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Abstract. The Twitter platform has emerged as a leading medium of
conducting social commentary, where users remark upon all kinds of
entities, events and occurrences. As a result, organizations are start-
ing to mine twitter posts to unearth the knowledge encoded in such
commentary. Mobile applications, commonly known as mobile apps, are
the fastest growing consumer product segment in the history of human
merchandizing, with over 600,000 apps on the Apple platform and over
350,000 on Android. A particularly interesting issue is to evaluate the
popularity of specific mobile apps by analyzing the social conversation
on them. Clearly, twitter posts related to apps are an important segment
of this conversation and have been a main area of research for us. In this
respect, one particularly important problem arises due to a name conflict
of mobile app names and the names that are used to refer the mobile
apps in twitter posts. In this paper, we present a strategy to reliably ex-
tract twitter posts that are related to specific apps, but discovering the
contextual clues that enable effective filtering of irrelevant twitter posts
is our concern. While our application is in the important space of mobile
apps, our techniques are completely general and may be applied to any
entity class. We have evaluated our approach against a popular Bayesian
classifier and a commercial solution. We have demonstrated that our ap-
proach is significantly more accurate than both of these. These results
as well as other theoretical and practical implications are discussed.

Keywords: Affinity, Microblogs, Twitter, Mobile Apps, Filter

1 Introduction

The Twitter platform has emerged as a leading medium of conducting social
commentary, where users remark upon all kinds of entities, events and occur-
rences. As a result, organizations are starting to mine twitter posts to unearth
the knowledge encoded in such commentary. Applications that can benefit from
such knowledge discovery are many: trending topic discovery, sentiment analy-
sis of consumer products and gauging public reaction to political campaigns to



name a few. A key requirement of a majority of such applications is the timely
identification of twitter posts related to specific entities of interest, like products,
persons or events. Such identification is well understood to be difficult due to
a number of reasons, including (a) real-time discovery of relevant twitter posts
given their massive rate of generation [13, 20], (b) handling multi-lingual posts
and (c) interpreting highly cryptic tweets, driven by brevity constraints [7].

In this work, we will be exploring this problem, i.e., the real-time identifi-
cation of microblog postings that contain references to pre-specified entities of
interest. For example, we might wish to identify tweets that talk about the movie
“Harry Potter and the Deathly Hallows: Part 2”.

Two key problems that need to be addressed to perform such identification
arise due to (a) the practice of aliasing entity names and (b) naming conflicts
that arise between the entity of interest and other objects. Aliasing, driven by
the need to conserve space, is the practice of using a subset of complete entity
names (such as “Harry potter”, for “Harry potter and the deathly hallows: Part
2”) to refer to the entity. Clearly, if the identification system was unaware of
such aliasing, it would perform poorly. The second problem, i.e., naming con-
flicts arise from semantic overloading of entity names, and is a common problem
in the general search area. For instance, a film historian seeking information
about the movie “ten commandments” (a phrase with wide connotations) will
find that a simple search with just the movie title yields an enormous amount
of information not related to the movie. However, adding contextual clues to
the title (e.g., “ten commandments movie”, “ten commandments de mille”, “ten
commandmentsheston”) yield high quality results [11, 24, 6]. In most cases (such
as in regular internet search), the user performing the search is aware of addi-
tional context clues (such as the fact Charlton Heston played the lead role in
Ten Commandments) and can easily expand the search term.

In Twitter, the aliasing and entity name conflict problems assume special
significance as the brevity of twitter posts precludes the usage of traditional
context clues. While this problem arises while searching any entity type, we ran
into this issue particularly often in the domain of mobile applications, as we
explain below.

Mobile applications, commonly known as mobile apps, are the consumer soft-
ware for smart-devices, such as those running on Google’s Android [10] or Apple’s
iOS [3] platforms. They represent the fastest growing consumer product segment
in the history of human merchandizing [30, 17, 16], with over 617,000 apps on the
Apple platform and over 357,000 on Android. Their growth rate is astonishing,
with nearly 3500 apps being added to the Android market and Apple app stores
every day.

The importance of apps is underscored by the fact that the future of the
mobile strategies of both Apple and Google are heavily dependent upon who
wins the mobile app wars [34, 21, 32]. With this backdrop, there is tremendous
academic as well as commercial interest in mobile apps.

An interesting feature about mobile apps is their virality - most successful
apps (e.g., Angry Bird, Talking Tom, Flashlight etc.) gain popularity not by



explicit outbound marketing, but rather, through viral word-of-mouth spread.
Consequently, social media plays a significant role in the success of mobile apps.
Given this context, we have been trying to to evaluate the popularity spread
of mobile apps by analyzing the social conversation on them. Twitter posts
related to apps are an important segment of this conversation. However, when
we tried to extract twitter posts related to specific apps we discovered that it
was a difficult task, due, to the aliasing and name conflict problems. For instance
when searching for tweets discussing the popular iPhone app titled “Movies
by Flixster with Rotten Tomatoes - Free”, we found that tweeters typically
aliased this app simply as “Flixster”. We then tried to simply search for tweets
containing the term “Flixster”. However, even this proved to be challenging as
we discovered that “Flixster” is overloaded – it could refer to both the app or the
website (http://www.flixster.com/) – its was not easy to discard the tweets
referring to the website and retain those referring to the app. We found these
issues to be common across many apps. Clearly, unless these issues are addressed
meaningfully, it would be impossible to perform the core task, i.e., extracting
tweets referring to apps.

In this paper, we present a strategy to reliably extract twitter posts that
are related to specific apps, overcoming the aliasing and name conflict issues
discussed above. While we were motivated by mobile apps, our techniques are
completely general and may be applied to any entity class.

In the next section, we review related literature. In Section 3, we describe
our solution approach. Section 4 experimentally demonstrates the efficacy of our
techniques and in Section 6 we conclude the paper.

2 Related Work

The work related to this research may be classified as commercial or academic,
and we discuss each in turn.

First let us address commercial solutions. Tweet filter [31] is a browser plugin
that runs on top of twitter.com. Using Tweet filter we can filter tweets by
matching usernames, keywords, phrases or source. Filter Tweets [9] is a browser
based script for filtering tweets by a specific topic and it works only with the
new Twitter version. One of the features in Filter Tweets is filtering tweets that
contain a set of terms. Social Mention [26] is a social media search and analysis
platform that aggregates user generated content from more than 100 social media
web sites including: Twitter, Facebook, FriendFeed, YouTube, Digg, Google+
etc. It allows users to easily track and measure what people are saying about a
person, company, product, or any topic across the web’s social media landscape
in real-time. Social Mention provides an API [27] to filter the user generated
contents based on the given keywords from the popular social medias mentioned
above.

All of the above-mentioned commercial solutions have similar characteristics.
First, all of them work based on exact keyword match, however as described in
the Section 1, mobile apps are seldom referred with the full name in the twitter



posts, so it will be difficult, if not impossible, to find twitter posts related to
mobile apps using any of three. In other words, these solutions do not address
the aliasing or name conflict problems. We will demonstrate this experimentally
in Section 4.

Let us now look at some academic research of relevance to our problem. In-
herently, at the end, our aim is to classify each twitter post as whether it is
related to a mobile app or not. Thus, at a high level our problem resembles
a classification problem. In this respect the Bayesian classification technique is
worth mentioning. The study titled “An Evaluation of Statistical Spam Filter-
ing Techniques” [33] evaluates five supervised learning methods such as “Naive
Bayes”,“Maximum Entropy model”,“Memory based learning”, “Support vec-
tor machine”(SVM) and “Boosting” in the context of statistical spam filtering.
They have studied the impact of different feature pruning methods and fea-
ture set sizes on each learner’s performance using cost-sensitive measures. This
study has observed that the significance of feature selection varies greatly from
classifier to classifier. In particular,they found SVM, AdaBoost, and Maximum
entropy model to be the top performers in this evaluation, sharing similar char-
acteristics: not sensitive to feature selection strategy, easily scalable to very high
feature dimension, and good performances across different data sets. In contrast,
Naive Bayes [14, 19], a commonly used classifier in spam filtering, is found to be
sensitive to feature selection methods on small feature sets, and fails to function
well in scenarios where false positives are penalized heavily. Many other stud-
ies [1, 22, 25] have studied the popularity of “Naive Bayes” [14, 19] in anti spam
research and found that it outperforms keyword based filtering, even with very
small training corpora.

The paper “Short Text Classification in Twitter to Improve Information Fil-
tering” by Sriram et al. [29] has proposed an intuitive approach to determine
the class labels and set of features with a focus on user intentions on Twitter.
Their work classifies incoming tweets into categories such as News (N), Events
(E), Opinions (O), Deals (D), and Private Messages (PM) based on the author
information and features within the tweets. Their work is based on sets of fea-
tures which are selected using a greedy strategy. Sriram et al.’s work experimen-
tally shows that their classification out-performs the traditional “Bag-Of-Words”
strategy. Unlike this resarch, our approach does not rely on supervised learning
, thus we do not have the overhead of feature selection and manual labeling.
In addition, we can classify a tweet as referring to any mobile app out of an
arbitarily sized set of apps, unlike Sriram et al, who need a predefined exact
number of categories into which they perform the classification.

In addition to classification of short text messages, integrating messages with
meta-information from other information sources such as Wikipedia and Word-
Net [4, 12] are also relevant. Sankaranarayanan et al. [23] introduce TweetStand
to classify tweets as news and non-news. Automatic text classification and hidden
topic extraction [29, 4] approaches perform well, when there is meta-information
or the context of the short text is extended with knowledge extracted using large
collections. This does not apply in our case.



Currently, there are about 1 millions mobile apps in the market [18]. To clas-
sify each twitter post as related to one or more of these apps, or not at all related
to any of the mobile apps, will require equivalent number of classes, i.e. 1000,000
classes in the classification approach. Such a large number of classes are impossi-
ble to handle using existing machine learning and classification techniques such
as SVM [5] and Artifical Neural Networks(ANN) [8]. Therefore, instead of ap-
plying a classification approach, in this paper, we address the problem at hand
using corpus based data driven approach. In the next section, we first describe
the intuition behind our approach and then explain the algorithm in detail.

3 Solution Approach

We will first provide the intuition behind our approach and then delve into
details. A precise statement of our problem is as follows: given app A, find
twitter posts that refer to A. Our approach has two steps namely “Alias
Identification” and “Conflict Resolution”.
1. First we need to discover what alias is commonly used by users to refer to app
A as names are often abbreviated in the length-restricted twitter posts (140 char-
acters). For instance, the popular iTunes app “Doodle Jump - BE WARNED:
Insanely Addictive”, is commonly referred to in twitter posts as “Doodle Jump”.
We call this step the Alias Identification step.
2. After alias identification, we need to resolve name conflicts, i.e.,make sure
that the twitter posts we find refer to the app and not to other objects with the
same name. One particularly ripe area for conflicts is between mobile apps and
a regular web applications. To see this consider the popular iPhone app titled
“Movies by Flixster with Rotten Tomatoes - Free”. It turns out that this app
is commonly referred to as “Flixster”. However, a twitter post containing the
term “Flixster” might be referring to the app, or, to the highly popular sister
website. We are of course interested in the popularity of the app. Similar issues
arise in the case of the Facebook app, or the Google Translate app. We refer to
this phase as Conflict Resolution.

3.1 Intuition behind the Alias Identification Phase

To identify the appropriate alias of an app with name A, we find the sub phrase
contained in A that is the most meaningful and unique. Such meaningfulness and
uniqueness (described below) is judged in the context of a Social Media Corpus
(SMC) we have constructed by lexical analysis of a vast amount of data gathered
from Social Media Avenues such as Twitter, Facebook and the user comments
awarded to apps in the native app stores.

Meaningfulness: Intuitively, meaningfulness refers to the semantic content of
a phrase. For instance, in the context of the app title “Doodle Jump - BE
WARNED: Insanely Addictive”, the reader can easily see that the sub phrase



“Doodle Jump” is more meaningful than, say “Be Warned”, or “Insanely Ad-
dictive”. From an information theoretic perspective, meaningful n-grams will
exhibit higher collocation frequencies relative to individual occurrence frequen-
cies of the constituent 1-grams. We describe this ratio as Affinity. Formally, we
define the Affinity of a word phrase P as, Affinity(P ) = f(P )

min∀wi∈P (f(wi))
, where

f(P ) is the frequency of phrase P in a corpus and min(f(wi)) is the minimum
frequency across the words in a phrase P in the SMC. For the app name “Doodle
Jump - BE WARNED: Insanely Addictive!”, Table 1 shows the frequencies and
affinity measurement of word phrases, which formally identifies the word phrase
“Doodle Jump” as more meaningful than others.Note that the table does not
show all phrases whose affinities are measured for comparison. For a particular
n (n = 1 . . . N , where N is the number of words in the name of the application as
the respective mobile app store), we take all n-grams from left to right beginning

with the first word and stopping at the (N− n + 1)th word.

Phrase f(P ) Affinity
Doodle Jump 99 99/1456 = 0.07
Be Warned 8231 8231/138408 = 0.06
Insanely Addictive 18 18/5315 = 0.003

Table 1. Affinity Measure

Uniqueness: The meaningfulness property, while useful, is by itself not ade-
quate for our purposes. To see this consider the following. Let us hypothetically
assume (perhaps due to sampling biases while corpus creation) that the sub
phrase “insanely addictive” is as (or more) meaningful than “Doodle Jump”.
Our system, using meaningfulness alone, would then judge “insanely addictive”
as the best alias for the app “Doodle Jump - BE WARNED: Insanely Addictive”
– a patently bad choice (as “insanely addictive” might be used in the context
of many other apps). The uniqueness property (used in tandem with meaning-
fulness) prevents this mis-judgment, by ensuring that the selected alias is used
often in the correct context, but rarely in alternate contexts. Furthermore, affin-
ity does not apply to 1-grams and we cannot compare affinity directly to the
uniqueness property we shall define. As such, this step will help to choose be-
tween the most meaningful n-gram phrase and all other 1-grams such that the
end result is both highly meaningful and unique. Thus, to quantify uniqueness,
we make a slight modification to the well-known IR notion of inverse document
frequency (idf) [28] for a word or word phrase. The traditional idf is defined as:

idf(P ) = log2
|D|

1+df(P ) , where |D| is the total number of documents in the corpus

and df(P ) is the document frequency of phrase P , namely the number of doc-
uments that contain phrase P in corpus. We have modified this expression to:
idf(P ) = log2

1
1+tcount(P ) , where tcount(P ) is the frequency of P as recorded by

Twitter in the target time interval T and we have done away with |D| because
for all phrases, the number of documents in the corpus (in this case, number of
tweets in Twitter’s database) within the target time interval T will be the same.
Since we’re looking for the highest idf(P ) it does not matter what |D| actually



is. We retrieve phrase level tcount(P ) directly from Twitter. For instance, the
idf of the phrase “Doodle Jump” in our corpus is 18.28 but the idf values of
“Doodle” and “Jump” are 14.2 and 7.6 respectively. Therefore, “Doodle Jump”
has more uniqueness and rarity than the individual terms “Doodle” and “Jump”.

3.2 Intuition behind the Conflict Resolution Phase

The alias identification step ensures that the best alias is selected, but does not
guarantee that this alias will not have conflicts with other object names, as the
“Flixster” example above illustrated. In this phase we attempt to minimize this
error. The core idea is as follows: Assume an alias, say S, is context-overloaded.
Our objective is to identify the overloaded aliases and then rerun the core tweet
search by using a new search term that consists of the alias and a few contextual
terms that disambiguate the search(e.g., “flixster + iPhone”). The additional
context raises the probability that the retrieved tweet is talking about the mo-
bile app domain.

3.3 Details of Alias Identification Phase

As discussed in section 3.1, in this step we discover the alias A′ of an app A,
based on its meaningfulness and uniqueness values. This procedure is shown in
Table 2 from steps 1-6. Here, step 1 extracts all sub phrases from A (using a
parser [2]), and computes affinities of each sub phrase in step 2. Subsequently, in
step 3 we extract the most meaningful (highest affinity) phrase. This phrase is
then subjected to a uniqueness test in step 4 by comparing its idf to the idfs of
all 1-grams derived from A. Based on this test, the selected alias A′ is returned.

After alias identification, the tweets containing this alias are considered Le-
gitimate, while disqualified posts are marked as Spam. The legitimate tweets are
then subjected to the conflict resolution phase, described below, to ensure that
these refer to the app, and not to other objects with similar labels.

3.4 Details of Conflict Resolution Phase

To ensure that legitimate tweets refer to mobile apps and not to alternate ob-
jects, we design a classification mechanism where we first identify dual purpose
aliases (e.g., Flixster, Facebook) and then incorporate additional context. More
specifically, we run the k-means clustering algorithm [15] on all the idf values of
the aliases A′ with k = 2, i.e. two clusters. The two initial mean points for each
cluster are the lowest and the highest idf values across all aliases. This is shown
in Table 2 in step 7. The result of the k-means classification will be two sets of
aliases, a high-idf cluster and a low-idf cluster. An example follows.

After partitioning the top ranked Android apps based on the idf values of
their aliases, we found “paper toss”,“pocket god”, “words with friends”,“ebay



mobile”,“pandora radio” and “espn scorecenter” belonged to the high-idf cluster,
indicating they exist only in mobile app domain. Conversely, “flixster”, “google
earth”,“skype” “facebook”,“kindle”, “bible”, “flashlight”, “netflix”, “backgrounds”
and “translator” are aliases with low idf values, indicating these names are used
both in mobile apps and in other domains, such as web applications.

For the aliases with higher idf , we accept their associated twitter posts, as
there is a very high probability that the post is referring to the mobile app.

For the aliases with the low idf values, we incorporate additional filter-
ing mechanisms, by adding additional keywords like “app”,“Android”,“iPhone”,
“iPod”, “Apple” and “iPad”. Tweets containing any of these additional keywords
are considered relevant(Legitimate), otherwise it is categorized as Spam.

1. Generate set of all word phrases C of length 2, 3 or 4 of the app name A. For example,
for the app name “Doodle Jump - BE WARNED: Insanely Addictive!”, some of the
collocates will be “Doodle Jump”, “Be Warned” and “Insanely Addictive”.
2. Compute Affinity(Ci) for each word phrase Ci ∈ C as derived in Step 1. For
example, Affinity(“Doodle Jump”) = 0.07, Affinity(“Doodle Jump Be”) = 0.00068
and Affinity(“Be Warned”) = 0.06.
3. Identify the word phrase Cmax

i that has the highest value of Affinity(Ci). In our
example, the highest value is for Affinity(“Doodle Jump”) = 0.07, thus Cmax

i =
“Doodle Jump”.
4. Compute the idf for Cmax

i and all one gram word of the name A. In our ex-
ample, idf(“Doodle Jump”) = 18.28, idf(“Doodle”) = 14.2, idf(“Jump”) = 7.6,
idf(“Warned”) = 7.79 and so on.
5. Identify the word phrase that has the highest idf as computed in step 4. In example,
“Doodle Jump” has the highest idf .
6. Return the word phrase identified in Step 5 as the alternate app name A′ of the app
A.
7. After running steps 1-6 for all app names, we run k-means clustering on the idf
values of the word phrases returned in step 6 with a k value of 2 and the initial means
to be the highest idf and lowest idf values in the corpus respectively. This will yield
two clusters, one that is high-idf and one that is low-idf.
8. For all word phrases that are part of the low-idf cluster, append extra context
keywords before querying the tweet database. For all words phrases that are part of
the high-idf cluster, we can use the word phrases “as is”.
Table 2. Algorithm for retrieving exact query phrase to use on the tweet database to
ensure high relevance

4 Experimental Results

In this section we demonstrate the efficacy of our approach, which we will refer
to as TApp. The idea is to evaluate the quality of the legitimate tweets produced
– if a tweet refers to the appropriate mobile app, the result is correct, other-
wise, for that particular tweet, our procedure has failed. Specifically, we need to



test for both Type 1 and Type 2 errors, i.e., how well we retain and how well
we avoid the rejection of good tweets. First, we do a comparison with Näıve
Bayesian approach. Next, we compare with one of the commercial platform,
Socialmention [26].

4.1 Comparison with Bayesian Approach

For a baseline comparison, we have used Näıve Bayes classifier [14, 19], a popular
method for document classification in anti-spam research [1, 22, 25]. It is widely
used in text categorization task [19] and often serves as baseline method for
comparison with other approaches [33]. In our implementation of Näıve Bayes
(using the Laplacean prior to smooth the Bayesian estimation, as suggested in
Nigam [19]) classification we extracted a set of keywords from every twitter post
and used those as the feature set. Based on the key word occurrences in the
twitter posts in the training data, probabilities are calculated. These probability
values are used to classify the twitter posts.

Both the TApp and the Bayesian classification technique have been imple-
mented using Java 1.6. We ran all the experiments using a Windows 7 machine
with quad core processor of 2.33 GHz.

To compare TApp and the Bayesian classifier, we first selected a set of “apps
of interest” – for this experiment, we chose the top 50 “hot” android apps using a
popular mobile app search engine platform (http://www.appbrain.com/apps/
hot/). To create our test bed for these 50 apps, we randomly selected tweets
from our database of 14 million tweets and manually verified whether they con-
tained references to these apps (legitimate tweets) or not (spam). In this fashion
we manually identified 1000 posts from our database, consisting of 500 posts
that refer to one of these 50 apps (legitimate posts) and 500 tweets that refer to
mobile apps or internet web sites, but not any of the selected 50 mobile apps.
We apply both the Bayesian classifier and the TApp approach on this test bed
to classify these 1000 posts into Legitimate and Spam. In Figures 1 and 2, we
plot the histogram distributions of accuracy of the two approach - Bayesian and
TApp. As can be seen from Figure 1, the Bayesian classifier identifies 337 out
of the 500 Legitimate posts (a recall rate of 67%), whereas the TApp approach
demonstrates a recall of 97.2% by correctly classifying 486 of the 500 Legitimate
posts. Similarly, as portrayed in Figure 2, the Bayesian classifier wrongly identi-
fied 174 of the 500 Spam posts as Legitimate, whereas TApp mis-identifies only
23 of 500. In Table 3, we have presented classical IR metrics such as precision,
recall, true negative, accuracy and F-measure in both the cases. In all cases
TApp significantly outperforms the Bayesian classifier (TApp scores above 90%
in every case).

4.2 Comparison with SocialMention

SocialMention(SM) [26] is the leading social media search engine. To demon-
strate the effectiveness of our approach, we decided to compare the accuracy



Fig. 1. Comparison of Accurate Classification

Fig. 2. Comparison of Incorrect Classification

Matrix Näıve Bayes classifier TApp classifier
Precision 100 ∗ 337/(511) = 66% 100 ∗ 486/(509) = 95.6%
Recall 100 ∗ 337/(500) = 67% 100 ∗ 486/(500) = 97.2%
True Negative Rate 100 ∗ 326/(500) = 65.2% 100 ∗ 477/(500) = 95.4%
Accuracy 100 ∗ 663/(1000) = 66.3% 100 ∗ (963)/(1000) = 96.3%
F-measure (2 ∗ 65.9 ∗ 67.4)/(66 + 67) = 66.7% 2 ∗ 95.6 ∗ 97.2/(95.6 + 97.2) = 96.4%

Table 3. Comparison of IR metrics in Bayesian classifier vs. TApp



of our results with those acquired from Socialmention. As discussed in the Sec-
tion 2, the exact algorithms of Socialmention implementation is not known.
However, by observing different search results we concluded Socialmention uses
an exact keyword matching approach to identify the twitter posts that contains
the given keywords. In this experiment, we used the same set of 50 apps used in
the previous experiment in Section 4.1. For each app, we retrieved the tweeter
posts related to that app in the previous one month using both Socialmention
API [27] and the TApp approach. The objective of our approach is to automate
the Twitter post retrieval for large number of mobile apps. So, the input to
both Socialmention and the TApp approach is app names as found in native
app stores. The Socialmention uses these original app names to find the twit-
ter posts. TApp approach applies name aliasing and name conflict resolution
to retrieve the relevant tweets. However, the app names are chosen to be such
that 22 out of 50 require either no aliasing and/or no name conflict resolution.
This was done to access the effectiveness of the TApp technique in individually
performing those 2 tasks.

To constrain the experimental data size, for each of the approach if the num-
ber of posts for an app is more than 50, we considered only the most recent
50 posts. Next, we passed the posts identified by both Socialmention and TApp
along with the app names to two professional lexicographers. Each of the lexi-
cographers has more than 5 years of experience of internet search optimization.
They both worked together to arrive at an unanimous decision of which of these
posts are “Valid” (i.e. the post is related to the respective app) and which of
these are “invalid” (i.e. the post is not related to the respective app). We present
the result in Table 4.

As can be seen from Table 4, for many apps, the Socialmention platform
has retrieved tweets that are not related to that app. In total only 43.44% of
the total tweets retrieved by Socialmention has been identified as “Valid” post
by lexicographers. Whereas, for TApp approach, the absolute number of in-
valid posts for each app is much smaller compared to the Socialmention. Overall
95.45% of the twitter posts retrieved by TApp has been identified as “Valid” by
lexicograpghers. The total number of valid tweets retrieved by TApp is 1584 com-
pared to 769 by Socialmention. So both in terms of accuracy and the coverage
of retrieval, TApp significantly outperformed Socialmention.

Additionally, we observe that Socialmention works well in cases when there
no aliasing of the app names and when there is no naming conflicts between
the entity of interest and other objects. In these cases, Socialmention achieved
82.93% accuracy. For example, the extracted tweets for the apps “Live Holdem
Poker Pro”,“Google Sky Map”,“Handcent SMS” and “Lookout Mobile Security”
in both Socialmention and TApp are highly relevant because these names are
only used in mobile app domain and there is no aliasing by users. One should
observe that, even in these simple cases, where there is no name conflict and
aliasing, the accuracy in TApp case is higher than that of Socialmention. The
exact approach followed in Socialmention is unknown, so we are not sure of the
reason behind this improvement, however we anticipate that this is due to the



Using SM Using TApp
Store App Name Alias Name Valid In-Valid Valid In-Valid
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CardioTrainer CardioTrainer 45 5 50 0
Endomondo Sports Tracker Endomondo Sports

Tracker
20 8 27 0

Flash Player 10.2 Flash Player 10.2 3 2 0 0
Google Sky Map Google Sky Map 38 11 16 0
Handcent SMS Handcent SMS 37 13 45 5
Instant Heart Rate Instant Heart Rate 47 3 50 0
Live Holdem Poker Pro Live Holdem Poker Pro 43 7 48 2
Lookout Mobile Security Lookout Mobile Security 41 9 49 1
Stardunk Stardunk 39 11 27 0
Total 313 69 312 8
Accuracy 81.93% 97.50%
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Calorie Counter by FatSecret Calorie Counter 3 4 50 0
Documents To Go 3.0 Main App Documents To Go 5 7 11 1
Funny Facts Free 8000+ Funny Facts 1 1 48 2
Bubble Blast 2 Bubble Blast 32 10 39 0
Kid Mode: Play + Learn Kid Mode 4 24 40 10
Kids Connect the Dots Lite Kids Connect The Dots 1 0 27 0
PicSay - Photo Editor Picsay 4 0 50 0
Mango (manga reader) Free Mango manga reader 10 3 43 6
Pandora internet radio Pandora 5 1 17 5
SpeechSynthesis Data Installer SpeechSynthesis 2 22 4 0
Talking Tom Cat Free Talking Tom Cat 28 14 48 2
Vaulty Free Hides Pictures Vaulty 1 0 26 0
Waze: Community GPS navigation Waze 2 1 50 0
Total 98 87 453 26
Accuracy 52.97% 94.57%
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Adao File Manager Adao File Manager 1 0 1 0
Advanced Task Killer Advanced Task Killer 38 12 31 3
Angry Birds Angry Birds 30 20 46 4
Backgrounds Backgrounds 3 47 38 0
Barcode Scanner Barcode Scanner 6 44 48 2
Bible Bible 0 50 13 5
Craigslist Craigslist 0 50 2 2
Drag Racing Drag Racing 11 39 49 1
Epocrates Epocrates 33 17 50 0
ES Task Manager ES Task Manager 2 5 8 0
ESPN ScoreCenter ESPN Scorecenter 34 16 43 6
Facebook for Android Facebook 18 32 42 0
FxCamera FxCamera 18 5 17 0
Google Maps Google Maps 2 48 26 6
Horoscope Horoscope 3 47 15 0
KakaoTalk KakaoTalk 9 41 48 2
LauncherPro LauncherPro 31 19 50 0
Mobile Banking Mobile Banking 6 44 47 3
Mouse Trap Mouse Trap 2 48 9 0
My Tracks My Tracks 0 49 4 0
NFL Mobile NFL Mobile 19 31 50 0
Ringdroid Ringdroid 26 17 18 0
Tap Fish Tap Fish 22 28 47 3
The Weather Channel Weather Channel 3 47 45 5
Tiny Flashlight + LED Tiny Flashlight 24 26 47 3
Total 358 845 819 41
Accuracy 29.75% 95.23%

Total 769 1001 1584 75
Accuracy 43.44% 95.45%

Table 4. Comparison of Valid Tweets in Socialmention vs. TApp



generic keyword matching algorithms followed in Socialmention, vs. the phrase
search using tweeter API followed in TApp.

In the second scenario, when the app names required aliasing, but no name
conflict resolution, the Socialmention’s accuracy in retrieving relevant tweeter
posts was 52.97% compared to 94.57% in TApp approach. For example, the
tweets extracted for the apps “SpeechSynthesis Data Installer”, “ Kid Mode:
Play + Learn” and “Vaulty Free Hides” are mostly irrelevant or unfound be-
cause of aliasing practice of users when they post their tweets. These apps are
typically referred to as “SpeechSynthesis” ,“Kid Mode” and “Vaulty” in most
of the tweets.

To show the effectiveness of TApp’s entity name conflict handling, we fo-
cus on the third category of app names, where both aliasing and name conflict
resolution are required. If we look at the valid tweet count for the apps “Drag
Racing”,“Mouse Trap”,“Mobile Banking” and “My Tracks” in case of Socialmen-
tion, they are very low compared to the invalid tweet count. These app names
are used outside the mobile application domain as well and so required name
conflict resolution in TApp approach, which is clearly not done in Socialmention.
For these type of app names, Socialmention had a pretty low accuracy of just
29.75% in retrieving relevant tweets compared to 95.23% accuracy in TApp case.

This demonstrates the importance and effectiveness of both the aliasing and
name conflict resolution steps in TApp.

5 Discussion

In this section we discuss the broader implications of our TApp approach. Our
research falls in the design science research paradigm of Information Systems [35].
We have developed an artifact that can successfully resolve name conflicts of app
names in twitter posts. We have demonstrated the artifact through experimental
study and a comparison with a manual method. Our two step approach out
performs the benchmark Näıve Bayes classifier and a commercial implementation
(Socialmention [26]) both on true negative and false positive errors.

Identifying social media mentions related to most popular products in gen-
eral and mobile apps in particular has important implications for marketers as
well as for product owners. Being able to predict the social media popularity of
items have tremendous value to not only service providers but also marketers
who would bid for ad-space on items with high potential popularity in order to
maximize the exposure. TApp approach can be used to identify user generated
contents across social media, which in turn can be used to measure product’s
popularity. Our approach can be utilized in many ICT research domains such as,
identifying twitter posts related to brand monitoring in e-commerce, identifying
the public opinions of e-participation, e-services and general e-government im-
plementations by using the social media mentions, identifying students opinions
of e-learning systems and analyzing the public views on digitizing the medical
records of patients(Electronic Medical Records: EMR). Thus our approach is



generalizable and broadly applicable across wide range of ICT research domains
in general.

6 Conclusion

In this paper we have addressed the problem of reliably identifying tweets related
to mobile apps. In the process we have addressed the aliasing and name conflict
problems inherent in the task. We have compared the accuracy of our approach
to Näıve Baysian approach and a commercial implementation (socialmention).
Our approach outperformed in all measures of accuracy compared to Baysian
approach and the socialmention. While our application is in the area of mobile
apps, our techniques are generally applicable.
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