
And they were thinking? Basic, Logo, Personality and
Pedagogy

John S. Murnane

The ICT in Education and Research Group
The University of Melbourne, Australia

jmurnane@unimelb.edu.au

Abstract. This paper is concerned with some limited aspects of the history of
two programming languages purpose-designed for students learning to program
digital computers: Basic and Logo. The focus is the very different educational
aims and philosophies of the originators of these languages. They are compared
and their early use in schools sketched. While the reasons for teaching students
to write programs were initially based on experience in programming digital
computers for non-educational use, despite extensive research and publications,
it would seem that the teacher of today is not in a much better position to justify
teaching programming than the original pioneers.

Keywords: Computer education; introductory programming languages; history
of computing.

1 Introduction

The introduction of yet another language clearly deserves critical
examination. Feurzeig, Papert, Bollm, Grant, and Solomon [1 p12]

This paper is concerned with the history of programming languages purpose-

designed for students learning to program digital computers. A proper treatment of
this topic would run to a small library and deal with the ideas and intent behind the
form of the language, research on its success in educational use, examples of
classroom use and modifications made as a result of experience, so stringent selection
was necessary. My main interest is in the intent of the creators the languages, so I
began with the idea of examining the educational concepts behind the development of
several of them, but in the end found space for only two, Basic and Logo, and then in
a very constrained form.

The creation of a programming language of any sort is a complex business and the
province of a special elite in the world of programming. Yet the difficulty of the
creation of a language for fields such as business or mathematics for which there is an
existing set of well tried models, pales into insignificance compared to the task of
creating one for educational purposes: a space where a choice must first be made
between various pedagogies, all with their own built-in advantages and disadvantages,

advocates and detractors, before even the form of the language is decided on. Nor will
the educational aim be simple. Is it to be a language to introduce the forms and
disciplines of programming itself, or is it to facilitate a more general development in
problem solving and analytical and logical thinking? Are we teaching computing and
its applications, or are we using programming for some wider educational purpose?
Ham [2 p34] believes that, when it comes to the use of IT in education, “even within
the educational policy and research communities, people do not necessarily agree on
the questions which are worth asking.”

I wish to examine the published thoughts of some of the earliest pioneers who
dared to swim in this very complex sea.

2 The Promise

We have learned how to work with the computer in solving a problem, rather
than submitting a problem for machine solution. Kemeney and Kurtz [3 p22]

Even in the new centaury it is easy to find material critical of the use of computers in
schools, from Cuban’s 2001 [4] characterisation as being “oversold and underused,”
to Cox (2010) [5 p16] who found “the actual integrated use of IT by the teachers is
much lower than might have been expected from so many sustained national and
international programs.” But even allowing that not all teachers use IT brilliantly, it is
hard understand Munro’s [6 p47] criticism that “microcomputers were introduced into
educational institutions with no prior research and with no educational rationale for
their use.” True, they were. When something is new its introduction cannot be based
on research, and the educational rationale must be the belief of the teacher in the
promise the new idea holds. It was the promise the new world of programming held
for all sorts of educational and cognitive advances that attracted the pioneers of
educational programming languages. “Programming,” declared Ershov in 1981 [7 p1]
is “the second literacy.”

Looking back at their a-priori positions on the benefits that writing programs could
bring to their students, one finds a remarkable unity of spirit. Cynically, it could be
argued that in the 1960’s, apart from some rather inflexible Computer Assisted
Instruction (CAI), and some (mostly non-interactive) simulations, writing a program
was about the only educational thing you could do with one. But the pioneers, and
particularly those with a hand in writing specialised educational languages, such as
Kemeny, Kurtz, Feurzeig and Papert, were all convinced that great educational
advantages would come from programming a digital computer, although often for
different educational and cognitive reasons. Weyer and Cannara [8 p3] put it this way:
“If, by a free interpretation of Church’s thesis, any ideas which can be formalised may
be studied concretely via a computer program, then, by learning programming in full
generality, students can learn to construct laboratories to study any ideas they wish to
think about.”

Basic and Logo were both written in the 1960’s, were specifically designed for
educational purposes, and are still in widespread use. A fascinating speculation, now
difficult to resolve from material published of the time, is how much the designers

were influenced by their educational philosophy, and how much by the educational
environment in which they happened to be, and the available tools. Feurzeig and
Papert, operating in the Artificial Intelligence Laboratory at Stanford, the home of
Lisp, not only had an example of a language congruent with their educational ideas,
but one in which their new language could be written. Kemeny and Kurtz had two
very small computers from which they hoped to assemble a useful system, neither of
which had so much as an operating system.

The decade that produced the first educational computer languages is now 50 years
in the past. With the singular exception of anything written by Seymour Papert,
looking back through the papers and reports leaves a distinct impression of teachers
striving: striving towards goals imperfectly grasped, using computing equipment
barely up to the task and hampered by primitive translators, operating systems and
input/output devices. (Papert knew what he was doing from the outset.) Yet the
overall feeling is of high optimism, more positive than one finds across the literature
in 2010. The pioneers knew that programming a computer had educational benefits,
and were going to set about proving it to the world.

3 Basic

Our goal was to provide our user community with friendly access to the
computer. Kemeny and Kurtz [9 p534]

Seymour Papert always complained that besides being a poor language, Basic had
been left for the academic community “to pick up, like cast-off clothing” [10]. There
is some weight to this, for Kemeny and Kurtz, Basic’s authors, do concentrate in their
publications on Basic as Computer Science and do not say much on its pedagogical or
curricular aspects. Their Final Report to the Course Content Improvement Program of
the National Science Foundation, who financed it, is titled “The Dartmouth Time
Sharing System” [3] rather than something suggesting educational advance. It gives
the reasons for teaching programming to college and secondary students as:

• The need for more people to learn to program because of the key roles
computers play in “‘business, industry, government and all forms of
research.”

• To change the attitude “of the typically intelligent person towards
computers,” which they characterised as “a mixture of fear and superstitious
awe.” (One wonders how much has changed!)

• To put “the computer at the fingertips of the Faculty.” [3 p1]
There is little here to explain just why writing a program might be educationally

advantageous. They simply state “the hard question was not ‘whether’ but ‘how’” [9
p518]. They do give many examples of programs written by students across a range of
disciplines, but leave it largely to the reader to decide on the cognitive benefits that
accrue. Significantly, they did find that in a programming environment, students were
more likely to share ideas [3 p16]. They also characterise computers as “a magnificent
means of recreation,” (p. 8) something which in 2010 threatens to overshadow their
significance for learning.

Kemeny and Kurtz strongly distinguish between using computers for instruction
and having students write their own programs. While they saw the possibilities of
CAI, and even thought “they ought to do more,” they saw much more potential when
“the student is the teacher and the machine learns” [3 p11], noting that “by being able
to program certain processes, the student necessarily shows a through understanding
of the process” (p. 27). Both these themes run through computer education to the
present day.

Understandably, Kemeny and Kurtz devote most of their various publications to
Basic itself and the ground-breaking time-sharing system shared between two
computers that went with it. Written by sophomore Michael Busch and junior John
McGeechie [3 p5], this system was the element which made the project economically
possible and educationally viable, an example of what can be achieved by enthusiasts
too young to know that what they were doing wasn’t supposed to be possible.

Basic was an acronym for ‘Beginners All-purpose Symbolic Instruction Code.’
Dartmouth, where its originators taught, attracted students who were “not generally
interested in the Sciences,” so it was designed for those studying the liberal arts [9
p518 & 522] “as an extremely simple language that can be quickly mastered by a
novice” [3 p3]. They considered that Fortran had “many disadvantages for the novice
and occasional user,” meaning largely there was too much fussy detail to remember,
and “decided that we would improve it” (p3). Considering other languages available
or planned, they thought the Algol compound statement introduced too many
complexities for beginners [9 p538] and wanted something much smaller and more
general then Cobol. As long as the user is content with real numbers (which Kemeny
and Kurtz considered removed the need for typed variables), and happy with two-
character variable names (forced by the exigencies of the computers), Basic can be
said to express mathematical ideas generally as well as Fortran. Indeed, it has the
added power of matrix operations, and with the extension to string handling it came
much closer to being truly ‘general purpose’ as well. It has also shown remarkable
longevity, widespread use in commercial applications and a capacity to accept
extensions gracefully.

Perhaps the best expression of the benefits of teaching students to program comes
from Thomas Dwyer [11-14]. Dwyer extended Dartmouth Basic to make it a better
language to teach with. This may sound contradictory and clash with the educational
ideas of Basic’s creators, but actually it was designed to reinforce them.

Kemeny and Kurtz discuss the advantages of having a student teach the computer.
Papert’s Mindstorms [15] can be seen as an extended plea for learner control. Dwyer
considered that students learn best when they are teaching other students, so he
wanted his students to write programs for others to learn from. Hence his
characterisation of educational programming as having two modes: Dual and Solo.
Dual mode consisted of using a computer to learn with something programmed by
someone else—what today would be covered by courseware and information retrieval
and processing. Solo mode was, initially, writing programs for your own use, but then
going on to write programs to teach different parts of the curriculum to others. Here
he was picking up Kemeny and Kurtz’s ideas on needing to understand a process if
you are to write a program for it. Dwyer [12 p220] explained this as:

a learning situation which develops advanced cognitive and motor skills for
students of quite varied backgrounds, and which also involves many affective

elements, but which relies heavily on technology for achieving these ends.
While it is clear that dual instruction is essential (one does not recommend
that a student immediately go out in an airplane and ‘do his own thing’) it is
equally clear that the student will optimise his benefits from the dual mode if
he knows he is preparing for a solo flight. He knows, in fact, that he can
eventually exert more influence on his learning than his instructor …
computer technology in education should invite similar control at all levels.
It should, in particular, invite the student to ‘go behind the scenes’ (possibly
acting in concert with teachers) at any time they elect. There should be no
secrets, on one-upmanship of the adult world over the student world.

To go behind the scenes and do your own thing you have to be able to change the
system. In 1971 it meant you had to be able to program. These days with the advent of
Web 2.0 and all sorts of multi-media vehicles it’s a bit different, but the principle still
holds, more strongly if anything. diSessa [16 p164] advocates a similar hierarchy.
Papert considered the “proper use …of drill-and-practice programs” was something
for other students to write [17 p4–1]. It’s also interesting that Dwyer emphasised, as
his first principle, the essential “social character of human learning,” though I doubt
that in the USA in the 1960’s he’d ever heard of Vygotsky.

Despite its attractions, Dartmouth Basic has always been heavily criticized for its
simplicity and the lack of structure and formal rigor of programs written in it. The
first definition of Algol, with its ground-breaking ideas and structure was published in
1958, and an Algol compiler was available at Dartmouth by 1967 [3 p8]. It would
seem that Kemeny and Kurtz’s desire for simplicity overruled thoughts of enhanced
Scientific (or Mathematical) precision.

4 Logo

In original conception, Logo was conceived as a form of Lisp suitable for beginners to
write programs in. The ‘Lo’ in the title suggested ‘Logic,’ and the earliest versions of
the Logo system were written in Lisp. It is curious then that early papers [1 p1, 18 p1]
make it clear that it was “expressly designed” for the teaching of Mathematics. At that
time there was no Turtle Geometry, and indeed no arithmetic functionality beyond
addition and subtraction. Brown and Rubinstein [19 p3] flatly describe it as “non-
numeric.”

Early Logo was very simple. Like Basic, it came with built-in editing and file
manipulation commands. If these are ignored, the 1971 version consisted of just 26
‘operations,’ five of which accessed the calendar and clock, and 15 ‘commands.’
Most operations were concerned with program logic or list manipulation. An essential
part of the design was to produce a language of such simplicity that it forced users to
write their own library of commonly used routines, such as multiplication and
division. From such a library, complex programs could be built. “Ideally, by the end
of the course, each student would have created his own extended version of Logo” [19
p10]. If you exclude the rich set of mathematical functions, contemporary Basic was
even smaller, but for a different reason: to make the language as easy as possible to
learn. (And remember Basic was designed for the ‘non-mathematical.’)

There is no mention of the degree of difficulty inherent in learning to program
generally, and certainly not in learning Logo, in Feurzeig’s papers. The entire
emphasis in The Final Report [1] is on the difficulty of learning Mathematics, and
how Logo was developed to make that easier. The programming language followed as
a result of a specific educational need. The designers of Logo intended it not only as a
vehicle to express Mathematical ideas and make Mathematical concepts concrete,
they saw it as a meta-language in which to express Mathematical thought [1 p5]. They
wanted a “standard, teachable terminology to discuss the heuristic aspects of
mathematical activity concerned with the art of solving problems” (p. 5, their
emphasis). Here is the origin of Papert’s often expressed need to teach ‘thinking about
thinking’ [17 p2] and the decision to write a computer language whose primitives and
predicates inherently contained and expressed the mechanisms of logic and
Mathematics. “Do we give children the instruction ‘think!’ without even telling them
how to think?” (p4, Papert’s emphasis). The mathematical purpose expressed by
Feurzeig is actually at odds with Papert who is at pains to stress the general problem
solving capability of the language [17, 20]. Lisp’s origins in Artificial Intelligence
were supposed to support this [21 p14, 22 p16], but no author I have read ever
explained how it was to happen.

5 Basic and Logo

Feurzeig’s Logo group began with education and worked back to the form of their
language. To create Basic Kemeny and Kurtz began with Computer Science and
found educational uses for it. As someone who has spent forty years shouting at his
education students to always begin with education and bring in computers if they
could be useful I find it painful that Basic was an almost instant educational success
and Logo wasn’t.

By 1967 Basic was in use in eighteen secondary schools, eighteen colleges and
universities, government agencies and “some local business concerns” [23 p23, 24
p2]. School use in particular was only limited by the number of available telephone
lines. The reports are full of interesting and advanced programs written by students at
all levels and the enthusiasm of the authors is obvious. (That said, Putnam, Sleeman,
Baxter and Kuspa [25 p22] state “Errors were found with virtually every construct in
all tests and interviews. … students with a semester or more of experience with Basic
had a very fuzzy knowledge of how various constructs operate.”)

By contrast, many of the programs in the Final Report on the Logo Project [1],
seem forced, elementary and repetitive. Many from the primary level, ages 7 to 9, are
examples of programs to reverse the letters in a word, print a set of consecutive
numbers or simply print strings. The first lessons did not involve writing code at all.
This did not happen until lesson Seven (p. 67). In the secondary curriculum, many
essential elementary functions such as divide and multiply were written by the
teachers and given to the students to try and understand (p. 215), the inference being
that they could not be expected to write these routines themselves. Johnson [26 p201]
found “The position that the programming environments themselves, e.g., Logo

microworlds, would become the school mathematics curriculum has clearly failed to
gain the support of the educational system.” (See also Mayer [27].)

None of this suggests a language easily taken up by beginners and used for their
own purposes. Part of the reason has to be the use, initially, of recursion for all loops,
definite or indefinite. Recursion is, as Papert has said repeatedly, a powerful problem
solving tool [15, 17, 20, 28] and indeed it is. But then, so is calculus. Papert in
particular has always insisted that Logo is designed to encourage experimentation,
with students writing and testing their own creations. Papert worked with Jean Piaget
for many years and passionately believes in the idea of ‘learning by doing,’ something
he later extended to what might be termed ‘learning by making things.’

Given this emphasis, it is difficult to understand the reliance on recursion at the
expense of a general iterative statement. Not once in all my reading have I come
across an assertion that students can be expected to discover a recursive solution to a
problem on their own. All I can find are examples provided to students to explain,
understand, and adapt. In his seminal book, Mindstorms, [15 p71] Papert states that
“recursion stands out as the one idea that is particularly able to evoke an excited
response.” That might be so, but he devotes less than two pages to it, mentioning it
once more in the Appendix in the context of ‘circular logic’ (p109). Brown and
Rubinstein suggest that with suitable prior experience, students can write their own
recursive routine to traverse a tree, but they give no clue to their success rate. They
did find that “if a student couldn’t figure out how to write a function, we could not
slowly lead him down the path to discovery” [19: 43]. Once acquainted with
WHILE—DO in Basic or Pascal, or even the primitive Dartmouth-Basic GOTO,
students have no trouble in writing their own indefinite loops. (Murnane [29, 30]. See
also Vitale [31 p272 & 272], and Murnane and Warner [32] for examples of
experiments where children could have, but failed to use, recursion.)

A further reason which can be advanced is Logo’s Lisp inheritance, essentially
lambda calculus, whereas Basic was deliberately designed to be “as close to ordinary
English combined with elementary algebra as possible” [23 p4]. Logo statements do
not always accord with English, although in its earlier versions it approached it more
closely than in later ones. Indeed, anyone coming to Logo after 1970 would be hard-
put to recognise the original language. For example, Multiply [1 p215] is defined as:

TO MULTIPLY /X/ AND /Y/
10 IS /Y/ “0”
20 IF YES RETURN “0”
30 RETURN SUM OF /X/ AND MULTIPLY OF /X/ AND (DIFF OF
/Y/ AND 1)
END

Even allowing for the difficulty of conceptualising the recursion, it is not English,
and in its early iterations, Logo struggled to make progress. The cure for many of
these problems was provided by Seymour Papert.

Logo is often associated specifically with Papert, and particularly with his Turtle
Graphics. He joined the project in January 1969 as a consultant [1 p1, 33] and his
invention of the Turtle and its commands transformed the language.

A Turtle is a small robot which, when connected to a computer, can move and turn
on the floor. At a stroke this eliminated the gap between entering a program and

observing its outcome, since the Turtle could execute a command as soon as it was
entered. It also solved the problem of the student understanding what the command
did: they could walk around behind the Turtle following its movements with their
own. While they might need to be taught the meaning of “TEST IS COUNT
/SENTENCE/ 1 [18 p45] they could easily appreciate what FORWARD 100 meant
because it accorded to their own body actions and their natural language. Turtle
Geometry provides an immediate and meaningful environment for the beginner,
relating body movement to the effect of a Logo statement. Papert [28 p24] describes
this as the “idea of ‘body-syntonic’ representations of knowledge.” (For a discussion
of designing computer languages to correspond to natural language see Murnane
[34]).

Along with Turtle commands came definite iteration: REPEAT :N, relieving the
programmer of the need to write all loops recursively. A recursive loop can only be
executed by writing a procedure and then executing it. In keeping with the idea of
observing actions as the commands were entered, you could now type REPEAT 4
[FORWARD 100 RIGHT 90] and watch a square being drawn. Note also the close
correspondence to English syntax.

Once the Turtle migrated from the floor to the screen, Logo became accessible and
viable in any classroom.

Papert’s other outstanding attribute was his ability as a teacher, educational theorist
and writer. Probably no one has matched his output, or perhaps, his influence, on
educational programming. His argument is that students “do not understand the kind
of thing a mathematical structure is: they do not see the point of the whole enterprise”
[15 p23]. By using Logo and the Turtle, these concepts can be made visible and
concrete. Nevertheless, his pronouncements on the promise of Logo to help teach
mathematical concepts [35 p3] such as angle, length, variables and differential
geometry, as well as “epistemological primitives, such as the notion of a
mathematical system itself” (p. 23) have not been supported by hard research. Ross
and Howe [36 p147] found that “the research of the last decade into ‘mathematics
through programming’ have been more encouraging than discouraging, but only
mildly so.”

Rather sadly, the weight of subsequent research suggests that programming in
Logo, by itself, does not teach Mathematics. Students, unless specifically taught about
these points, keep Logo and Mathematics entirely separate in their minds, and few
teachers, perhaps persuaded by Papert, seem to do this, or do so with much success.
An experiment with Year 8 students, all of whom had used Logo (in the form of
LogoWriter), showed almost no traces of Logo when asked to perform tasks in which
it could be expected to appear if Papert’s theories are correct [32]. There were almost
no signs of Logo functioning as a meta-language. Even Abelson, Barnberger,
Goldstein and Papert [22 p10] rather sadly remark that “Logo did not succeed in
displacing Basic as the almost universal computer language for schools.”

6 Beyond the 60s

At a minimum … the teacher must be absolutely fluent in at thinking in Logo.
Brown and Rubinstein [19: 4]

Anybody who is at all serious about writing programs must avoid the
temptation of thinking in a programming language. Juliff [37: 38]

These two quotations really summarise the different educational and practical

orientations of Logo and Basic. Logo was intended to be used in the closed
environment of education as a language to think with, and Basic was intended to
introduce students to the world of programming. Kurtz [9 p3] insisted that “our one
mistake was to include the word ‘Beginners’ in the name” but the significant letter in
the title stood for ‘All-purpose.’ Basic has been used for professional applications
almost from its appearance. Logo has not, and was never intended to be.

At their inception, Basic and Logo were much simpler. Partly this was a result of
choice by the designers: Basic was to be as easy as possible to learn and Logo was to
encourage students to write most of their tools themselves, but there was also an
element of ‘the possible.’ Kemeny and Kurtz were undoubtedly constrained by the
small and slow machines they were working with and the need to build the system
and compiler from scratch, in assembly language, with only themselves and their
students as analyst/programmers. (They do characterise the GE-235 as “reasonably
fast … with a 6 micro-second cycle time” [23 p5].) Logo, being developed slightly
later, within a larger institution and on a single machine, probably suffered less in this
respect, and certainly had the advantage of the system being written in Lisp, an
existing, highly-adaptable, high-level language. I think it would be possible to make a
strong argument that the simplicity of both should have been preserved, but the
temptation to take advantage of developing Computer Science theory and faster
machines probably made extension inevitable.

Both Basic and Logo have been extended far beyond the limits any of their creators
could have imagined: the computer science of the 60’s gave no inkling of the
possibilities the personal computer and object-oriented programming would bring.
Microsoft Visual Basic for instance, is to be found more in industrial applications that
it is in a school. It is a graceful expansion, the language itself growing to include most
of the trappings considered essential for complex and safe applications: declaration
and strong typing of variables, procedures, explicit indefinite loops, implicit blocking
and the incorporation of objects, but without losing its original form and flavour. Its
syntax is still relatively straight-forward and is as suitable for education as the
original.

Logo, in the form of MicroWorlds, is part of a full-blown multi-media/robotics
environment and in 2010 is probably the only language that makes Cobol look small
or offers the same invitation to write the same thing in so many different ways.
Feurezig’s successors seem to invent a new command every time they have a new
idea, even when existing commands would seem to be perfectly suitable to the
purpose. For instance, the Robotics version adds a completely new, quite separate set
of commands to talk to the Logo RCX ‘brick.’ This leaves the existing, and quite
adequate, ‘Talkto’ protocol in the main body of the language and separates Lego

Robotics from the use of its rich array of logic. Redundancy in the language is
therefore rife, while it is axiomatic in computer language design that there should
only be one way to do something [38 p527]. (See Lindsey and van der Meulen [39
p174] for a particularly salutatory example of the consequences of failing to observe
this principle.) On the other hand, the MicroWorlds Backpack is a brilliant model of
an object, thought the language itself cannot really be said to be object-oriented.

7 Conclusion

We have found that the transition from Logo to Basic is fairly easy for most
students, whereas the transition from Basic to Logo is often incredibly
difficult. Brown and Rubinstein [19: 42]

Basic and Logo have both born out their creator’s intention. Basic is easy to learn and
has indeed become All-purpose. Logo has enriched countless classrooms and
introduced students to new ways of thinking about, and expressing problem solutions.

Therefore Brown and Rubinstein, above, present a neat summation of the teacher’s
dilemma. Basic has proven to be easy to learn and get along with, but is not as likely
to foster new ways of thinking and expression as Logo. This is Weyer and Cannara’s
point about “learning programming in full generality” [8 p3]. Does introducing
students to Basic actually prevent, or mitigate against, as Brown and Rubinstein
suggest, the development of a full set of programming tools? Logo’s exponents insist
it can do this, but it seems to be at the expense of leaving many students cold. Logo’s
advocates have not demonstrated the gains exposure to these ideas are supposed to
bring. That said, given the enormous number of contributing factors, research
demonstrating this is inherently extremely difficult, and the advocates of Basic have
not done much better.

Essentially the teacher of today is in no better position than the pioneers, and is
essentially dependent on their own belief in the promise that having students write
programs will bring educational and other advantages. And because I am passionately
in this school myself, I would be perfectly happy to do so in Logo or in Basic because
I see the same promise in both, (though since I value simplicity, I would have a
hankering after LogoWriter rather than the over-elaborated MicroWorlds). The
pioneers of educational computing knew that programming a computer had
educational benefits and set out to prove it, but I don’t think the World listened.

References

1. Feurzeig, W., Papert, S., Bollm, M., Grant, R., Solomon, C.: Programming-Languages as
a Conceptual Framework for Teaching Mathematics. Final report of the first fifteen
months of the Logo project. Washington, D.C, Bolt, Beranek and Newman. R–1889. 329
pp. (1969). ERIC ED 007 932

2. Ham, V.: Technology as Trojan horse. In: McDougall, A., Murnane, J.S., Jones, A.,
Reynolds, N. (eds.): Researching IT in Education Theory, practice and directions. pp. 25–
38. Routledge, London (2010)

3. Kemeny, J., Kurtz, T.: The Dartmouth Time-Sharing System. Washington, D.C., National
Science Foundation. 76 pp. (1967)

4. Cubin, L.: Oversold and underused: computers in the classroom. Harvard University
Press, Cambridge M.A. (2001)

5. Cox, M.: The changing nature of researching IT in education. In: McDougall, A.,
Murnane, J.S., Jones, A., Reynolds, N. (eds.): Researching IT in Education Theory,
practice and directions. pp. 11–24. Routledge, London (2010)

6. Munro, R.K.: Setting a new course for research on information technology in education.
In: McDougall, A., Murnane, J.S., Jones, A., Reynolds, N. (eds.): Researching IT in
Education Theory, practice and directions. pp. 46–53. Routledge, London (2010)

7. Ershov, A.P.: Programming: the second literacy. In: Lewis, R., Tagg, D. (eds.):
Computers in Education, Vol. 1. pp. 1–8.. North-Holland, Amsterdam (1981)

8. Weyer, S.A., Cannara, A.B.: Children learning computer programming: experiences with
languages, curricula and programming devices. Stanford, Calf., Stanford University. 228
pp. Technical Report No. 250. (1975). ERIC ED 111 347

9. Kurtz, T.: Basic. In: Wexelblat, R.L. (ed.): History of Programming Languages.
Academic Press, New York (1981)

10. Papert, S.: Talking Turtle. [Videorecording]. Open University Educational Enterprises,
England, Holt-Saunders (1993)

11. Dwyer, T.A.: Teacher-Student Authored CAI Using the NEWBASIC/CATALYST
System. 22 pp. Pittsburgh Univ., Pa., National Science Foundation, Washington, D.C.
(1970). ERIC ED 043 235

12. Dwyer, T.A.: Some principles for the human use of computers in education. International
Journal of Man-Machine Studies 3, 219–239 (1971)

13. Dwyer, T.A.: Teacher/Student authored CAI using the NEWBASIC system.
Communications of the ACM 15, 21–27 (1972)

14. Dwyer, T.A.: Heuristic strategies for using computers to enrich education. International
Journal of Man-Machine Studies 6, 137–154 (1974)

15. Papert, S.: Mindstorms: children, computers, and powerful ideas. Basic Books, New York
(1980)

16. diSessa, A.A.: Reflections on component computing from the Boxer project’s
perspective. Interactive Learning Environments 12, 161–165 (2004)

17. Papert, S.: Teaching Children Thinking. Cambridge, Massachusetts, Massachusetts
Institute of Technology. 241 pp. (1971). ERIC ED 077 241

18. Feurzeig, W., Kukas, G., Faflick, P., Grant, R., Lukas, J.D., Morgan, C.R., Weiner, W.B.,
Wexelblat, P.M.: An Introductory LOGO Teaching Sequence: LOGO Teaching Sequence
on Logic. Cambridge, Mass., Bolt, Beranek and Newman. 329 pp. (1971). ERIC ED 057
579

19. Brown, J.S., Rubinstein, R.: Recursive functional programming for the student in the
humanities and social sciences. Irvine, California, University of California. 53 pp. UCI–
ICS–TR–27a (1974). ERIC ED 108 664

20. Papert, S., Solomon, C.: Twenty things to do with a computer. Massachusetts,
Massachusetts Institute of Technology. 240 pp. (1971). ERIC ED 077 240

21. Evens, P.: What is Logo? Deakin University Press, Geelong, Australia (1992)
22. Abelson, H., Barnberger, J., Goldstein, I., Papert, S.: Logo progress report 1973–1975.

Cambridge, Mass., Massachusetts Institute of Technology. AI Memo 356, 22 pp. (1976)
ERIC ED 128 181

23. Kemeny, J., Kurtz, T.: The Dartmouth Time-Sharing System. 76 pp. Washington, D.C.,
National Science Foundation (1967)

24. Kurtz, T.: Demonstration and Experimentation in Computer Training and Use in
Secondary Schools, Activities and Accomplishments of the first year. Hanover,
Dartmouth College, Hanover, N.H. 81 pp. (1968) ERIC ED 027 225

25. Putnam, R., Sleeman, D., Baxter, J.A., Kuspa, L.K.: A summary of misconceptions of
high school Basic programmers. Stanford, CA., Stanford University School of Education.
Occasional Report #010 (1984). ERIC ED 258 556

26. Johnson, D.C.: Algorithmics and programming in the school mathematics curriculum:
support is waning—is there still a case to be made? Education and Information
Technologies 5, 201–214 (2000)

27. Mayer, R.E.: Introduction to research on teaching and learning computer programming.
In: Mayer, R.E. (ed.): Teaching and Learning Computer Programming. pp. 1–12.
Lawrence Erlbaum, Hillsdale, New Jersey (1988)

28. Papert, S.: The Turtle’s long slow trip: Micro-educational perspectives on Microworlds.
Journal of Educational Computing Research 27, 7–27 (2002)

29. Murnane, J.S.: Models of recursion. Computers & Education 16, 197–201 (1991)
30. Murnane, J.S.: To iterate or to recurse? Computers & Education 19, 387–394 (1992)
31. Vitale, B.: Elective Recursion: A Trip in Recursive Land. New Ideas in Psychology 7,

253–276 (1989)
32. Murnane, J.S., Warner, J.W.: An empirical study of secondary students expression of

algorithms in natural language. In: McDougall, A., Murnane, J.S., Chambers, D. (eds.):
7th IFIP World Conference on Computers in Education, Vol. 8. Computers in Education
2001: Australian Topics. pp. 81–86. Bedford Park, South Australia: Australian Computer
Society (2001)

33. Davis, R.B.: Editorial. The Journal of Mathematical Behavior 10, 4 (1991)
34. Murnane, J.S.: The psychology of computer languages for introductory programming

courses. New Ideas in Psychology 11, 213–228 (1993)
35. Papert, S.: Teaching children to be mathematicians vs teaching mathematics. Cambridge,

Mass., Massachusetts Institute of Technology Artificial Intelligence Laboratory. 26 pp.
(1971). ERIC ED 077 243

36. Ross, P., Howe, J.: Teaching mathematics through programming: ten years on. In: Lewis,
R., Tagg, D. (eds.): Computers in Education, Vol. 1. pp. 143–148. North-Holland,
Amsterdam (1981)

37. Juliff, P.: Programming—should we enjoy it or do it properly? In: Welch, R. (ed.): Ninth
Australian Computer Conference. pp. 38–43. Hobart: Mercury-Walch, Hobart, Tasmania
(1982)

38. MacLennan, B.J.: Principles of Programming Languages. Holt, Rinehart & Winston, New
York (1983)

39. Lindsey, C.H., van der Meulen, S.G.: An Informal Introduction to Algol 68. North
Holland, Amsterdam (1973)

