ARCHITECTURE FOR MULTI-CHANNEL
ENTERPRISE RESOURCE PLANNING SYSTEM

Karl Kurbel, Anna Maria Jankowska, and Andrzej Dabkowski
European University Viadrina, Chair of Business Informatics
POB 17 86, 15207 Frankfurt (Oder), Germany

Abstract: Mobile computing is changing the behavior of individuals and organizations.
Instant, multimodal access to information is beneficial in many business
situations. Consequently, core information systems like Enterprise Resource
Planning systems that today's organizations rely on have to support the mobile
behavior of their users. In this paper we discuss some architectural
considerations for multi-channel applications and introduce a four-tier
architecture for a mobile ERP system. Two key questions to answer are how to
access content of an ERP database from heterogeneous mobile devices, and
how to make that content available in different formats to a mobile user. A
prototypical implementation based on a real ERP system is described. Open
questions and issues for further research are discussed in the concluding
section.

Keywords: mobile computing, ERP system, multi-tier architecture, . r1u!'ti;chanuel
applications, graphical and vocal user interfaces.

1. INTRODUCTION

An increasingly important requirement for the core information systems
in enterprises is to provide support for the mobile behavior of their users.
This trend goes hand in hand with ubiquitous computing (Weiser, 1991), i.e.
guaranteeing access to information and computing power independent of
locations and devices.

Network technologies for mobile business are maturing, becoming more
and more powerful. With the introduction of third generation networks like
UMTS (Universal Mobile Telecommunication System) with transfer rates up
to 2 Mbps the limitations imposed by narrow bandwidths are relaxed. In



246 Karl Kurbel, Anna Maria Jankowska, and Andrzej Dabkowski

Japan, NTT DoCoMo's third generation i-mode service was launched in
1999 already (Yamakami, 2002).

In the long run, it can be expected that mobile devices will provide
similar user interfaces as desktop monitors. This trend raises new challenges
for business information systems in general and for enterprise resource
planning (ERP) in particular. A long-term vision for ERP systems is to make
all functionality available independent of particular front-end devices — on
mobile high-resolution multimedia phones as well as on traditional desktop
clients.
~ Our first step towards this vision is to make ERP data available for
mobile users. Such data are normally stored in the ERP system's database
and managed by a database management system (DBMS). The core
questions are thus how to transmit queries of the mobile user from the
mobile device to the DBMS used by the Enterprise Resource Planning
system, and how to transmit and convert such data from the database tables
so that they can be displayed on the screen of a mobile device. The two
major aspects of a solution are:

1. Accessing the content of the database.
2. Extracting information retrieved from the database and preparing it in a
device-dependent manner.

These two tasks are solved in our approach by a Content Access Engine
with Cache Storage Structures and a Content Extraction Engine. In the
subsequent sections, an architecture around these two engines is presented.
The Content Access Engine (CAE) is in charge of retrieving data from a
relational database and representing them in an XML (W3C, 2004) format.
The responsibility of the Content Extraction Engine is to detect the type of
the user's device and to generate device-specific forms of the XML data in
the respective markup language for the user's display..

This paper is organized as follows. In the next section, the general
architecture for mobile ERP, the underlying concepts, and the technologies
used are presented. Section 3 illustrates by means of a specific ERP system
how this architecture was implemented in a particular case. Some
observations and open questions for further research are discussed in the
final section.

2. ARCHITECTURAL DESIGN OF MOBILE ERP

2.1 General Considerations for Mobile Applications

Typical application systems today have three major layers: presentation
layer, business or application logic layer, and services layer (Britton, 2000,



Architecture for Multi-Channel Enterprise Resource Planning System 247

pp. 91-106). The presentation layer provides the user interface and is
responsible for the interaction between the user and the device. The
application or business logic layer contains the business rules that drive the
given enterprise. The services layer provides general services needed by the
other layers, usually including database services, file services, print services,
and communication services.

The functionalities of these three layers can be assigned to logical entities
called tiers. Mobile applications are typically deployed with three-tier or
multi-tier architectures. Such architectures allow for parallel development of
tiers by application specialists and provides flexible resource allocation.
They require more planning but reduce development and maintenance costs
over the long term by leveraging code re-use and elasticity in product
migration (Myerson, 2002).

In our work the need to develop an architecture arose from the fact that
we had to find an effective way to make ERP system data and functionality
available on mobile devices. The major technical requirement for mobile
access to an ERP system is presentation of information in multiple formats.
Wireless devices are equipped with different browsers that support various
media formats. It is therefore necessary to deliver the content in different
markup languages such as WML (WAP Forum, 2002), XHTML (W3C,
2003a) or HTML (W3C, 1999). An appropriate architecture should make it
easy to add new formats, without changing the existing structure. In
addition, many mobile devices are not only equipped with a browser but also
support J2ME (Java 2 Platform, Micro Edition). This technology offers
better graphical user interfaces than WML or XHTML (Hemphill & White,
2002). -

Due to recent advances in digital speech processing technologies and the
emergence of new, non-proprietary standards such as Voice Extensible
Markup Language (VoiceXML) (W3C, 2003) and Speech Application
Language Tags (SALT) (SALT Forum, 2002), it is now possible to enhance
mobile applications with voice user interfaces (VUIs) based on speech
recognition and synthesized voice output. Although ERP systems are not
traditional telephony-based services they can also benefit from additional
voice-enabled interfaces. VUIs can be deployed for retrieving information
from a database or manipulating data in the database. Voice input could be
applied for entering new data or editing existing data. Voice-enabled
interfaces can enhance alternative access methods and allow users to interact
with an application in a variety of ways, using speech, keyboard, stylus, etc.
(so-called multimodal access). Each of these modes can be used
independently or concurrently.

Our architecture for mobile applications is designed for thin-client
(browser-based) and fat-client (J2ME) applications. In this architecture, ERP



248 Karl Kurbel, Anna Maria Jankowska, and Andrzej Dabkowski

system functionality can be accessed through mobile and wireless devices.
The ERP system as such remains unchanged.

The architecture is divided into four tiers. The first tier, the data tier, is
represented by the ERP system's database. The second tier has the specific
application logic of the "mobilization" task encapsulated in the Content
Access Engine with Cache Storage and RFC Server. Application logic is
defined as the processes which "do the work" such as requesting data,
returning data, formatting data, etc., for example building queries from a
mobile user's request for information and preparing the results for
processing.

The Content Access Engine transforms the data retrieved into XML
format. It takes into account the device’s characteristics and manages the
dispatching of information retrieved in portions. The entire result set is kept
and managed in user-specific cache structures on the application server. The
amount of data that can be served in one portion depends on the display of a
particular device. Special data formats were developed to simplify the
process of XML generation.

A Remote Function Call (RFC) Server is used so that ERP functions can
be invoked by remote clients. If a mobile user wants to add or modify ERP
data, appropriate functions of the ERP system are activated.

The third tier has the challenging task of device-context aware content
delivery to the user, incorporating the presentation logic in the Content
Extraction Engine. This engine determines the type of the browser and the
most important device characteristics, and then tailors the content to
significant features of the device. The Content Extraction Engine
implements the presentation logic (Paragon, 2003).

The Content Access Engine and the Content Extraction Engine are placed
on the Tomcat 5 application server (Apache, 2005a). Tomcat offers
clustering and load balancing capabilities that are essential for deploying
scalable and highly available Web applications. To guarantee such
application features we applied the vertical scaling type of clustering with
four instances of Tomcat running on a single machine. In the future we plan
to extend our solution with horizontal scaling clustering capability (Apache,
2005).

The fourth tier consists of different mobile and wireless devices like
WAP-enabled cellular phones, PDAs, Palmtops, and Pocket PCs with their
respective browsers and GUIs. J2ME applications and vocal applications
serve as additional user interfaces.



Architecture for Multi-Channel Enterprise Resource Planning System 249
2.2 Content Access Engine and Caching Mechanism

The general architecture underlying our discussion is outlined in Figure
1. The Content Access Engine operates on database tables, as data of an ERP
system are usually stored and maintained by a database management system
(DBMS). For the interaction between an ERP system and a DBMS two
solutions are commonly used. The ERP system can operate directly on data
maintained by the DBMS, updating, inserting or deleting them.
Alternatively, the most frequently requested or the last requested operational
data are stored in memory and accessed there. If the needed data is not in the
cache it is retrieved from the database upon the first request. The cached data
are periodically exchanged with data in the database tables.

| Content Access | Content I U
. . ser
ERP System Engine & Cache Extraction I Interf
I Storage I Engine || Tnterface
| |-mmmmmmos -
1 1
| - 1
2] ! Standard |
Code| Product | Requestdate | Ej H T H I
10 CD Record 05/10/2001 I D I : ag
20 Radio 22/11/2001 IS 1 i 1 I
30 TV set 30/11/2001 8 XML 1 lerarles 1 I
40 Video 12/02/2002 1
50 Monitor 01/10/2001 I M 1 J2ME/
60 Keyboard 11/01/2003 I 5 1 : I VoiceXML
1 1
‘ _ | | = i | :
Code | Deseription | _Stock = ' XSLT or
10 CD Rcf:nrd 99 U 1 C nt t
20 Radio 102 | = It onten i I '
30 TV set % O i| Adaptation ! :
20 Video 55 | 1 XHTML/
30 Monitor 199 ! II Tag : I
50 Keyboard 999 | I: Library ! I J2ME/
, ! VoiceXML
I | !
1
JavaBeans | | _JSF _i S _:§
f
— - Invocation of |

| ERP functions

Figure 1. Architecture for mobile ERP

A cache structure is an integrated component of the Content Access
Engine (CAE). It speeds up data access and improves the overall
performance. The cache is designed to support and maintain the
representation of result data. It is initiated with a list of results whenever a



250 Karl Kurbel, Anna Maria Jankowska, and Andrzej Dabkowski

user sends a request for new data. The cache structure belongs to a single
user and it is accessible only to him/her. The cache is assigned to the user’s
session. It is freed when the user disconnects from the mobile ERP system or
when the session expires.

Portions of data are served from the cache. Separate sets of parameters
describing the devices’ displays are assigned to different browsers and
device types in the Content Extraction Engine. Subsequently, the parameters
are passed to the cache when a browser communicates with the ERP system
requesting data.

The task of retrieving data from a DBMS is accomplished by special
components implemented as JavaBeans (Sun Microsystems, 1997).
JavaBeans encapsulate all SQL queries that reflect the physical structure of
the requested data in a database (Gertz, 2000). With regard to maintainability
and portability of the CAE, JavaBeans are the components that have to be
modified if the data organization, tables, or dependencies in the database
change.

A reasonable way to store information from the database for further
processing are dynamically built lists (in Java, vectors of vectors). The first
row of such a list contains the column names from the database tables. The
column names are used as tag names in the next step — the generation of
XML documents on-the-fly based on the data in the list. However, when the
XML documents are created, it is possible to replace the original column
names with user-defined names. In this way a developer can provide more
meaningful tag names.

23 Content Extraction Engine

A key requirement for mobile applications is to-adapt content reccived
from the ERP system to the characteristics of a specific device. In our
approach this functionality is provided by the Content Extraction Engine.
The Content Extraction Engine retrieves information about the devices'
features and performs appropriate metadata transformations.

Some mobile operators use special proxies to adapt the content to the
properties of mobile devices. Content transformation may also be performed
directly on a client with the help of a mobile browser. Opera provides both
solutions — it offers a Mobile Accelerator proxy and a special browser for
handsets (Opera, 2005). The browser uses a set of style sheets to squeeze the
content to the size of a mobile screen and scales images appropriately. The
Mobile Accelerator reduces the page size, compresses the images and
eliminates unnecessary content (e.g. banners). Both solutions yield pages
tailored to a mobile screen but pagination or transformation of the site
structure is not possible. Other known transcoding proxies (e.g.



Architecture for Multi-Channel Enterprise Resource Planning System 251

WebAlchemist or Web Intermediaries) can perform advanced
transformations based on transcoding heuristics and annotations, such as
modifications of the site structure and of navigation modalities (Hwang, Seo
and Kim, 2003; Hori et al., 2000). Special browsers and transcoding proxies,
however, can provide only limited support in our solution since we already
make content available tailored to the specific mobile device. Transcoding
approaches or browsers may modify the content but only minor changes are
left.

The most popular way to obtain delivery context is to use the HTTP
standard Accept headers (W3C, 2002). These headers include the supported
media types (MIME types), character sets, content encoding, and languages.
Additionally, the User-Agent header contains information about the device
manufacturer, the version number, the hardware, and the browser used.
Integration of comprehensive context models can be achieved by using
standards for contextual information like the CC/PP model developed by
W3C (W3C, 2000) or UAProf introduced by the WAP Forum (WAP Forum,
2001).

In our approach content adaptation is based on information about device
capabilities retrieved from HTTP headers or CC/PP profiles, if they are
available. The Content Extraction Engine determines the form of
presentation depending on the relevant features of a device — supported
markup language, graphical formats, size of the display area, browser type,
and colors displayed.

In the next step, the metadata generated by the Content Access Engine
are transformed according to device-specific characteristics. Two
components are available for this transformation: tag libraries and
transformation objects with XSLT stylesheets (W3C, 2003b).

Tag libraries are reusable modules that can build and- access
programming language objects and influence the output stream. They
usually encapsulate frequent tasks and can be used across applications,
increasing the speed and quality of development. Tag libraries have access to
all objects available to Java Server Pages, they can communicate with each
other and can be nested, allowing for complex interactions within a page
(Sun Microsystems, 2002).

Although some simple JSP tag libraries for mobile applications have
already been provided by vendors, libraries supporting the development of
applications for different devices are not yet available. Therefore we
developed a special tag library — the Content Adaptation Tag Library — for
the generation of appropriate markup elements depending on the device
context. This library helps to separate the presentation format from the
presentation logic. It encapsulates most of the functionalities used in HTML,
WML, and XHTML pages.



252 Karl Kurbel, Anna Maria Jankowska, and Andrzej Dabkowski

The second component of the Content Extraction Engine are
transformation objects with XSLT stylesheets. XML data can be transformed
with XSLT into virtually any format. The most popular formats are WML,
HTML and XHTML. For the transformations, it is necessary to prepare a
number of stylesheets. An XML document then can be parsed and modified
according to the respective stylesheet. In our approach the Java
Transformation API for XML (TrAX) (Pfeifer, 2001) was chosen to invoke
XSLT stylesheets from Java programs. TrAX is capable of compiling
stylesheets and holding them in memory, thus improving the performance
significantly. Up to now we have built a library of reusable stylesheets for
generating HTML, WML, XHTML, VoiceXML and formatting XML to a
special format for J2ME applications.

24 J2ME Front-ends

Presenting content in markup languages such as WML or HTML reduces
the functionality of the handheld device to not more than a simple browser.
The user interface is limited by the available markup elements, and when the
user is not connected the browser is useless. Powerful mobile applications
need user interfaces similar to those of desktop computers and functionalities
beyond the scope of mobile browsers.

The Java 2 Platform, Micro Edition (J2ME) meets these requirements at
least to some extent. J2ME was designed to accommodate a variety of
embedded and hand-held devices. It is composed of both a configuration and
a profile. A configuration consists of a virtual machine, core libraries,
classes, and APIs. The configuration layer defines the minimum set of Java
virtual machine features and Java class libraries available on a particular
category of devices. The profile defines the minimum set of APIs available
for a particular family of devices representing a given vertical market
segment. Profiles are implemented on a particular configuration, and
applications are written for a particular profile.

The Mobile Information Device Profile (MIDP) provides a set of Java
APIs specific to a particular category of devices (cell phones, PDAs, etc.). In
J2ME data can be cached on the client with the help of the MIDP Record
Management Store (RMS) API and sent to a database when a connection is
established (Riggs, Taivalsaari and VandenBrink, 2001). This solution is
very helpful when the connection is suddenly interrupted. It can be applied
for incoming and outgoing connections. Instead of temporarily caching data
on the server, the RMS stores them on the mobile device and can work
independently of the network connection. The same is true for entered data —
they are first saved into the RMS and then sent to the database if a
connection is available.



Architecture for Multi-Channel Enterprise Resource Planning System 253

J2ME-based applications cannot directly connect to a database using the
JDBC mechanism — therefore a special approach for the communication
with a data source taking existing tiers into account is needed. Since J2ME
technology does not provide any APIs for data connectivity, midlets have to
be used to connect to a web server and get the data. Some kind of
middleware (e.g. in form of JSP) is necessary for the communication with a
database. In our architecture the Content Access Engine is responsible for
data delivery in browser-based and J2ME applications. Since the data are
represented in XML format, they can be used in J2ME applications, too. The
entire structure of the CAE remains unchanged.

A mobile application based on the Java programming language organizes
its graphical user interface as several forms in one file (midlet). Therefore
the data in XML format cannot be processed in the same way as in an
application based on a mobile browser. J2ME applications still need to
manage operational memory and storage efficiently. From this point of view
it is better to parse XML-based data somewhere else than on a mobile client.
Keeping in mind these constraints, the Content Extraction Engine (CEE) can
still be applied because JavaServer Pages can be used as a middleware
between a MIDP front-end and XML data.

The Content Extraction Engine detects if a response is for a J2ME
application. Then it transforms the data from XML format as created by the
Content Access Engine to textual information, using either special XSLT
stylesheets or tag libraries. Each line of text contains several fields with
information items separated by spaces. A single line can be treated as one
record in a database. The fields can be simply divided into tokens and
displayed in a J2ME-based application on a form. If the set of results
includes many records the textual sheet is made up of more than one line. In
such a case all records, or a certain part of the records, are stored on the
mobile device with the help of RMS.

2.5 Vocal Interfaces

Currently customer services can be provided via the Web and the
telephone. In order to obtain telephone services the user needs a device that
has audio interaction capabilities. The customer has to call an interactive
voice response (IVR) platform that possesses audio input, output, telephony
functions and its own service logic as well as a transaction server interface.
Companies working on IVR systems developed their own markup languages
for their applications, but customers were reluctant to invest in a proprietary
technology. In 1999, AT&T, IBM, Lucent Technologies, and Motorola
formed the VoiceXML Forum to establish and promote a new, non-
proprietary standard based on the eXtensible Markup Language (XML) -



254 Karl Kurbel, Anna Maria Jankowska, and Andrzej Dabkowski

Voice eXtensible Markup Language (VoiceXML). VoiceXML is a language
that has features to control audio output, audio input, presentation logic, call
flow, telephony connections, and event handling for errors. It serves as a
standard for the development of powerful speech-driven interactive
applications accessible from any phone. With VoiceXML application
developers do not have to care about issues such as concurrent threads of
control, resource provisioning, and platform-specific APIs. The language
also accommodates platform differences for services that place less
importance on portability than on utilizing a new speech technology
provided by an individual vendor.

Aural interfaces to the mobile ERP system are based on the VoiceXML
standard. For static content (e.g. help information) digitized audio output
(recorded voice) in form of mono 8KHz 8-bit u-Law .au-files was used. This
format was chosen for performance reasons — files do not need as much
storage and download time as the 16-bit linear files (IBM 2003, pp. 57-58).
Synthesized speech was applied for the content retrieved dynamically from a
database. The data extracted from a database are in the same XML-format as
in the previous cases. They were transformed to the VoiceXML format using
predefined XSLT style sheets. The Content Adaptation Tag Library was not
used for the transformation due to the high complexity of the output
structures produced. This degree of complexity was not encountered in the
cases of the other formats. Grammars are generated dynamically from a
database. For contextual help simple external grammars are utilized. For the
design and test phases of the aural user interfaces, the IBM Voice Server
Development Kit (IBM, 2002) which fully supports the VoiceXML standard
was applied. A

2.6 RFC Server

Reading ERP data and displaying them on a mobile appliance is
important but not enough. Even more important is to make ERP
functionality available to the mobile user. Complete integration of mobile
devices with back-office systems is one of the targets for successful
implementation of mobile solutions (Vaidyanathan, 2001).

Making ERP application functions available on a mobile device is a
challenging task. It is more difficult than just accessing data in relational
database tables. A function like re-scheduling a production job, for example,
is much more complex than reading or updating values in the database. It
may require not only modifications of data items but invoking other
functions as well (Dreibelbis, Lacy-Thompson, 2000).

A Remote Function Call (RFC) Server is deployed in our architecture to
trigger functions of the ERP system. This RFC Server is a real-time link



Architecture for Multi-Channel Enterprise Resource Planning System 255

between an ERP system and a mobile device. It plays the role of a high level
environment in which functions of the ERP system can be invoked remotely
in real time (Narayanan, 2002). An RFC Server is tied to a particular ERP
system. It encapsulates all specific details and communicates with the low-
level API (Application Programming Interface) of that system.

When an RFC Server is provided developers of mobile applications do
not need to bother with these low-level APIs to call an ERP function nor
with specific implementation languages used by different vendors (ABAP
for SAP R/3, PL/SQL for Oracle Financials, Lj4 for infor:COM, etc.). Data
entered by a mobile user are taken as parameters for the business function to
be called. For example, the user will say that he/she wishes to re-schedule a
particular job, and enter the job number, the new delivery date, etc. on his
device. These values are given as parameters to the remote function provided
by the RFC Server. More precisely, a request with those parameters is
generated and sent to a web server. The web server communicates directly
with the RFC Server and invokes the appropriate business function. While it
is not very difficult to develop suitable front-ends for such tasks,
implementation of the remote functions invoking internal functions of the
ERP system can be quite complicated.

Another problem is posed by the needed support for distributed ACID
(Atomicity, Consistency, Isolation, and Durability) transactions. In
distributed multi-user applications sharing objects in real time can lead to
resource sharing conflicts (e.g. many users may want to update the same
objects at the same time). To avoid such conflicts various locking strategies
to preserve the integrity of changes are used. In our framework, so-called
optimistic locking (write locking) is applied. Optimistic locking allows
unlimited read acccss to an object but a client can only write an object to the
database if the object has not changed since the client last read it (Adya,
1994). If many users have the same data open, only the first update to
commit succeeds while the others obtain error messages.

If the mobile device sends a request to an application server to update
some data in the database, the application server invokes an appropriate ERP
function via the RFC server. If that function cannot be successfully executed,
an exception (OptimisticLockException) is thrown, propagated further
to the RFC server and subsequently to the application server. The application
server sends a response to the mobile device informing about the error and
the user is asked to refresh the current data and re-enter values. Write-write
conflicts in our solution are detected using timestamps indicating the last
commit time.



256 Karl Kurbel, Anna Maria Jankowska, and Andrzej Dabkowski

3. AN EXAMPLE OF MOBILIZING A REAL-
WORLD ERP SYSTEM

3.1 Restrictions and Design Considerations

Significant problems in mobilizing today's ERP systems are caused by
low bandwidths of telecommunication networks. It is time and cost
ineffective to send larger portions of data to mobile devices. Processing
should better be done on an application server and only the results should be
transmitted in a compact form to the mobile device.

Another shortcoming is the low processing power of mobile devices. As
a consequence, only simple things like validating input can be done directly
on the device while the mobile application logic must remain on an
application server. We took these aspects into account when developing a
prototypical solution for a real-world ERP system, infor:COM by Infor
Global Solutions (Infor, 2005). This system aims at small and medium-size
enterprises and has a good market penetration in Central Europe.

Before selecting those ERP application domains which appeared worth to
be enhanced with mobile access, an empirical study of the state-of-the-art in
this field was done (Kurbel, Teuteberg, Hilker, 2003). Then the infor:COM
system was analyzed with respect to application areas which are both
interesting from a business point of view and feasible taking technical
limitations into account. '

3.2 Content Access and Content Extraction

Standard infor:COM applications have a forms oriented user interface,
spreading information all over a conventional screen of a large monitor.
Screen content can be quite complex, showing many data and sub-forms at
the same time. '

Considering the small display sizes of mobile devices, it is obviously not
possible to "translate" an existing ERP front-end into a mobile front-end
one-to-one. The front-end designer has to concentrate on important
information instead and adopt only the really essential data from the standard
screens of the desktop-based application. Usually it is necessary to divide the
data up into several screens of a mobile device ("cards" in the terminology of
mobile browsers).

As an example, processing of quotes in the sales module of infor:COM is
described. On a standard desktop client, the user generally sees a large form
with many menus, submenus, drop-down-boxes, text fields, etc. It is quite
obvious that this type of user interface has to be re-designed because it
cannot be displayed in the same form on the screen of a mobile device.



Architecture for Multi-Channel Enterprise Resource Planning System 257

Therefore the menus in our mobile ERP application are displayed level by
level. When the user starts navigating on the top level and clicks on a menu
item, he or she is re-directed to menus detailing the functions of the chosen
module. Finally the user reaches a card with the desired functionality.

Figure 2 shows a search for quotes that match some conditions specified
by the user as a stepwise process on a mobile device. The front-end was
implemented with the help of a Nokia 7210 simulator for mobile devices.
Such simulators are available in toolkits provided by devices manufacturers
and other vendors (Kurbel, Dabkowski, Zajac, 2002).

P b ’ ; : DL

o mid

Figure 2. Selecting quotes from ERP database

Assuming that the user looks for a particular quote (quote no.
"AG1001"), he or she navigates through a sequence of menus to reach the
desired card. The functionality outlined in Figure 2 is the same as for the
desktop-based infor:COM system. For example, the user can select a certain
way of filtering quotes (by quote number, RFQ number, customer number,
etc.). From the list of quotes displayed afterwards he or she can select the
desired one. If the list of results is long, only a few items are displayed at a
time, i.e. the list is distributed over several cards. Likewise the details of a
quote are also divided into a number of cards.

While the user sees only the front-end displaying ERP data as requested,
the requests and responses are transferred across the overall architecture as
described in the previous section. Looking for information the user fills input
fields on a mobile screen. In this way he or she determines the criteria for the



258 Karl Kurbel, Anna Maria Jankowska, and Andrzej Dabkowski

search. The user's input is treated as parameters and passed to the Content
Access Engine where it is further processed behind the curtain.

4. OPEN ISSUES AND FURTHER WORK

Industry experts forecast that the market for wireless applications will
continuously grow over the next few years. With increasing needs of
business users to access information from anywhere at any time,
organizations have to find new, more effective system architectures.

This paper focused on building a multi-tier framework for mobilizing an
existing ERP system. An alternative approach for a mobile ERP solution
could be based on a Web Services architecture (Chappell and Jewell, 2002).
Web Services are considered as a major step forward in inter-enterprise
cooperation and integration of different types of systems. They can play the
role of a universal Application Programming Interface which does not
require any other protocol than the Internet protocols. Web Services
standardize the calling, exchange and organization of application services. In
terms of software development, the increasing complexity of business
information systems and the need for rapid adaptation to different devices
and for integration of business concepts are good reasons for using a high-
level approach which implements techniques of modeling and programming
with business objects. In our project reengineering and development work is
currently going on. The goai is to implement an effective, Web Services-
based architecture for a part of the mobile ERP system.

References

Adya, A., 1994, Transaction Management for Mobile Objects using Optimistic Concurrency
Control; http://research.microsoft.com/~adya/pubs/tr.pdf.

Apache, 2005, Clustering/Session Replication How-To; http://jakarta.apache.org/tomcat/
tomcat-5.0-doc/cluster-howto.html.

Apache, 2005a, Tomcat Server; http://jakarta.apache.org/tomcat/.

Britton, Ch., 2000, IT Architectures and Middleware: Strategies for Building Large,
Integrated Systems, Addison-Wesley, Boston.

Chappell, D. and Jewell, T., 2002, Java Web Services, O'Reilly & Associates, Sebastopol.

Dreibelbis, D. and Lacy-Thompson, T., 2000, Interfacing with SAP R3;
http://www .eaijournal.com/Article.asp? ArticleID=144&Departmentld=4.

Gertz, M., 2000, Oracle/SQL Tutorial; http://www.db.cs.ucdavis.edu/teaching/sqltutorial.

Hemphill, D. and White, J., 2002, Java 2 Micro Edition, Manning Publications, Greenwich.

Hori, M. et al., 2000, Annotation-Based Web Content Transcoding, in: Proceedings of the ot
International World Wide Web Conference on Computer Networks, Amsterdam, pp. 197-
211.

Hwang, Y., Seo, E., Kim, J., 2003, Structure-Aware Web Transcoding for Mobile Devices, in:
IEEE Internet Computing 7 (5): 14-21.



Architecture for Multi-Channel Enterprise Resource Planning System 259

IBM, 2002, IBM: Voice Server SDK; http://www-3.ibm.com/software/voice/.

IBM, 2003, VoiceXML Programmer’s Guide; http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgi bin/pbi.cgi.

Infor Global Solutions, 2005, infor:COM; http://www.infor.de.

Kurbel, K., Dabkowski, A. and Zajac, P., 2002, Software Technology for WAP-based M-
Commerce - a Comparative Study of Toolkits for the Development of Mobile
Applications, in: Proceedings of the International Conference WWW/Internet 2002
(IADIS), Lisbon, pp. 673-676.

Kurbel, K., Teuteberg, F. and Hilker, J., 2003, Mobile Business-Anwendungen im Enterprise
Resource Planning: Mobilititspotentiale entlang der ERP-Funktionskreise, Industrie
Management 19 (1): 72-75.

Myerson, J. M., 2002, The Complete Book of Middleware, Auerbach Publishers, Philadelphia.

Narayanan, V., 2002, Interfacing with SAP R/3; http://www.info-sun.com/docs/
wp_sapinter.pdf.

Opera, 2005, Opera Products for Mobile; http://www.opera.com/products/mobile/.

Paragon Corporation, 2003, Separation of Business Logic from Presentation Logic in Web
Applications; http://www.paragoncorporation.com/ArticleDetail.aspx?ArticleID=21.

Pfeifer, C., 2001, XML Processing with TraX; http://www.onjava.com/pub/a/onjava/
2001/07/02/trax.html.

Riggs, R., Taivalsaari, A. and VandenBrink, M., 2001, Programming Wireless Devices with
the Java 2 Platform Micro Edition, Addison-Wesley, Boston.

SALT Forum, 2002, Speech Application Language Tags 1.0 Specification;
http://www.saltforum.org/saltforum/ downloads/SALT1.0.pdf.

Sun Microsystems, 1997, JavaBeans; http://java.sun.com/products/javabeans/docs/spec.html.

Sun Microsystems, 2002, JavaServer Pages Specification, Version 2.0; http://jcp.org/
aboutJava/communityprocess/first/ jsr152/.

Vaidyanathan, R., 2001, Wireless Application Integration. ~EAI  Journal;
http://www.eaijournal.com/Article.asp? ArticleID=450&DepartmentId=3.

W3C, 1999, HTML 4.01 Specification. 1999; htrp://www.w3.org/TR/html4/.

W3C, 2000, Composite Capabilities/Preference Profiles: Terminology and Abbreviations,
Working Draft; http://www.w3.org/TR/2000/V"D-CCPP-ta-20000721/.

W3C, 2002, Delivery Context Overview for Device Independence; http://www.w3c.org/
2001/di/public/dco. .

W3C, 2003, Voice Extensible Markup Language (VoiceXML) Version 2.0;
http://www.w3.org/TR/voicexml20/.

W3C, 2003a, XHTML 2.0 The Extensible HyperText Markup Language Specification;
http://www.w3.org/TR/xhtml2/.

W3C, 2003b, XSL Transformations (XSLT) Version 2.0; http://www.w3.org/TR/xslt20.

W3C, 2004, Extensible Markup Language (XML) 1.0 (Third Edition),
http://www.w3.org/TR/REC-xml.

WAP Forum, 2001, UAProf;, http://www]l.wapforum.org/tech/terms.asp?doc=WAP-248-
UAProf-20010530-p.pdf.

WAP Forum, 2002, Wireless Application Protocol WAP 2.0, Technical White Paper;
http://www.wapforum.org/what/ WAPWhite_Paper1.pdf.

Weiser, M., 1991, The Computer for the 21% Century, Scientific American 265 (3): 94-104.

Yamakami, T., 2002, Leveraging Information Appliances: a Browser Architecture Perspective
in the Mobile Multimedia Age, in: Chen, Yung-Chang et al. (Eds.): Proceedings of the 3™
IEEE Pacific Rim Conference on Multimedia (PCM 2002), Taiwan, pp. 1-8.



