CONCEPTUAL MODELING OF STYLES FOR
MOBILE SYSTEMS

A layered approach based on graph transformation

Reiko Heckel' and Ping Guo®
"University of Dortmund, Germany(on leave from University of Paderborn), reiko@upb.de;
2University of Paderborn, Germany, Intl. Gradrate School of Dynamic Intelligent Systems,

ping@upb.de

Abstract: When designing a mobile application, we have to be aware of the properties
and facilities of the target platform. At a conceptual level, this platform can be
specified by a style, defining the structures and operations available to
applications. In this paper, we use an UML-like meta model for the structural
aspect and graph transformation rules over its instances to specify the
dynamics of a style of mobile systems. The model is layered to separate
clearly the software from the hardware and the geographic view of the system.

Keywords: mobility; QOS; meta modeling; graph transformation.

1. INTRODUCTION

Already today, the majority of computing devices is mobile. They
include, besides smart cards with limited capabilities, laptops, handheld
computers, and mobile phones, all equipped with communication and
computation power beyond that of stationary computers a few years ago. In
order to manage the resulting logic complexity of applications, conceptual
modeling techniques are required like for the development of “stationary”
software.

In addition, mobility creates new and diverse concerns. As stated in [19],
mobility is a “total meltdown” of the stability assumed by distributed
systems, the main differences being caused by the possibility of roaming and
wireless connection [21]. Roaming implies that, since devices can move to

66 Reiko Heckel and Ping Guo

different locations, their context (network access, services, permissions, etc.)
may change, and that mobile hosts are resource limited, for example, in
computation power, memory capacity, and electrical power. Wireless
connections are generally less reliable, more expensive, and provide smaller
bandwidth, and they come in a variety of different technologies and
protocols. All this results in a very dynamic software architecture, where
configurations and interactions have to be adapted to the changing context
and relative location of applications.

In order to provide continuous service to mobile devices, or compensate
for the lack of it, a number of different solutions have been developed.
Telecom systems like GSM, GPRS, or UMTS use handover protocols to
provide continuous connectivity. Mobile IP extends seamless IP connectivity
to mobile hosts. Besides, there exist middleware platforms supporting
mobility at the application-programming level like J2ME, a reduced version
of J2EE for resource-limited devices with support for wireless
communication, and Wireless CORBA which supports terminal mobility
through CORBA bridges and handover protocols.

However, even with dedicated middleware it is not possible in general to
completely hide the consequences of mobility from the application which
has to be aware of, and able to react to, changes in its context given by its
current location, quality, cost, and type of available connections, etc. What is
more, the amount of context information required and available to the
application greatly varies, depending on the employed infrastructure so that,
in the end, not every intended application scenario may have a meaningful
realization on any given platform. That means, developers have to take into
account the properties of the infrastructure they are using, not only for the
final implementation, but also already at a conceptual level during
requirements analysis.

In this paper, the conceptual modeling of styles of mobile systems is
proposed as a way of capturing the properties of a certain class of mobile
computing platforms. Such conceptual models consist two parts: a structural
model given by UML class diagrams whose instances represent the valid
system configurations, and a dynamic model given by transformation rules
over these instances, specifying the operations of the style. Graph
transformation systems [20] shall provide the underlying formal model and
operational semantics.

Graphs provide a popular model for a variety of structures, including
network topologies and software configurations. Their evolution can
conveniently be specified by graph transformation rules that manipulate the
graphs by means of pattern matching and rewriting. Such specifications have
a formal operational semantics, can thus be executed by tools and analyzed
for certain properties.

Conceptual Modeling of Styles for Mobile Systems 67

In order to employ graphs and graph transformations for our purposes,
the different interpretations of their vertices as components, devices, areas,
etc. and their edges as connectors, network connections, neighborhood
relations, etc. have to be defined. This is done by a meta model consisting of
three interconnected layers, structured by means of packages.

Rules formulated over this meta model shall describe a style of mobile
systems given by a set of basic actions that can be invoked or observed by
the application. This is comparable to the specification of an architectural
style by graph transformation rules [14, 13, 6], but for the fact that the scope
is not limited to the software architecture. Then, a mobile application
scenario, expressed as a sequence of such basic actions, can be analyzed for
its realizable in the style by constructing an execution of the corresponding
rule sequence, either by means of a model checker or interactively with the
help of a graph transformation tool. This aspect, however, is beyond the
scope of this paper.

The paper is organized as follows. In Section 2, we introduce a basic
style of mobile systems following the three-layered structure discussed
above. In Section 3, this basic model is extended by taking into account
quality-of-service information. An example is presented to illustrate this
aspect. Section 4 discusses related work and Section 5 concludes the paper.

2. A BASIC STYLE OF MOBILE SYSTEMS

We give a conceptual model that captures the basic structures and
operations typical to nomadic networks. Our conceptual model consists of
two parts, a structural meta model represented by UML class diagrams and a
dynamic model given by graph transformation rules.

2.1 Meta Model

Following [11], we use a meta model structured into three packages. This
allows us to separate different concerns, like software architecture,
distribution, and roaming, while at the same time retaining an integrated
representation where all elements of a concrete model are presented as
vertices of the same graph, i.e., an instance of the overall meta model. Based
on this uniform representation, the different sub-models can be related by
associations between elements belonging to different sub-models.

68 Reiko Heckel and Ping Guo
|Architecture Connectivity

service

us| F]___‘ :
e i instanceOf

ComponentType : ~ Component
Typelclient (fromArchitecture) . (fromArchitecture)
deployedAl deployedAt

A |connects

Roaming | connec’é H %onnects
- lc ionTyp Connection
Node. | s
{fromConnectivity)

provides P —~

agis d
Connector

ConnectorType
(fromArchitecturs) (fromArchifecture)

Figure 1. Architecture, Connectivity and Roaming package

NodeT
(Iromcanrygcetivify)

ates JocatedAt| |administrates

anceOf

Our basic style of mobile information systems is focused on the roaming
and connectivity of mobile hosts, i.e., hosts can change location and possible
connections may vary according to their relative location to each other.
Naturally, architecture and behavior of applications depend on the
connectivity and location of their host computers. Our three-layered meta
model captures these relations in the three packages Architecture,
Connectivity and Roaming to present different viewpoints of the systems.

The Architecture package in Fig. 1 defines the architectural view,
containing both a definition of an architectural model (meta classes
ComponentType, ConnectorType, PortType) as well as of an individual
configuration (meta classes Component, Connector, and Port), related by the
meta association instanceOf.

The Connectivity package in Fig. 1 presents the distributed view of the
system in terms of the concepts Node, Bridge, and Connection, paired as
above with corresponding type-level concepts. A node is a (real or virtual)
machine, accessible through bridges via connections. The typing means that
we can distinguish, for example, between Ethernet, WLAN, or GSM-based
connections, or between different kinds of machines like PCs, laptops, cell
phones, etc. The package uses the elements Component, ComponentType
from the Architecture package to be able to specify deployment using the
deployedAt association. Bridges on client nodes need to be registered with a
network in order to build up connections. Moreover, they are typed (e.g., an
Ethernet bridge cannot connect to a GSM network). Bridges on server nodes
provide network access to registered clients. A Connection is a physical
network link that delivers communication services to Connectors at the
software level.

Conceptual Modeling of Styles for Mobile Systems 69

: NT:NodeType <<node>> <<node>> <<node>>
n.Node - —_ja.Node NT nNT nNT
|
movem o d locatedAt moveI:n locatedA!
<<area>> <<area>> <<area>>
AT aAT aAT

Figure 2. Transformation rule moveln: meta model-based presentation (left)
and UML-like concrete syntax (right)

The Roaming package in Fig. 1 defines the location and mobility of Nodes
in terms of Areas, i.e., places where Nodes can be located. An area is
defined by an administrative domain, like a cell managed by a GSM base
station, or a Wireless LAN domain. Thus, there are different types of areas
that may be overlapping. An area can have an administrative Node who
serves the connections in this Area. This node does not need to be located
inside the same area. We do not separate mobile from stationary hosts at this
level. A node is mobile if it changes its location to a different area, a fact that
is part of the dynamics of the model. This allows the added flexibility of
considering, e.g., a laptop that does not move as a stationary device.

2.2 Rules

Based on the integrated representation of the different views in a single
meta model, we can define the rules governing movement and connectivity
as graph transformation rules typed over the corresponding package(s). The
basic operations of the style include moveln, moveOut, register, deRegister,
connect, disconnect and handOver. Due to space limitations, operations
moveQut, register, deRegister and disconnect are omitted. moveOut and
disconnect are dual to moveln and connect, respectively. The register
operation is responsible for subscribing a bridge on a client node with a
network, so that the client gets permission to connect via this bridge.
Operation deregister is, again, the dual.

In the left of Fig. 2 the moveln rule is shown. According to its pre-
condition, expressed by the pattern on the left-hand side, there should be a
Node n and an Area whose types NT and AT should be connected by a
locatedAt link. That means the node is of a type that is supported by the area,
like a cell phone in a GSM cell. In this case, the rule can be applied with the
result of creating a new JocatedAt link between the two instances. This is
expressed in the post-condition of the rule shown on the right-hand side. The
dual operation moveOut, specifying the deletion of a locatedAt link, is
omitted here.

70 Reiko Heckel and Ping Guo

'<<node>>

<<bridge>> |n1: Node1
Bridge1 '
ridge reqistered _host
|connecw <<bridge>> ftenne
b1: Bridge1
. <<network>>{ connegt |<<network>> b1: Bridge1l -
<<connection>> nw: Network :& nw: Network :<°‘;’:‘:Z‘2t'g:1»
, . C
Connection L___ <<bridge>> |_ <<bridge>> m/
|connects provides . Bridge2 provides | priggez (2dinects
<<bridge>> m hOSf%
Bridge2 <<node>> <<node>>
n2: Node2 |n2: Node2

Figure 3. Transformation rule connect

In order to simplify the notation, we use a UML-like concrete syntax
with separation of type and instance level and stereotypes to denote meta
types. The corresponding presentation of the moveln rule is shown in Fig. 2
on the right. The types declaration is separated from the actual rule by the
black vertical line. The instanceOf relation is expressed in the standard way
as instance : Type, while stereotypes like <<node>> represent meta types
Node and NodeType.

Connecting is the act of building a network connection between two
nodes through their bridges. The precondition of the rule in Fig. 3 requires
the existence of a corresponding connection type between the two bridge
types. Moreover, bridge bl has to be registered with network nw provided
by bridge b2. As postcondition, the desired connection c¢:Connection and its
links are created. The dual rule disconnect for deleting a connection is,
again, omitted.

These rules, as well as the following one, are typical for nomadic
networks where a fixed infrastructure provides wireless connectivity to the
mobile devices. Examples of such systems include mobile phone networks
(GSM, GPRS, UMTS) or Wireless LAN.

Handover procedures are unavoidable in mobile system in order to
realize seamless connectivity across different access points. At the physical
link level, this means to preserve the connection between the moving
terminal and its infrastructure [2], providing the same type of connectivity or
switching from one type of connectivity to another as infrastructure coverage
changes [4]. In higher-level protocols, like Wireless CORBA, one needs to
support continuous object connectivity, using handover and tunneling
between different bridges on the physical link layer. We give a handover
rule typical for nomadic networks, where a fixed infrastructure provides
connectivity to mobile hosts.

Conceptual Modeling of Styles for Mobile Systems 71

<<node>>
n1: Node1

<<connector>:
cr. Connector

[<<connector>:

cr: Connector hosts

<<bridge>> N i
- <<bridge>> orid <<bridge>>
Bridge1 o¢ ts ses b3: Bridge3 <<bridge>> use: b3: Bridge3
b1: Bridge1 poe b1: Bridge1
connects t<conne ion>> | ool
:Connection: fiosts -

<<bridge>>
b2: Bridge2
0S1S

<<node>>
n2: Node2

<<bridge>> <<node>> handO
connects -
Connection3 b2: Bridge2 n3: Node3 (han er

administrates

OS]
| .
<<bridge>> [<<node>> Imml«area»
n2: Node2 a2: Area2 | [<<area>>
Bridge3 a:3 Aread
——locatedAt

Figure 4. Transformation rule handOver

The rule shown in Fig. 4 explains how to maintain connectivity between
administrative domains. It requires that node nl is located in two areas
served by two administrative nodes n2 and n3. Connector cr uses connection
cn2 between bridge bl and b2. The connection is replaced by cn3 of type
Connection3 that, according to the types declared on the left, is permitted
between bridges of type Bridgel and Bridge3. The uses relation of the
connector is transferred to the new connection.

3. TOWARDS A QOS-AWARE STYLE

In this section, we indicate a possible extension of our model towards a
style of systems that are aware of quality-of-service (QoS) properties,
requirements, and their matching. Different applications may have different
QoS requirements, and the degree to which this aspect is transparent varies
greatly in different systems. For example, [17] discusses the pros and cons of
application-transparent vs. application-aware adaption to changes of QoS
properties. Therefore, the handling of QoS is an important aspect to be
modeled as part of a style of systems.

Without aiming at a complete model of this aspect, we want to
demonstrate how the behavior of the operations of our style can be
controlled by QoS properties. We present a basic model of QoS in mobile
systems, again consisting of a static meta model and graph transformation
rules. Then we illustrate the concepts by an example.

72 Reiko Heckel and Ping Guo

<<QoSReg>> !
ar
keguiresl
<<Reg>>
r
requires ~ provid , i
‘h iq P is 4 has <<QoSCntret>>| oo neg(mate?
as 1 has e ac —
Requestor Provider
g ” . <<QoSReq>> <<QoS0ffer>>
[1 ! 1 ar qo:
~ Component Network reguires‘ l provides
(fromArchitecture) (fromConnectivity)
<<Reg >> L <<Proy>>
r B

Figure 5. QOS package and transformation rule negotiate

3.1 Meta Model

The QoS package in left of Fig. 5 defines the basic concepts of QoS, i.e.,
requirements QoSRequired of service Requestors, properties QoSOffered
offered by Providers, a dependency relation between Provider and
Requestor, and a satisfaction relation between offered and required
properties. The roles of Provider and Requestor can be played by any entity
of the model, e.g., Network, Component, Connection, etc. A QoSContract is
the result of a negotiation between Requester and Provider in case the offer
does not meet the requirements, putting a lower limit to the first and an
upper limit to the latter.

This quite general structure is a simplified version of the meta model of
the UML profile for QoS [18]. An important difference is that, in our case,
QoS is dealt with at the instance level, i.e., at run-time. For example, in [10]
the authors stress that the major impact of mobility on QoS is due to the
dynamic changes in the context of applications, and platforms like [17]
monitor QoS changes at run-time to inform or adapt their applications. This
does not exclude the specification and matching of QoS properties at the
type level, but the instance-level is mandatory.

Conceptual Modeling of Styles for Mobile Systems 73

<<bridge>>
Bridge1

administrates

<<area>>
[a3: Area3

locatedAt

locatedAt

Figure 6. handOver rule with QOS

3.2 Rules

The effect of a negotiation between the QoS requester and provider when
the offered QoS does not satisfy the requested QoS is defined by the rule
negotiate. Since we consider QoS only at the instance level, the
corresponding objects are labeled like go: without type, but with stereotype
<<QoSOffer>> referring to the meta type. The pre-condition of the rule in
Fig. 5 on the right contains a negative application condition, represented by
the crossed-out link, which makes sure that the rule is only applicable if the
QoS requirements are not satisfied.

Note that match making in our model is abstracted through the satisfies
association, while the detailed conditions for satisfaction and the protocols
for negotiation are left open for possible refinements of the model towards a
concrete platform.

As an example of how QoS may affect the behavior of operations of our
style consider the extended handOver rule in Fig. 6. The idea is that the
selection of the new bridge to connect to may depend on the QoS
requirements of the application component as well as on the actual
properties of available bridges. Both can, moreover, change over time.

Then, if the current network does not satisfy the current requirements, the
responsible bridge will hand over to a bridge of a network where the
requirements are satisfied. According to the left-hand side of the rule, it can
only be applied if the quality of the current network is not satisfactory.

74 Reiko Heckel and Ping Guo

33 Example

QoSOfferedByWLANNetwork
Location: Office WLANAcessPoint
ServiceType:IntemetConnection i)

et WLANService
Speed: 11Mbps; | -7
Price: 0.03€/ Min, _——=== /

.:,"/7 nenction éPR§Base§tation ;mail§erver
MobilePC -~
T client sl - GPRSService | EmailService
/ GPRSConnection :

;_ ______________ << <uses>>________________-_-__-_-_;--_-_-_--_;‘z}\
QoSRequiredByClient QoSOfferedByGPRSNetwork ‘
Location: Office Location: Office
ServiceType :IntemetConnection ServiceType:IntemetConnection
Speed: 10Mbps; Speed: 56Kbps;
Price: 0.05 €Min; W

Figure 7. Application scenario with QOS (deployment diagram)

Let us conclude this section by giving an example for how to use our
conceptual model in a concrete application. Assume a mobile PC equipped
with Wireless LAN and GPRS cards, hosting a component that needs to
access an Email server on a stationary host. We suppose that we have two
areas for movement: the office and outside. Wireless LAN and GPRS
networks are both available in the office, while outside only GPRS is
available. Because of the higher speed and cheaper price, the system should
use the Wireless LAN whenever available. However, when the user moves
from the outside area to the office, the Email connector based on GPRS
should not be interrupted while the underlying connection changes to
Wireless LAN. The different QoS requirements and offers of the component
and the two available networks are shown in the deployment diagram of Fig.
7.

This situation can be represented as an instance of the meta models
introduced in this and the previous section. It should be clear that, being in
the office, rule handOver in Fig. 6 will allow us to connect to the Wireless
LAN, but not to the GPRS network. Fig. 8 shows a part of the configuration
of the scenario before and after the application of this rule.

In the upper part of Fig. 8, the mobilePC has just moved from outside
into the office. The lower part represents the configuration where the

Conceptual Modeling of Styles for Mobile Systems 75

<<component>> deployedAt

<QoSOffer>> <<network>>

client: MailClient :GPRSNetwol
requires provides
<<bridge>> 2
MPCBridge <QoSReg>> <<Qos0fier>> emailCrSession <<bridge>>
ac gol: gprsb:GPRSBridde
acts S hosts

<<network>> <<ocnnechon» <<node>>
BaseStation;BSNd

wian:WLANNetwork <<bridge>> cn2: GPRSCon
3 wlanb:WLanBridge
provides A . administra

<<node>> inistrate <<area>>
cceeePoint:Server} office1.WLANArea

[administrateg :

<<area>>
Outside:GPRSArea

locatedAt l T
JocatedAt office2: GPRSArea
=i |
<<component>> <<QoSOffer>> <<network>>
client:MailClient go2: ides igprs:GPRSNetwork

requires

<<connector>>
emailCrSession

handOver

<<bridge>>

e <<bridges> gprsb:GPRSBridge
satisfied mpcb:MPCBridge |c hosts

<<node>>
BaseStation:BSNd

<<connection>>
cn3: WLANCon

<<bridge>>
wlanb:WLanBridge

/
Connects administrates

administrates

<<area>> <<area>>

administrates
admnistrates officet NArea - |Outside:GPRSArea
locatedAt I
<<area>>
locaiadal office2:GPRSArea

Figure 8. Configuration of the scenario before and after handover

mobilePC has been connected to the Wireless LAN network, while the
Email connection has been be reserved.

4. RELATED WORK

The general idea of modeling classes of systems with common structural
and behavioral characteristics by a combination of meta modeling and graph
transformation is due to [14], where it has been applied to software
architecture styles. For distributed systems, [13] argues that rules should be
strictly local, covering only the operation of a single component, while
global effects should be achieved by synchronization. This restriction,
however, does not apply to the high-level specification of operations at the
system level.

A number of different process calculi have been proposed to describe the
interaction and movement of mobile processes, mostly by extending the -

76 Reiko Heckel and Ping Guo

calculus [16, 12, 9]. In order to express runtime properties of mobile
systems, some of these calculi have been complemented by logics [7, 15].

Apart from the fundamentally different appearance and style which, in
our opinion, makes them harder to grasp for the average software engineer
than our meta model-based approach, these process calculi with their
associated logics have a complementary focus: They provide means for
programming mobility in terms of the processes driving individual
components or devices, rather than for its high-level conceptual modeling in
terms of global pre- and post-conditions. In this sense, our model defines
requirements, e.g., for handOver, while the actual protocol implementing the
operation is more easily specified (and verified) in a process calculus.

Closer to our approach are some of the techniques proposed by the
AGILE project [5], extending existing specification languages and methods.
UML class, sequence, and activity diagrams are extended be features to
describe how mobile objects can migrate from one host to another, and how
they can be hosts to other mobile objects. In particular, their stereotypes
<<mobile>> or <<location>> are not unlike our <<node>> and <<area>>.
Graph transformation systems are proposed as a means to give an
operational semantics to these extensions.

Other extensions are based on architectural description languages, like
the parallel program design language CommUnity [3, 5]using graph
transformation to describe the dynamic reconfiguration, Klaim as a
programming language with coordination mechanisms for mobile
components, services and resources; the specification language CASL as a
means for providing architectural specification and verification mechanisms.

While Klaim and CASL are, again, more programming and verification-
oriented, the approaches based on UML and CommUnity are at a level of
abstraction similar to ours. However, the goals are different: Our focus is to
model a style of mobile applications, e.g., corresponding to a certain
mobility platform, while the focus in the cited approaches is on the modeling
of applications within a style more or less determined by the formalisms.
Indeed, being based on a meta model, our approach can easily specify styles
exhibiting all kinds of features like QoS (as demonstrated above) or more
sophisticated aspects of context awareness, handOver operations within one
or between different networks, etc.

Finally, our three-layered approach provides a clear separation of the
different views of software architecture, connectivity, and mobility, which is
required in order to specify a physical phenomenon, like the loss of a signal,
in relation with the intended reaction of an application or middleware
platform, like the transfer of ongoing sessions to a new connection.

Conceptual Modeling of Styles for Mobile Systems 77
5. CONCLUSION ‘

In this paper, we have presented a basic example for a style of mobile
systems to illustrate how such styles can be defined using meta models and
graph transformation. Not tailored towards a particular platform, the model
reflects the properties of so-called nomadic networks, where mobile devices
are supported by a fixed infrastructure. An extension towards QoS-
dependent behavior of such systems is sketched and illustrated by an
example.

In the future, we intend to use conceptual models like the one presented
here as a means for classification, comparison, and improvement of mobility
platforms. Moreover, the formal background of graph transformation
systems can be exploited to analyze properties of systems by simulation.

Based on the operational semantics of graph transformation, a scenario
represented by a trace of operations can be validated by executing the model
starting from an initial configuration. Support for the execution of graph
transformation systems is available, e.g., in tools like Fujaba [1] or
PROGRES [22]. A major requirement here is a good visualization of
configurations, since the meta model-based representation is not concise
enough for larger examples.

REFERENCES

[1] From UML to Java and Back Again: The Fujaba homepage. www.upb.de/cs/isileit.

[2] I Akyildiz, J. Mcnair, J. H, H. Uzunalioglu, and W. Wang. Mobility management in
next-generation wireless systems. Proceedings of the IEEE, 87:1347— 1384, 1999.

[3] A. Lopes, J. Fiadeiro, and M. Wermelinger. Architectural primitives for distribution and
mobility. In Proc. 10th ACM SIGSOFT symposium on Foundations of software
engineering (FSE 2002), pages 41 — 50, Charleston, South Carolina, USA, 2002. ACM
SIGSOFT.

[4] G. Alsenmyr, J. Bergstrm, and M. Hagberg. Handover between WCDMA and GSM,
2003.

[S] L. Andrade, P. Baldan, and H. Baumeister. AGILE: Software architecture for mobility.
In Recent Trends in Algebraic Development, 16th Intl. Workshop (WADT 2002),
volume 2755 of LNCS, Frauenchiemsee, 2003. Springer-Verlag.

[6] L. Baresi, R. Heckel, S. Thone, and D. Varr6. Modeling and validation of service
oriented architectures: Application vs. style. In P. Inverardi and J. Paakki, editors, Proc
ESEC 2003: 9th European Software Engineering Conference, pages 68—77, Helsinki,
Finland, September 2003. ACM Press.

[7] L. Caires and L. Cardelli. A spatial logic for concurrency (part I). Information and
Computation, 186(2):194 — 235, November 2003.

[8] L. Cardelli and A. Gordon. Anytime, anywhere. modal logics for mobile ambients. In
27th ACM Symposium on Principles of Programming Languages, pages 365-377.
ACM, 2000.

78

(%]

[10]

(1]

(12]

[13]

[14]

(15]

[17]

(18]

[19]

[20]
[21]

[22]

Reiko Heckel and Ping Guo

L. Cardelli and A.D. Gordon. Mobile ambients. In Foundations of Software Science and
Computation Structures: First International Conference, FOSSACS °98. Springer-
Verlag, Berlin Germany, 1998.

D. Chalmers and M. Sloman. A survey of quality of service in mobile computing
environments. IEEE Online Communication Surveys, 1(2), 1999.

R. Heckel and G. Engels. Relating functional requirements and software architecture:
Separation and consistency of concerns. Journal of Software Maintenance and
Evolution: Research and Practice, 14(5), 2002. Special issue on Separation of Concerns
for Software Evolution, edited by Tom Mens and Michel Wermelinger.

M. Hennessy and J. Riely. A typed language for distributed mobile processes. In Proc.
ACM Principles of Prog. Lang. ACM, 1998.

D. Hirsch and U. Montanari. Consistent transformations for software architecture styles
of distributed systems. In G. Stefanescu, editor, Workshop on Distributed Systems,
volume 28 of Electronic Notes in TCS, 1999.

Le Meétayer, D. Software architecture styles as graph grammars. In Proceedings of the
Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering,
volume 216 of ACM Software Engineering Notes, pages 15-23, New York, October
16-18 1996. ACM Press.

S. Merz, M Wirsing, and J. Zappe. A spatio-temporal logic for the specification and
refinement of mobile systems. In Mauro Pezzé, editor, Proc. Fundamental Approaches
to Software Engineering, 6th International Conference (FASE 2003), volume 2621 of
LNCS, pages 87-101. Springer-Verlag, 2003. [16] R. Milner, J. Parrow, and D.Walker.
A calculus of mobile processes. Information and Computation, 100:1-77, 1992.

B.D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J. Flinn, and K.R.Walker.
Agile application-aware adaptation for mobility. In Proc. of the 16th ACM Symposium
on Operating Systems Principles, pages 276-287, 1997.

OMG. UML profile for modeling quality of service and fault tolerance characteristics
and mechanisms, 2002. http://www.omg.org/docs/realtime/03-08-06.pdf.

G.-C. Roman, G. P. Picco, and A. L. Murphy. Software engineering for mobility: A
roadmap. In A. Finkelstein, editor, Proc. ICSE 2000: The Future of Software
Engineering, pages 241— 258. ACM Press, 2000.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, 1997.

M. Satyanarayanan. Fundamental challenges in mobile computing. In Symposium on
Principles of Distributed Computing, pages 1-7, 1996.

Andy Schiirr, Andreas J. Winter, and Albert Ziindorf. PROGRES: Language and
environment. In Hartmut Ehrig, Gregor Engels, Hans-Jorg Kreowski, and Grzegorz
Rozenberg, editors, Handbook on Graph Grammars and Computing by Graph
Transformation: Applications, Languages, and Tools, pages 487-550. World Scientific,
Singapore, 1997.

