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Abstract. Representing mechatronic products in interorganizational 
information systems requires means for capturing characteristics of this type of 
products. This role is fulfilled by mechatronic product models which are subject 
of this paper. A mechatronic product consists of three components: software, 
electronics, and mechanics. The challenge is that diverse interrelations between 
their components and with other products exist; these interrelations need to be 
considered in respective models. The problem of current modeling approaches, 
however, is that they either do not provide the required richness for expressing 
interrelations or focus engineering tasks only by describing the product 
behavior. We view mechatronic product models from a logistic perspective 
which allows us answering two questions: What is the scope of a mechatronic 
product model for interorganizational information systems? Which information 
is required in this model (i.e., determined by the goal of logistics)? We design a 
mechatronic product model from this perspective. We validate our model by 
studying an interorganizational scenario in an automotive supply chain. 
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1. INTRODUCTION 

Mechatronic products consist of three components: software, electronics, and 
mechanics. They play a major role in many industries such as medical technology, 
industrial automation, and automotive [1-2]. The nature of mechatronic products 
increases the complexity of final goods that are often composed of multiple 
mechatronic products as well as conventional products. 

Representing mechatronic products in interorganizational information systems 
requires means for capturing basic characteristics of this type of products. This role is 
fulfilled by mechatronic product models which are subject of this paper. The 
challenge is that, due to the nature of mechatronic products, diverse interrelations 
between their components and with other products exist (in case of embedded 
systems); these interrelations need to be considered in respective product models. 

The problem of current mechatronic product modeling approaches, however, is that 
they either (1) adopt conventional product models for tangible goods or (2) limit the 
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model’s scope with regard to the product life-cycle. The former does not provide the 
required richness for expressing interrelations, because conventional product models 
rely on simple, very often hierarchical relationships only. The latter focuses 
engineering tasks only by describing the product behavior to design the product 
functionality and guarantee dependability. 

We address this problem by viewing mechatronic product models from a logistics 
perspective. This perspective allows us answering two questions: 
1. What is the degree of granularity of a mechatronic product in interorganizational 

information systems? It is constrained by the smallest item within a logistic 
process, thus an item that can be identified, ordered, and delivered. 

2. Which information is required in this model? It is determined by the overall goal 
of logistics, thus the information must support delivering the right item in the 
right quantity & quality at the right place at the right place for the right cost. 

In this paper, we propose a mechatronic product model from a logistics 
perspective. This model aims at capturing product interrelations in a better way. We 
validate our proposal by studying an interorganizational scenario of spare parts 
logistics in an automotive supply chain. We can show that the novel approach reduces 
representational mismatches and supports logistic decisions. 

The remainder of our paper is structured as follows. In section 2, we discuss 
existing work. Section 3 analyzes concepts of mechatronic product modeling and 
relates them to the logistics perspective. In section 4, we specify our mechatronic 
product model based on these considerations. Section 5 shows the application of this 
model in an interorganizational scenario. Finally, section 6 draws conclusions and 
points out avenues of future research. 

2. RELATED WORK 

The related work can be grouped into three major areas: mechatronic engineering, 
product data management, and product ontology engineering. 

Mechatronic engineering provides models dedicated to mechatronic products. 
These models describe how such a product works and which structural and functional 
dependencies between its components exist [3]. Therefore, these models are designed 
from a dependability perspective: They aim at allowing for dependability simulation 
which describes the product behavior in terms of states, events, and possible faults [4, 
1]. Representation means are state graph formalism [2], for instance, whereas 
quantitative aspects can be expressed by colored Petri nets [5], for instance. 

Product data management (PDM) provides models aimed at capturing information 
which describes a product in order to support product-related activities within an 
organization. Its main goal is supporting the management of product complexity 
regarding number of products, parts, versions, and interrelations [6]. PDM focuses on 
engineering and manufacturing. Respective models describe products from a product 
structure perspective, thus in terms of interrelated parts and properties of these parts 
[7]. Representation means often rely on hierarchical structures formed by ‘part-of’ 
relationships which can be complemented by vertical relationships of limited 
expressiveness [8]. For instance, relationships can be classified into flow of energy or 
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information [3]. More recently, PDM’s coverage is extending to other life-cycle 
phases such as sales and after-sales. The semantic expressiveness of interrelations, 
however, does not increase. 

Product ontology engineering provides methods for constructing product 
ontologies which are consensual formal definitions of the concepts and interrelations 
within a product domain [9]. This field has been driven by the Semantic Web and 
yields models that capture the semantics of products using ontology languages (e.g., 
[9-10]). The ontology perspective requires defining product concepts unambiguously 
and distinguishing one concept from other concepts. Therefore, product ontologies 
and respective models rely mainly on taxonomic relationships. Another limitation is 
that product ontology engineering does not fully exploit product complexity, since it 
regards products very often as final products being subject of interorganizational 
systems such as e-commerce systems and thus limits complexity to simple product 
features that can be expressed by property-value pairs and standardized property 
definitions [11]. 

3. PRODUCT MODELING CONCEPTS 

In this section, we introduce and analyze basic concepts of product mechatronic for 
mechatronic product and relate them to the logistics perspective. 

3.1 Product Structure: Bill-of-Material 

A basic concept of product modeling is representing its structure, thus the parts that 
constitute the product, as a tree called bill-of-material (BOM). A BOM describes the 
product structure by multiple layers of detail. BOMs can be designed from various 
perspectives such as engineering or manufacturing. In manufacturing, the BOM 
describes of which assembly groups and atomic parts the final product consists. Here, 
the term ‘part’ refers to any material which is handled within the respective enterprise 
and thus subject of intraorganizational information systems, i.e., ERP systems. 

With regard to mechatronic products, the BOM concept allows for distinguishing 
specific layers within the product structure. Obviously, mechatronic products form 
one layer above the mechatronic component layer. Since mechatronic products are 
often part of more complex final products, layers above the mechatronic layer group 
parts into modules. Figure 1 shows an example BOM by distinguishing four layers: 
final product, module, mechatronic product, and component. Such as BOM does not 
cover interrelations between elements of the same layer; hence it contains, for 
instance, no information about dependencies between the software and electronic 
component of a mechatronic product. 

From a logistics perspective, the BOM concept can be employed for other purposes 
than manufacturing. For instance, a BOM for sales or distribution logistics contains 
only parts that are relevant for sales and after-sales, e.g., optional and spare parts. 
Therefore, ‘part’ refers to items that can be ordered by referring to an order number, 
transported, and delivered. Regarding mechatronic products, the logistics perspective 
constrains the scope of the product model as evident by the BOM concept: The 
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smallest item within a logistic process must be part of such a BOM. The consequence 
is that the degree of granularity is lower than those of engineering-oriented models. 
The latter models are more detailed (i.e., BOMs listing elements of a circuit board). 

 

Final ProductFinal Product
Layer

Component
Layer

Mechatronic
Layer

M 2
Module
Layer M 3M 1 …

MP 1 MP 2

Software Electronics Mechanics Software Electronics Mechanics

 
Figure 1. Example BOM for Mechatronic Products (M: module MP: mechatronic 

product) 

3.2 Product Dynamics: Versioning 

A basic concept for representing product dynamics, thus changes in product 
specification, is versioning. It increases product complexity and requires 
representational means for maintaining version numbers and describing the sequence 
of versions over time. 

With regard to mechatronic products, dynamics is an inherent property. The reason 
is that its software component can be changed easily by updating the software without 
changing other components. These changes can even be executed by customers 
during the usage of the product. With regard to mechatronic products, one has to 
consider that each component has its own version history and contributes to the 
version of the product. The number of versions over time is quite different with 
greater dynamics in the software component (see figure 2). There also exist 
dependencies between software and other components, since a software update may 
require a change in electronics. Thus, compatibility is a major issue in mechatronic 
products. This aspect is even more important for final products consisting of multiple 
mechatronic products which control the final product’s behavior. This additional 
information can not be expressed in version graphs though. 

From a logistics perspective, versioning is important for meeting the overall goal 
of logistics, thus delivering the ‘right item’. The attribute ‘right’ is mainly related to 
technical, functional, or qualitative characteristics of the respective and other items. 
Since significant changes of characteristics lead to a new version and all items can be 
subject of versioning, the mechatronic product model must at least include version 
numbers and, in addition, provide means for expressing relationships between 
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versions, i.e., sequence of versions, down- and upward compatibility. The latter 
information determines whether an item is right or not depending on other items. 

Software
Component

Electronics
Component

Mechanics
Component

V2 V4V1 V3

V2 V3

V2

Time

V1

V1

 

Figure 2. Example Version Graph for Mechatronic Products 

Product dynamics can be captured on a wider scale by the product life-cycle which 
describes the ‘life’ of a product over time. This life-cycle consists of subsequent, 
though overlapping phases: product planning, engineering, manufacturing, 
distribution/sales, usage/service, and recycling. Mechatronic life-cycles are very 
different in terms of phase length, number of versions, and overlapping. For instance, 
in the automotive domain, long life-cycles are typical for the final product (e.g., 3 
years development time; 7 years production; 15 years usage and service), whereas 
both software and electronics components have shorter life cycles (e.g., electronics: 4 
years; software: 1 year). 

4. MECHATRONIC PRODUCT MODEL 

In this section, we define a mechatronic product model which addresses 
interrelations. 

4.1 Product Interrelations  

We define a product interrelation as a typed relation between at least two parts of a 
product. In contrast to a bill-of-material, which is structured hierarchically, product 
interrelations allow for describing relations apart from the hierarchy. In particular, 
these relations can be defined from diverse perspectives and for various reasons. Thus 
these relations are not confined to only one type, which is often that of ‘part-of’; 
hence interrelations build a network of relations. 

In the following, we define the semantics of our model. We focus on interrelations 
and abstract from the position of related parts within the product hierarchy, thus these 
relations can connect any part in such a hierarchy. In particular, we allow 
interrelations in and across all layers. For this reason, we introduce ‘element’ to 
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denote any type of module, product, part, or component that can be subject of 
logistics (thus it equals ‘item’). 

4.1.1 Interrelation Type 
An interrelation type defines the reason or cause why a respective interrelation 

between two elements A and B exists: 
‘Function’: There is a functional interrelation between A and B, i.e., A can only 

provide/guarantee its functionality if B exists. Any modification of B such as version 
update or replacement may influence the functionality of A. 

‘Compatibility’: This version-related interrelation between A and B describes 
which version is required respectively not permitted. This type refers to upward and 
downward compatibility. The latter says that version Y is an improvement of version 
X, thus Y performs at least equal to X and more; whereas X is only able to perform 
little of release Y. 

‘Time’: This time-related interrelation between A and B describes that a particular 
version of B becomes outdated depending on its date. This type allows for replacing 
obsolete parts B due to changes of A. 

‘Context’: The interrelation results from the final product’s context, e.g. region, 
culture, or law restrictions. It allows for customizing products due to different 
contexts and guaranteeing that context-specific requirements are being met. 

The interrelation types abstract from current types that describe only physical 
relations between elements such as ‘part-of’, ‘substance-of’, and ‘member-of’ [12]. 
These types have been derived from the overall goal of logistics of delivering the 
‘right item’ and reflect different aspect of what is ‘right’. 

4.1.2 Cardinality 
The cardinality defines how many elements are related with other elements due to 

a defined interrelation. Here we employ common cardinality means: one-to-one (1:1), 
one-to-many (1: N), many-to-one (N:1), and many-to-many (N: M). In addition, we 
allow determining fix numbers for N such as 1:4. 

The cardinality means can also be used for meeting the logistics goal of delivering 
items in the right quantity; for instance, by defining the minimum number of related 
items. 

4.1.3 Direction 
The direction defines whether an interrelation has to be interpreted unidirectional 

(one-way) or bidirectional (two-way). The former distinguishes dependent elements 
(B) and elements which impact others (A). In case of a bidirectional interrelation, 
both sides are subject of a two-sided impact. It is possible to substitute a bidirectional 
interrelation with two single bidirectional interrelations. 

4.1.4 Effect 
The effect defines the consequences of an interrelation, thus the impact on the 

depending elements. We employ means of Boolean algebra: 
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� Inclusion (Æ): The dependent elements are required; otherwise the product has 
an invalid state which may harm its behavior. 

� Exclusion (�): The dependent elements are not permitted, thus A and B may not 
exist at the same time in the same context.G

� Disjunction (�): The dependent elements are connected by the logical OR. At 
least one element must be present to fulfill the criteria of dependability. 

� Conjunction (�): The dependent elements are connected by the logical AND. It 
means that all dependent elements must be present. 

4.2 Conceptual Modeling 

Next, we transform the semantics into a conceptual UML model. We employ class 
diagrams which provide associations as a basic formalism for interrelations. 

4.2.1 UML Associations 
Associations describe relationships between classes. Adopting this formalism for 

product interrelations requires mapping the concepts defined in section 4.1 to 
respective UML modeling primitives as follows: 
� Each element belonging to an interrelationship is represented by a class. 
� Each interrelation is represented by an association. 
� The cause of an interrelation defines the name of the respective association. 
� The cardinality of an interrelation defines the multiplicity of the respective 

association. 
� The direction of an interrelation defines the direction of an association. 

It is, however, not possible to include the effect of an interrelation in the respective 
association. Depending on the number of interrelated elements (here: classes), one has 
to distinguish binary and ternary associations. Figure 3 shows two respective 
examples. A severe weakness of this modeling approach is that UML associations 
limit the number of interrelated classes (element types) to three. 

-identifier : int
-name : string
-version : string

element A
-identifier : int
-name : string
-version : string

element B<< cause >>

-identifier : int
-name : string
-version : string

element C

**

*

-identifier : int
-name : string
-version : string

element A
-identifier : int
-name : string
-version : string

element B<< cause >>

1..* 1..*

 
Figure 3. UML Class Diagram with Binary and Ternary Associations Respectively 

4.2.2 UML Association Classes 
To compensate the stated limitations of associations, we replace the association 

with an association class which enables including additional semantics by means of 
attributes. The resulting model is shown in figure 4.  
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-identifier : int
-name : string
-version : string

element
-cause : int
-direction : string
-implication : string

interrelation

1..*

1..*

<< cause >>

cause_type
direction_type
implication_type

determinant

dependant

 

Figure 4. UML Class Diagram with Association Class 

In particular, we make the following design decisions: 
� Elements belonging to an interrelation are represented by a single class. Different 

elements can be distinguished by its identifier and version. 
� Each interrelation is represented by an association class which is connected via 

two associations with the respective element class. The first association has the 
role name ‘determinant’ and denotes elements which impact others. The second 
association characterizes elements (‘dependant’) which are dependent from 
others, thus from a determinant. 

� The cause, direction, and effect of an interrelation are represented by respective 
attributes of the association class. 

� The cardinality of an interrelation is represented by the multiplicity of the 
associations. 

5. SCENARIO: AUTOMOTIVE SUPPLY CHAIN 

In this section, we show the application of the proposed model in an 
interorganizational scenario in order to give evidence of its validity. We use the 
scenario technique as a descriptive design evaluation method. The scenario considers 
a multi-tier automotive supply chain. It includes suppliers of software, electronics and 
mechanics, a car manufacturer, and garages as part of the service infrastructure. 

Maintenance, repair and vehicle recalls are common events in the service and 
usage phase of product instances. A major part of these events are caused by 
electronics and software failures in mechatronic products. In these cases, garages need 
exact and rich information regarding the components to be replaced and other 
components which may be affected directly or indirectly because of side effects. 

We study the following recall: The recall concerns an electronic stability control 
(ESC) system which needs to be replaced for a predefined set of cars; this new 
version 3.0 works only properly if the brake assist system’s (BAS) version is 7.0 or 
higher. This interrelation requires that every ESC replacement based on the recall has 
to check the BAS version in the respective vehicle and, if necessary, has to upgrade 
this one to version 7.0 or higher. Figure 5 shows the respective object model (an 
instantiation of the model of figure 4). 
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identifier = 500
name = ESC
version = 3.0

 : element
identifier = 400
name = BAS
version = 7.0

 : element

cause = functional
direction = unidirectional
implication = inclusion

 : interrelation

 
Figure 5. Vehicle Recall 

Independently from the vehicle recall, the BAS underwent modifications by the 
respective supplier during a periodical revision process. Due to this process, the 
version 6.3 – which had been introduced earlier – provides a substantial new feature 
which required changing two components of the tire control system (TCS); the 
microcontroller (software) needs to be updated and a wire which connects both BAS 
and TCS needs to be replaced by a shielded one. The model in figure 6 shows this 
interrelation. 

identifier = 20
name = microcontroller
version = 2.0

 : element
identifier = 400
name = BAS
version = 7.0

 : element

cause = functional
direction = unidirectional
implication = conjunction

 : interrelation

identifier = 10
name = cable
version = 2.0

 : element

 
Figure 6. BAS Revision 

At this point, it becomes evident that the recall-triggered modification of the BAS 
may require two additional modifications of the TCS, depending on the current 
configuration of each individual vehicle. This dependency between recall and revision 
can be made explicit by linking the two respective models. Due to sharing the same 
conceptual model, a transitive dependability between ESC and TCS can be derived as 
shown in figure 7. 
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identifier = 20
name = microcontroller
version = 2.0

 : element

identifier = 400
name
version = 5.0

:ESP : element

cause = functional
direction = unidirectional
implication = conjunction

 : interrelation

identifier = 10
name = cable
version = 2.0

 : element

identifier = 500
name = ESC
version = 3.0

 : element
identifier = 400
name = BAS
version = 7.0

 : element

cause = functional
direction = unidirectional
implication = inclusion

 : interrelation

 
Figure 7. Vehicle Recall and BAS Revision 

This additional information ensures that implementing the product recall considers 
all other relevant interrelations which exist in the product interrelation network. 

6. CONCLUSIONS 

In this paper, we have proposed a mechatronic product model aimed at capturing 
interrelations as required by interorganizational information systems. The designed 
representation formalism captures interrelations in and between mechatronic products. 
In particular, we analyzed conventional concepts of product modeling and employed 
UML class modeling. We demonstrated the application of the novel approach in a 
scenario of spare parts logistics and provided first evidence of validity that the model 
reduces representational mismatches and supports logistic decisions. 

The current model has two main limitations. First, it concerns specifically 
interrelations beyond ‘part-of’ relationship types, thus it does not address other 
relevant aspects of product structures. Therefore, future work on potential ways of 
coupling the current model with other, existing models is foreseen. Second, the 
current modeling approach aims at providing a richer set of relationship semantics, 
though it does not employ dedicated formal languages for making this semantics 
explicit. We acknowledge a clear linkage to ontology languages based on a higher 
logic such as first-order logic. 
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