[ f ]. By

the assumption that ζi,w[ f ] = ζ j,w[g] and since i = j, it follows that there also exists

some c ∈L such that f (b) = g(c), ζi,w[g] f (c)−→
(
c(i·⌊c⌋v)−1

)
[ f ] and

(
b(i·⌊b⌋w)−1)[ f ] =(

c(i·⌊c⌋v)−1
)
[g]. Hence i ·⌊b⌋w = i ·⌊c⌋v and since ⌊b⌋ and ⌊c⌋ are prime, it follows that

b= c and w= v. Therefore, f (b) = g(b). ⊓+

Using the previous lemmas, and reasoning as in the proof of Theorem 2, we can
now prove that the valuation defined in Definition 5 is indeed distinguishing.

Theorem 3. For every two normal forms s, t ∈N[] with w> esb(s),esb(t), it holds that
if [[s]]⋄w = [[t]]⋄w, then s≈ t modulo A1–A4.

Proof. Assume that [[s]]⋄w = [[t]]⋄w holds; we prove that s ≈ t is derivable using A1–A4
by induction on the sum of the depths of s and t. We do this by showing that for each
summand si of s there exists a summand t j of t such that si ≈ t j modulo A1–A4. By
symmetry this suffices to prove the claim.

1. If si = a.s′i, then [[si]]⋄w
a−→ [[s′i]]⋄w, Because [[s]]⋄w = [[t]]⋄w, there must also be a sum-

mand t j of t such that [[t j]]⋄w
a−→ [[s′j]]⋄w. By Lemma 10 we know that t j must have

the form b.t ′j , because the branching degree of the unique residual of [[t ′j]]⋄w does not
exceed w.
Given that t j has this form, it can only perform one transition: [[t j]]⋄w

b−→ [[t ′j]]⋄w.
Since also [[t j]]⋄w

a−→ [[s′i]]⋄w it follows that a = b and [[s′i]]⋄w = [[t ′j]]⋄w. By induction
hypothesis we have that s′i ≈ t ′j modulo A1–A4. Hence, we may conclude that s i =
a.s′i ≈ b.t ′j = t j.
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2. If si = x[ f ] ! s′i, then [[si]]⋄w
f (a)−→ ζ⌈x⌉,w[ f ] ∥ [[s′i]]⋄w= p. Since [[s]]⋄w = [[t]]⋄w, there must

be a summand t j = y[g] ! t ′j of t such that [[t j]]⋄w
g(b)−→ ζ⌈y⌉,w[g] ∥ [[t ′j]]⋄w = q and p= q.

By Lemma 9, the right-hand side parallel components of p and q have branching
degrees not exceeding w whereas, by Lemma 8, the left-hand side parallel compo-
nents are parallel prime and have branching degree 1+ |L | · w. Using Theorem 1
it follows that ζ⌈x⌉,w[ f ] = ζ⌈y⌉,w[g] and [[s′j]]⋄w = [[t ′j]]⋄w. By Lemma 11 we have that
⌈x⌉ = ⌈y⌉ and f = g. Hence, x = y by injectivity of ⌈·⌉. By induction, we have that
s′i ≈ t ′j modulo A1–A4. Therefore x[ f ] ! s′j is provably equal to a summand of t.

It follows by a symmetric argument that every summand of t is also provably equal
to a summand of s using the above mentioned equations. Hence, s ≈ s+ t ≈ t modulo
A1–A4. ⊓*

Corollary 3. For all process terms p,q ∈ T [] it holds that p≈ q is provable using A1–
A4, RL1–RL6, LM1–LM5, and M if, and only if, p↔ q.

5 Restriction and Relabelling

In this section, we consider the language that includes both restriction and relabelling
operators.
The set of normal formsN\,[] is generated by the following grammar:

N ::= 0 | a.N | (x\L)[ f ] !N | N+N

where a ∈ A , x ∈ V , L ⊂ L , and f : L → L is a relabelling function satisfying
f = f ! (L −L) (i.e., f is the identity on all a ∈ L). We refer to the normal forms a.N
and (x\L)[ f ] ! N as simple normal forms.

Lemma 12. Every process term p ∈ T\,[] has a normal form s ∈N\,[] such that p ≈ s
is provable using RS1a–RS6, RL1–RL6, RR1, RR2, LM1–LM5, and M.

Now, using the previous lemma, each term can be written using the following gen-
eral form:

∑
i∈I
ai.si+ ∑

j∈K
(x j \Lj)[ f j] ! s j (modulo A1, A2, A4, and RR2)

for finite index sets I,J and with ai ∈A , si,s j ∈N\,[], x j ∈ V , Lj ⊂L , and relabelling
functions f j :L →L with f j = f j ! (L −Lj).
A valuation that distinguishes an action prefix from a variable under restriction and

relabelling can be constructed by combining the ideas underlying the valuations pre-
sented in Definitions 3 and 5. The result shown below uses powers of distinct prime
numbers to “encode” the relabelling function and employs a summation over all ac-
tions to allow for the detection of the restricting set.
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Definition 7. Let ⌊·⌋ :L → P be an injective function, w a prime number larger than
any prime number in the range of ⌊·⌋, and let ⌈·⌉ : V → {m ∈ P | m > w} be another
injective function. We define the valuation ⋄w for each variable x ∈ V by:

⋄w(x) = ∑
a∈L

a.χ⌈x⌉,w with χi,w = ∑
a∈L

(
a.0+

w

∑
j=1

ai·⌊a⌋
j
.0
)
.

First, we establish two properties of the process (χ⌈x⌉,w \L)[ f ], which is a parallel
component of the unique residual of [[(x\L)[ f ] ! s]]⋄w.

Lemma 13. For all i> 1, L ⊂L , and relabelling functions f :L →L , the process
(χi,w \L)[ f ] is parallel prime, and its branching degree is | f (L −L)|+ |L −L| ·w.

To enable the valuation ⋄w to distinguish between an action prefix and a term with
the left merge as head operator, as explained in Lemma 15 below, we need an appro-
priate estimation of the highest branching degree occurring in a normal form s.

Definition 8. For all s ∈N\,[], the lower bound estimate of the branching degree of s,
denoted with esb(s), is defined inductively as follows:

esb(0) = 0, esb(s+ t) = esb(s)+ esb(t),
esb(a.t) =max(1,esb(t)), esb((x\L)[ f ] ! t) =max(|L |,esb(t)).

with a ∈A , x ∈ V , L⊂L , relabelling function f :L →L and t ∈N\,[].
The following lemma shows that the estimated branching degree of s is an upper

bound on the branching degree of [[s]]⋄w.

Lemma 14. For every normal form s ∈N\,[], b([[s]]⋄w)≤ esb(s).

Lemma 15. Let s,s′ ∈ N\,[] be simple normal forms, x ∈ V , L ⊂ L , f : L → L a
relabelling function and let w> esb(s).

1. If s= a.s′, then the unique residual of [[s]]⋄w has a branching degree smaller than w.
2. If s= (x\L)[ f ] ! s′, then the unique residual of [[s]]⋄w has a branching degree larger
than w.

The following lemma allows us to determine the variable, the restriction set and
relabelling function in a simple normal form of the shape (x\L)[ f ] ! s.

Lemma 16. For w ∈ P, i, j ∈ {m ∈ P | m > w}, K,L ⊂L , and relabelling functions
f ,g :L →L , if (χi,w \K)[ f ] = (χ j,w \L)[g], then K = L, f ! (L −K) = g ! (L −K)
and i= j.

By following the strategy we adopted in the proofs of Theorems 2 and 3, we can
show that the valuation defined above is indeed distinguishing.

Theorem 4. For every two normal forms s, t ∈N\,[] with w > esb(s),esb(t), it holds
that if [[s]]⋄w = [[t]]⋄w, then s≈ t modulo A1–A4 and RR2.
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Proof. We now prove that s≈ t assuming that [[s]]⋄w = [[t]]⋄w by induction on the sum of
the depths of s and t. We do so by proving that for every summand s i of s a summand
t j of t exists such that si ≈ t j modulo A1–A4 and RR2. Consider the following case
analysis based on the syntax of an arbitrary summand si of s.

1. If si = a.s′i, then [[si]]⋄w
a−→ [[s′i]]⋄w. Because [[s]]⋄w = [[t]]⋄w, there also must be a sum-

mand t j of t such that [[t j]]⋄w
a−→ [[s′i]]⋄w. By Lemma 15 we know that t j must have the

form b.t ′j, because the branching degree of the residual [[t ′j]]⋄w does not exceed w.

Given that t j has this form, it can only perform one transition: [[t j]]⋄w
b−→ [[t ′j]]⋄w.

Since also [[t j]]⋄w
a−→ [[s′i]]⋄w if follows that a = b and [[s′i]]⋄w = [[t ′j]]⋄w. By induction

hypothesis we have that s′i ≈ t ′j modulo A1–A4 and RR2. Hence, we may conclude
that si = a.s′i ≈ b.t ′j = t j.

2. If si = (x\K)[ f ] ! s′i, then, since K ⊂L , [[si]]⋄w
f (a)−→ (χ⌈x⌉,w \K)[ f ] ∥ [[s′i]]⋄w = p (by

Definition 7) for some a ∈L −K. We know that also a summand t j of t exists such

that [[t j]]⋄w
f (a)−→ p. Similarly as in previous case, by Lemma 15, we also know that t j

must have the form (y \ L)[g] ! t ′j for some y ∈ V , L ⊂L , g : L → L such that
g(b)= f (a) for some b∈L −L, and t ′j . The residual of t j after performing an action
g(b) with b ∈L −L is (χ⌈y⌉,w \L) ∥ [[t ′j]]⋄w (also by Definition 7). This residual is
equal to p, so we know that (χ⌈x⌉,w \K)[ f ] ∥ [[s′i]]⋄w = (χ⌈y⌉,w \L)[g] ∥ [[t ′j]]⋄w.
By Lemma 13 we have that the process (χ⌈x⌉,w \K)[ f ] is parallel prime and has a
branching degree that exceeds w. This process cannot occur in the unique parallel
decomposition of [[t ′j]]⋄w because, by Lemma 1 and the fact that w> esb(t)≥ esb(t ′j),
the branching degrees of all processes in the parallel decomposition of [[t ′j]]⋄w do
not exceed w. Conversely, this also holds in a symmetric way for the process
(χ⌈y⌉,w \ L)[g] with respect to the unique parallel decomposition of [[s ′i]]⋄w. Hence
by Theorem 1, (χ⌈x⌉,w \K)[ f ] = (χ⌈y⌉,w \L)[g] and [[s′i]]⋄w = [[t ′j]]⋄w.
From (χ⌈x⌉,w \K)[ f ] = (χ⌈y⌉,w \L)[g] it follows by Lemma 16 that ⌈x⌉= ⌈y⌉, K = L
and f ! (L −K) = g ! (L −K). By the injectivity of ⌈·⌉ we know also that x= y.
Since [[s′i]]⋄w = [[t ′j]]⋄w, by induction hypothesis it follows that s ′i ≈ t ′j modulo A1–A4
and RR2.
Summing up, we have established that K = L, f ! (L −K) = g ! (L −K), x = y,
and s′i ≈ t ′j modulo A1–A4 and RR2, We may therefore conclude that s i = (x\K)[ f ] !
s′i ≈ (y\L)[g] ! t ′j = t j.

The above analysis shows that for each summand si of s there exists a summand t j
of t such that si ≈ ti modulo A1–A4 and RR2. It follows by a symmetric argument
that every summand of t is also provably equal to a summand of s using the above
mentioned equations. Hence, s≈ s+ t ≈ t modulo A1–A4 and RR2. ⊓-

Corollary 4. For all process terms p,q∈T\,[] it holds that p≈ q if, and only if, p↔ q.
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