Method for Constructing Performance Annotation
Model Based on Architecture Design of Information
Systems

Hui Du', Renchu Gan®, Kecheng Liu™?, Zhenji Zhang' and Darren Booy®

!'School of Economics and Management, Beijing Jiaotong University, Beijing 100044, P.R.
China hdu@bjtu.edu.cn zhjzhang@bjtu.edu.cn

2 School of Management and Economics, Beijing Institute of Technology,

Beijing 100081, P.R. China ganrc@bit.edu.cn
3 Informatics Research Centre, University of Reading, Reading RG6 6AY, United Kingdom

k.liu@reading.ac.uk d.a.booy@reading.ac.uk

Abstract. To forecast performance of architecture design of information
system, we used a performance analysis model to directly get performance
indexes, as well as performance annotation model to get performance
parameters and facilitate construction of performance analysis model that is
indispensable. At present, when constructing performance annotation model,
UML Profile for Schedulability, Performance, and Time specification has been
de facto standard used to attach performance parameters to UML diagrams.
However, UML use case diagram and UML deployment diagram annotated are
not powerful enough to model complicated interactions among actors and
information system in the organization layer and among hardware resources in
the hardware layer respectively. Moreover, based on the performance
annotation model using UML diagrams, Coloured Petri Nets (CPN) has not yet
been used to construct performance analysis model. Therefore, no steps for
facilitating construction of CPN based performance analysis model are included
in currently processes for constructing performance annotation model. For
solving both deficiencies, in this paper, UML activity diagram is proposed to be
annotated in both layers. Moreover, performance annotation model construction
process including steps for facilitating construction of CPN based performance
analysis model is also devised. Furthermore, the application of the proposed
method in the initial architecture design of an online bookshop system is briefly
specified.

Keywords: Information system, Performance, Annotation model, Architecture design,
UML

1. INTRODUCTION

“The performance of computer-based information system is the response time and
throughput seen by their users, as well as observable quantities associated with the
corresponding computers, i.e. resource utilizations and length of resource queues in
the operating system.” [1]

1180 Hui Du, Renchu Gan, Kecheng Liu, Zhenji Zhang and Darren Booy

It is the fact that severe performance problems have always emerged in
implemented information systems. However, at that moment, it was usually very
difficult for them to be rectified. To avoid this dilemma, architecture-oriented
modeling and analysis of information systems performance was proposed especially
in [1-3].

In [3], through analysis and synthesis of the model architectures respectively
proposed in [1, 2, 4, 5], a new model architecture for architecture-oriented modeling
and analysis of information systems performance was proposed, which is shown in
table 1.

Table 1. The New Model Architecture

Annotation view Analysis view
Organization layer | Organization annotation model | Organization analysis model
Software layer Software annotation model Software analysis model
Hardware layer Hardware annotation model Hardware analysis model

Just as shown in table 1, the new model architecture consists of two parts, which
are annotation view in the second column and analysis view in the third column. Both
views are divided into three same layers, which are organization layer, software layer
and hardware layer from the top down. Six models exist in the intersections of views
and layers. Three models in the annotation view, in other words performance
annotation model, are used to get performance parameters and facilitate construction
of corresponding three models in the analysis view, in other words performance
analysis model, which are used directly to get performance indexes through analysis
or simulation. Each two models in each layer from the top down are used to model
interactions respectively among actors and information system, among software
processes and among hardware resources.

Since UML Profile for Schedulability, Performance, and Time specification (in
short SPT Profile) was adopted by OMG in 2002, it has been de facto standard used to
attach performance parameters to UML diagrams in most performance engineering
studies. For example, in [4, 6, 7], UML use case diagrams were annotated by the
performance extensions defined in SPT Profile [8] to specify workload related
parameters in the organization layer. UML activity diagrams were annotated to
specify scenario related parameters in the software layer. UML deployment diagrams
were annotated to specify hardware resource related parameters in the hardware layer.
In addition, in [9], UML sequence diagrams were also annotated to specify scenario
related parameters in the software layer. As to construction of performance analysis
model, some different languages have been used. For example, multi-class queuing
network was used in [4, 7] and stochastic Petri nets was used in [6, 9].

Although SPT Profile has been de facto standard used to attach performance
parameters to UML diagrams, deficiencies still exist in UML diagrams annotated. As
we know, UML use case diagram is mainly used to get functional requirements of
information system, it is too simple to model complicated interactions among actors
and information system in the organization layer. UML deployment diagram is in fact
a kind of static diagram, which is mainly used to specify distributions of software
processes or components and hardware resources of information system. Therefore, it

Method for Constructing Performance Annotation Model Based on Architecture Design of
Information Systems 1181

is really unsuitable to use it to model complicated interactions among hardware
resources in the hardware layer.

Based on the performance annotation model using UML diagrams, although
different languages have been used to construct performance analysis model, CPN
[10] has not yet been used. In fact, compared with all kinds of queuing networks,
CPN can model synchronization at ease. Compared with stochastic Petri nets, there is
less restrictions on CPN transition. Furthermore, based on the performance analysis
model using CPN, Design/CPN, a computer tool, can be used to get performance
indexes through simulation. To sum up, CPN is indeed a suitable language to be used
to construct performance analysis model. However, since CPN has not yet been used,
no performance annotation model construction process including steps for facilitating
construction of CPN based performance analysis model has been proposed.

In order to solve both deficiencies discussed above, in this paper, UML activity
diagram is proposed to be annotated both in the organization layer and in the
hardware layer. Moreover, performance annotation model construction process
including steps for facilitating construction of CPN based performance analysis model
is devised. Furthermore, application of the proposed method based on the initial
architecture design of an online bookshop system is briefly specified.

The paper is organized as follows: in section 2, the method for constructing
performance annotation model based on architecture design of information system is
presented. In section 3, application of the method based on the initial architecture
design of an online bookshop system is briefly specified. In section 4, conclusion and
future work are provided.

2. METHOD FOR CONSTRUCTING PERFORMANCE
ANNOTATION MODEL

The method proposed in this paper consists of two parts, which are UML diagram
for constructing performance annotation model and process for constructing
performance annotation model.

2.1 UML Diagram for Constructing Performance Annotation Model

As stated in section 1, since it is unsuitable to use UML use case diagram and
UML deployment diagram to model complicated interactions in the organization layer
and in the hardware layer respectively, new UML diagram has to be chosen.

In SPT Profile, two kinds of UML diagrams, which are UML activity diagram and
UML sequence diagram, are used to be annotated in the software layer. Compared
with UML use case diagram and UML deployment diagram, though they can both
model complicated interactions, “when it comes to model complex hierarchical
scenarios, UML activity diagram has some significant advantages due to both its
conceptual base and also to its notational convenience” [8]. According to table 1,
since performance annotation model has three layers, UML activity diagram is chosen
to be annotated in all three layers in this paper.

1182 Hui Du, Renchu Gan, Kecheng Liu, Zhenji Zhang and Darren Booy

2.2 Process for Constructing Performance Annotation Model

Since UML activity diagram is chosen to construct performance annotation model
and CPN is chosen to construct performance analysis model, new performance
annotation model construction process including steps for facilitating construction of
CPN based performance analysis model should be proposed. Moreover, according to
table 1, since performance annotation model consists of three sub-models, its
construction process should also consist of three sub-processes and each sub-model
corresponds to each sub-process. Furthermore, since three sub-models have fixed
order from the top down, the using sequence of the three sub-processes should also
comply with the same order.

2.2.1 Sub-process for Constructing Organization Annotation Model

Starting from the UML activity diagrams modeling key performance scenarios
describing interactions among actors and information system in the organization
layer, the sub-process for constructing organization annotation model consists of two
steps, which are “attaching performance parameters to the UML activity diagrams”
and “transforming transitions into object flows”. According to [5], “The key
performance scenarios are those that are executed frequently or those that are critical
to the perceived performance of the system”.

The aim of the first step is to get organization related performance parameters. The
activity based approach defined in [8] is used in this step to attach parameters to the
UML activity diagrams.

The aim of the second step is to facilitate construction of CPN based organization
analysis model. Three operations are included in this step, which are: “transforming
transitions between action states in actor swimlanes and activity states in information
system swimlane into actor request object flows”, “assigning state ‘to be dealt with by
processes’ to actor request objects in the object flows from action state to activity
state”, and “assigning state ‘has been dealt with by processes’ to actor request objects
in the object flows from activity state to action state”. When constructing CPN based
organization analysis model, all actor request objects will be directly transformed into
two socket places according to their states.

2.2.2 Sub-process for Constructing Software Annotation Model

Starting from the UML activity diagrams modeling key performance scenarios
describing interactions among processes in the software layer and referring to the
organization annotation model constructed, the sub-process for constructing software
annotation model consists of three steps, which are “attaching performance
parameters to the UML activity diagrams”, “supplementing actor request objects” and
“supplementing process request objects”. In fact, each UML activity diagram
annotated is the decomposition of the corresponding activity state in the organization
annotation model.

The aim of the first step is to get software related performance parameters. The
activity based approach defined in [8] is also used in this step to attach parameters to
the UML activity diagrams.

Method for Constructing Performance Annotation Model Based on Architecture Design of
Information Systems 1183

The aim of both the second step and the third step is to facilitate construction of
CPN based software analysis model. Three operations are included in the second step,
which are “supplementing the same actor request object depending on an activity state
in the organization annotation model to depend on the first activity state of the
corresponding UML activity diagram”, “supplementing the same actor request object
depended on by the activity state in the organization annotation model to be depended
on by the last activity state of the UML activity diagram”, and “repeating operation
one and two until all UML activity diagrams have been dealt with in the same way”.
When constructing CPN based software analysis model, all actor request objects
supplemented will be directly transformed into two port places according to their
states. In CPN, it is hierarchical relationship that between socket place and port place.

Four operations are included in the third step, which are: “supplementing one
process request object, which is depended on by the first activity state of an UML
activity diagram and has the same name with the activity state and has state ‘to be
dealt with by processor’”, “supplementing one process request object, which depends
on the last activity state of the UML activity diagram and has the same name with the
latest activity state and has state ‘has been dealt with by network’”, and
“supplementing two process request objects for each other activity state of the UML
activity diagram, of which one having the same name with the activity state and
having state ‘to be dealt with by processor’ is depended on by the activity state and
another having the same name with the latest activity state and having state ‘has been
dealt with by network’ depends on the activity state”, and “repeating operation one to
three until all UML activity diagrams have been dealt with in the same way”. When
constructing CPN based software analysis model, all process request objects will be
directly transformed into two socket places according to their states.

2.2.3 Sub-process for Constructing Hardware Annotation Model

In order to use UML activity diagram to construct hardware annotation model,
referring to the queuing network based system execution model of a web based
application in [5], a UML activity diagram based hardware resource interaction
template shown in figure 1 is firstly proposed.

processor disk netuo

rcess reguest

D process re]LIBSt
[ta be dealt with by netwark]

[rocess re]LIBST
[to be dealt with by disk]

[to be dealt with by processar]

processor deals with < disk deals with Y {PAtype=
process reguest process reguest (FR, Mhps')}
,,{{F'AWPFH*F'} ﬁ _diskc ‘,{{Pmype:w} lﬁ :

[free] [free] [free] E
. process reguest R I network deals with O
[has been dealt with by network] process request

Figure 1. The Hardware Resource Interaction Template

processor

Just as shown in figure 1, when a process request object sent by an activity state in
the software annotation model enters the hardware layer, firstly, it waits to be dealt
with by a processor. As soon as the processor is free, it is dealt with. Then, it waits to
be dealt with by a disk. As soon as the disk is free, it is dealt with. Finally, it waits to

1184 Hui Du, Renchu Gan, Kecheng Liu, Zhenji Zhang and Darren Booy

be dealt with by a network. As soon as the network is free, it is dealt with. Moreover,
three UML notes elements are used to specify types of processor, disk and network.

Starting from the UML deployment diagram modeling distributions of software
processes or components and hardware resources of information system and referring
to the hardware resource interaction template as well as the software annotation
model constructed, the sub-process for constructing hardware annotation model
includes one step, which is “getting hardware resource interaction diagrams”. In fact,
each hardware resource interaction diagram gotten is the decomposition of the
corresponding activity state in the software annotation model.

Five operations are included in the step, which are: “assigning the same name of a
process request object depended on by an activity state in the software annotation
model to all process request objects in the hardware resource interaction template”,
“specifying names of all hardware resource objects dealing with the process request
objects”, and “assigning the same name of the hardware resource object to the
swimlane including the object”, and “assigning values to variables included in the
three notes elements”, and “repeating operation one to four until all activity states in
the software annotation model have been dealt with in the same way”.

In the step, the aim of operation one to three is to facilitate construction of CPN
based hardware analysis model and the aim of operation four is to get hardware
related performance parameters. When constructing CPN based hardware analysis
model, all process request objects with state “to be dealt with by processor” or “has
been dealt with by network™ will be directly transformed into two port places
according to their states. All process request objects with state “to be dealt with by
disk” or “to be dealt with by network” will be directly transformed into two places
according to their states. All hardware resource objects will be directly transformed
into other three places according to their classes. All action states will be directly
transformed into three CPN transitions according to their names.

3. METHOD APPLICATION

In order to validate the method proposed, it was used to construct performance
annotation models of an online bookshop system based on its different architecture
designs. In this section, only the application of the method based on the initial
architecture design of the system will be briefly specified.

3.1 The Initial Architecture Design of the Online Bookshop System

According to the method, since only the UML activity diagrams modeling key
performance scenarios and the UML deployment diagram modeling distributions of
software processes or components and hardware resources are necessary, therefore,
only these diagrams of the initial architecture design of the online bookshop system
will be specified below.

In figure 2, the UML activity diagram modeling the initial key performance
scenario describing the interactions between customer and the system is illustrated.

Method for Constructing Performance Annotation Model Based on Architecture Design of

Information Systems 1185

In figure 3, the UML activity diagram modeling the initial key performance
scenario describing the interactions among processes iexplore.exe, inetinfo.exe and
sqlservr.exe is illustrated. In fact, figure 3 is the decomposition of the activity state
“Deal with catalog and booklist request” in figure 2. Because of the page limitation,
other two UML activity diagrams, which are the decompositions of other two activity

states in figure 2 are omitted here.

: Customer

: Online booskshop system

._{ Subrnit horoepage regquest ;\
jﬁ)eaﬂl with hormepage

< Browse hormepaze %/

recuest

=

< Subrnit catalog and booklist reguest ;
Dieal with catalog and
< Browse catalog and hooklist é‘—

ha=s interested book]
< Shdbrnit bools de tail recue st

)Qd_.oesn‘t s]

Deal withbook
< Browrse ool detail f—— detail reguest

booklist request

@

Figure 2. The Interactions between Customer and the System

s iexplore.exe : inetinfo.

BXE o Sq|SE TuT. &8

submit catalog and [executebusiness logic i
hoo klist reque st I ofcatalog request execute datalogic
of catalog request

O nresent catalog
and booklist

ceive execution result of catalog request &
execute business logic of hooklist reque

atalog request and hooklist regue

execute data logic
E receive execution results of both ﬁfl of booklist reguest
3 st

Figure 3. The Interactions among Processes

In figure 4, the initial UML deployment diagram of the system is illustrated.

Fouter

Client. WA T

fenplore e

Ilaodel: Model ADH-
CI3CO 2620 1005

Web & Application
Server

inetin®o ez

e leaTr e

MModel: HE MetServer E200

03 Windows 2000 Server (Service Pack)
Weh & Application S erver IS 5.0 & COLI+
DELIE: 30L Server 7.0

Figure 4. The Initial UML Deployment Diagram of the System

1186 Hui Du, Renchu Gan, Kecheng Liu, Zhenji Zhang and Darren Booy

3.2 Construct Initial Performance Annotation Model

According to the method proposed, the initial performance annotation model based
on the initial architecture design of the system was constructed.

3.2.1 Construct Initial Organization Annotation Model

According to the sub-process for constructing organization annotation model,
starting from figure 2, the corresponding initial organization annotation model of the
system was constructed and is illustrated in figure 5.

3.2.2 Construct Initial Software Annotation Model

According to the sub-process for constructing software annotation model, starting
from figure 3 and referring to figure 5, the corresponding part of initial software
annotation model of the system was constructed and is illustrated in figure 6.

: Customer : Online bookshaop system
. i ==Fhstep==) >‘ homepags request L
Subroit hio: t R ==Phstep=>=
#Psopenloadd Tt horiepage reques [to e d.ealt W'n‘.h by processes] el e wiltah

<=FLstep=>
Browse homepage

{Phocomarce=
{‘urbourded, 'poissor,
(1.0,5M}F

{PA ¥ -
(assm . (10,40} —TAdeps catalogor booklist ve que st
Submit catalog and hooklist request T = [to be dealt with by processes] N I ==Phstep=>

Deal writh catalog

({:;ie i (3 e ==F hstep=> - catalog or booklist request i and booklit request
Browse catalog and booklist [has heen dealt with hy processes]
[has interested book]
{P & prob=0. 33} <P hstep=> book detail request
. Subrait book dela:l request [ta be dealt with by processes] B ==Plistep==
| Deal with book
iDbdelay= _— ﬁ I <=Fligtep=> ™y book detail request 2 i A detail request
Casarmean {3.0,50} Browss bookdestail [hasheen dealt withb v processes]
dossnit b
{F L prob=0.07} ™ /V\[eant buy]
Ok-r_"'* <=Plstep=>
Eaxdt

Figure 5. The Corresponding Initial Organization Annotation Model of the
System

i hormepaze recquest

to.--2 777N homepage request
[has been dealt with by processes]

3.2.3 Construct Initial Hardware Annotation Model

According to the sub-process for constructing hardware annotation model, starting
from figure 4 and referring to both figure 1 and figure 6, one hardware resource
interaction diagram, which is the decomposition of the corresponding activity state
“execute business logic of catalog request” in figure 6, was gotten and is illustrated in
figure 7.

Method for Constructing Performance Annotation Model Based on Architecture Design of

Information Systems 1187
iexplore.ex inetinf exe sqlsent.exe
catalog and boaklist request ; actor request execute business o of catalag request - process request
[to be dealt with by processes] Phdeps <Phsiepe> It be dealt vwith by process]

submit catalog and
\ booklst request

(PAextOp=(WAN (rer’ mean' 124 ms)),
[LAN (msr' mean’ 0.1, ms’))}

subrit catalog and booklist request - process request
[to be dealt with by processor]

execUie business logic
of catalog request

-1 subrrit catalog and booklist request: process tequest

[has been dealt with by network]

{PAdernand=(msr inean’ 22, ms) iy
PAextOp=(flesys' (mar mean' 3,insT),
(LAN'(tnsr' mean’ 0.3, ms')}
{PAdemand=(msr, mean' 22, ms) b
Phext Op=(flesys' (st mean 3, ms),

execute data logic of catalog request : process request

<«<Phstaps>
evecite data lgic
of cataloy request

execute business logic of catalog request : process request
has been dealt with by network

{PAdernand=(tnsr mean'4 ns)
PhextOp=(filesys'

(mar' inean’ 22, ms1),

(LA (imst' mean' 3.2 ms)}

(s been dealt with by netwark]

Y

execute data logic of catalog request : process request
[to be deal with by processor]

<<Phcteps>

(LAN (mer' tnean’[1.3,ms)}
{PAdemand=(msr, mean'22,ms) Y
PAextOp=_flesys'(mer', mean 8, ms),
(LAN (msr' inean’[1.3,ms),

(WAN' rnst mean' 448 ms))}

Teceive execution result of catalog request and
execute business logic of hooklist request

receiie exection result of catalog request and execute
business fogic of boaklist e quest : process request

teceive execution results of both catalog <<Phstepsz

tenuest and booklist reuest - process tequest b= present catalog
\Lhis been dealt with by netwark and booklist

catalog and hooklist request : actor request
[has been deat with by processes|

---.. _ |[to be dealwith by processor]

<<PAsters
receiie execution results of bath

Y

catalog reguest and booklist request

[to bie dealt with by processol

receiie execution results of bath catalog
request and booklist request : process request

receive execution result of catalog request and execute
business logic of booklist request : pmcess tequest
[has been dealt with by network]

<<PAgteps>
execute data logic of
bookist ragquest

{PAdernand=(msr' mean’ 4, ng)
PhexOp=(flesys',

(st mean'22,mg'),
(LAN' (st mean’ 3.2, s}

exectte data logic of booklist request : process request
[ta be deatt with by processor]

enecute data logic of booklst request : process request
[has been dealt with by network|

Figure 6. The Corresponding Part of Initial Software Annotation Model of the System

Ueb & Application semver pracessor: processor

Web & Application server disk : disk

LAN : network

execute husiness logic of catalog raquest : process raguest
[to be dealt with by processor]

i

ecute business logic of catalog request

[Il 1 red process reguest

[to be dealt with by disk]

execute business logic of catalog request: process request
[to be dealt with by netwark]

processar deals with ™= 1=
process reguest {PAly

Web & Application senver processor: processor
[free]

execute husiness lagic of catalng request * process reguest‘

disk deals with
process request

L

Web & Application server disk : disk

[free]

{PAtype=Utra
Wide SCS19.1G7

{PAtype=(10,
Mops}

]

k
[free]

[has been dealt with by network] ‘

Figure 7. The Hardware Resource Interaction Diagram

4. CONCLUSION AND FUTURE WORK

BN
(7 network deals with
process request

Since UML diagrams annotated and processes proposed are two primary
deficiencies existing in current methods for constructing performance annotation
model based on architecture design of information system, in this paper, UML
activity diagram is proposed to be annotated both in the organization layer and in the
hardware layer. Moreover, performance annotation model construction process
including steps for facilitating construction of CPN based performance analysis model

1188 Hui Du, Renchu Gan, Kecheng Liu, Zhenji Zhang and Darren Booy

is devised. Furthermore, application of the proposed method based on the initial
architecture design of an online bookshop system is briefly specified.

Based on the initial performance annotation model constructed, the corresponding
CPN based initial performance analysis model was constructed. Figure 8 illustrates
the initial organization analysis model of the system, which was transformed from
figure 5.

0 Raquits

[£6] b1

o0t

0y
bt
[

g

ey O Reguin

[Ho_tutfy neg)="
b
oy

%@
:

o teqout

B
M
0 Requite

o teqout
L

£ 1 [5= = &=, = = ' o =,
1] (=3 [= 1] L= 1] & = L=
ey 22 = g = El =!
= = =y =' =
= = =3 = = = 2,
EB 2, =1 = 1 =3 =
\ =,
E E) =,

Figure 8. The Initial Organization Analysis Model of the System

In figure 8, the socket place “tbd” was transformed directly from all actor request
objects with state “to be dealt with by processes” in figure 5. The socket place “hbd”
was transformed directly from all actor request objects with state “has been dealt with
by processes” in figure 5.

Based on the initial performance analysis model, simulation was run in the
Design/CPN. The performance indexes of the initial architecture design gotten from
the simulation are illustrated in figure 9.

g = 120 —e— Average response time
S =

= £ 100 —=— CPU ofWeb &

=

g 5§ so /—’—E Application server

;3 = —=— Hard disk of Web &

= .2 60 Application server

S = f —a— CPU of DB server

e = 40

T A —s¢— Hard disk of DB server
25

S =

[o+ T T T T T T 1| —e—LAN
tithe slice(min) 0-2 2-4 4-6 G-8 8-10 10-12 12-14

Figure 9. The Performance Indexes of the Initial Architecture Design

Following the same process, performance indexes of different architecture designs
of the online bookshop system were also gotten and the architecture design meeting
performance objectives was finally identified and chosen. However, all performance
indexes gotten from simulations have not yet been validated by a working system. It
is the urgent work to be done in the near future.

Method for Constructing Performance Annotation Model Based on Architecture Design of
Information Systems 1189

REFERENCES

1. A.L. Opdahl, Performance Engineering during Information System Development
(Institutt for Datateknikk of Telmatikk: Trondheim, 1992).

2. Z.Yan, Dynamic Performance Modeling and Analysis of Information System Based on
Colored Petri Net. Ph.D Thesis, Beijing Institute of Technology (2001).

3. H.Du,R. Gan, K. Liu, and Z. Zhang, A Framework for Architecture-Oriented Modeling
and Analysis of Information Systems Performance, in the Proc. of the 3" International
Conference on Wireless Communications, Networking and Mobile Computing, IEEE
(Forthcoming, 2007).

4, S. Balsamo and M. Marzolla, Performance Evaluation of UML Software Architectures
with Multiclass Queuing Network Models, in Proc. of the 5th International Workshop on
Software and Performance (ACM Press: New York, 2005), pp.37-42.

5. C.U. Smith and L.G. Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Sofiware (Addison Wesley: Boston, 2001).

6. S. Distefano, M. Scarpa, and A. Puliafito, Software Performance Analysis in UML
Models, in Proc. of the 2005 Workshop on Techniques, Methodologies and Tools for
Performance Evaluation of Complex Systems (IEEE Computer Society: Washington, DC,
2005), pp.115-125.

7. S. Balsamo and M. Marzolla, Efficient Performance Models in Component-Based
Software Engineering, in Proc. of the 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications (IEEE Computer Society: Washington, DC,
2006), pp.64-71.

8. Anonymous, UML Profile for Schedulability, Performance, and Time specification,
Object Management Organization (2005). http://www.omg.org/docs/formal/05-01-02.pdf
(Accessed July 14, 2007).

9. M. Woodside, D.C. Petriu, D.B. Petriu, H. Shen, T. Israr, and J. Merseguer, Performance
by unified model analysis (PUMA), in Proc. of the 5th international workshop on
Software and performance (ACM Press: New York, 2005), pp.1-12.

10. K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use
Volume 1 (Springer: Berlin, 1992).

