
A User-Guided Approach for Large-Scale Multi-Schema
Integration

Muhammad Wasimullah Khan1, Jelena Zdravkovic2

1School of Information and Communication Technology
Royal Institute of Technology

2Department of Computer and Systems Sciences
Stockholm University

Forum 100, SE-164 40 Kista, Sweden
mwkhan@kth.se, jelenaz@dsv.su.se

Abstract. Schema matching plays an important role in various fields of
enterprise system modeling and integration, such as in databases, business
intelligence, knowledge management, interoperability, and others. The
matching problem relates to finding the semantic correspondences between two
or more schemas. The focus of the most of the research done in schema and
ontology matching is pairwise matching, where 2 schemas are compared at the
time. While few semi-automatic approaches have been recently proposed in
pairwise matching to involve user, current multi-schema approaches mainly
rely on the use of statistical information in order to avoid user interaction,
which is largely limited to parameter tuning. In this study, we propose a user-
guided iterative approach for large-scale multi-schema integration. Given n
schemas, the goal is to match schema elements iteratively and demonstrate that
the learning approach results in improved accuracy during iterations. The
research is conducted in SAP Research Karlsruhe, followed by an evaluation
using large e-business schemas. The evaluation results demonstrated an
improvement in accuracy of matching proposals based on user’s involvement,
as well as an easier accomplishment of a unified data model.

Keywords: Schema Integration, Business Intelligence, System Interoperability

1 Introduction

A schema represents a formal structure and can be of many types such as database
schema, XML schema, ontology description, or domain conceptual description. The
schema matching problem relates to finding the semantic correspondences between
two or more schemas. Semantic heterogeneity arises from differences in naming,
structure and the context in which these schemas are being used. In the database
field, schema matching is used to merge different relational schemas to produce a
mediated schema. In e-business, it may be used to align business documents with
varying data structures. In healthcare, record of a same patient may exists in various
hospitals needing alignment in order to present a single view. However, this

alignment comes at a cost. It takes a number of domain experts to manually inspect
schemas in order to perfectly align them. Over time, and especially with the
proliferation of the Web, number and size of schemas to be matched increases
significantly. The complexity forces companies to find the matches manually often
with the help of commercial tools such as [1], [2] and [3]. However, pure manual
specification of mappings can both be time consuming and error-prone considering
the number and size of schemas to be matched in this information age.

In order to overcome this shortcoming, a lot of research has been done over the last
decade. [4] were the first to propose treating schema matching as an independent
problem. The focus of the most of the research done in schema and ontology
matching is pairwise matching [5,6,7,4,8,9,10]. On the other hand, we do not find
many examples where schemas are matched holistically. The goal of holistic or multi-
schema integration is to integrate more than two schemas at once which result usually
in creating a mediated schema where all matching elements are represented only once.
Thus holistic schema matching resembles the pairwise matching in a sense that it
generalizes the problem from matching two schemas to n schemas.

While few semi-automatic approaches have been proposed in pairwise matching to
involve user, current holistic approaches rely on statistical information extracted from
schemas in order to avoid user interaction. The user interaction is thus largely limited
to parameter tuning. These n-way approaches are able to avoid user interaction and
still match schemas to considerable degree of accuracy due to the fact that their
algorithms operate in domains with quite limited number of distinct concepts [11].
The approaches are considered primarily for matching and integrating Web forms.
The schemas are small and simple and consist of list of attributes.

The problem arises when dealing with domains where schemas are large and
complex. The example of one such domain is e-business, where exist several
standards providing common message structures for organizations to exchange
business information. For instance, CIDX is a data exchange standard for a chemical
industry and RosettaNet for high-tech industry. Organizations adapt these standards to
their specific needs. When organizations define mappings to conduct a business
together, those mappings are always their own interpretations of the standard. Thus
what is valid in one setting may not be true in other setting.

In this study, we present a user-guided iterative approach for large-scale multi-
schema integration. Given n schemas, the goal is to match the elements iteratively and
demonstrate that a learning approach results in an improved accuracy with each
iteration. This results in a unified data model consisting of a set of schemas and a set
of correspondences. For the realization of the unified data model, we complement
human activities with a data mining technique for detecting similar structures in a
repository of schemas. The purpose of the research is to show a mechanism of user
involvement in n-way schema matching, benefits derived from the pairing of users
and machine, while addressing the issues that possibly arise from a user involvement.

This paper is structured as follows: Section 2 presents our approach to a user-
guided large-scale multi-schema integration. Section 3 is devoted to the evaluation of
results. Section 4 reports the works related to ours, and Section 5 summarizes our
conclusions and indicates the steps forward.

2 Approach to a User-Guided Schema Integration

This section describes the process of the user-guided iterative approach for a holistic
schema matching. The main idea is to leverage the system’s growing confidence from
the user feedback loop, to better rank the matching proposals with each iteration.
Figure 1 shows a sample InvoiceTo schema. An XML schema consists of a root,
intermediary elements (optional) and the leaves, together forming a hierarchy. Leaves
are where actual information within the schema lies. Rests of the elements are used to
structure the schema. Here we make an assumption that leaf correspondences are
already given by the user, as it is situation with e-business standards
(http://help.sap.com/bp_bniv2604/BBLibrary/Documentation/705_BB_ConfigGuide_
EN_DE.doc).

Fig. 1. A sample schema

Based on input schemas and leaf correspondences, system makes proposals to the
user with varying degree of confidence as we move up the hierarchy of a schema. For
elements higher in hierarchy, less information is available, so system will be less
confident than for those which are lower in hierarchy. As user judges proposals and
new matchings are found, this information gets added to the system repository and is
used for making decisions in subsequent iterations. Consequently, system confidence
increases with each iteration and it is likely to produce higher quality proposals.
Figure 2 below shows the iterative process.

In the first step, hierarchical input schemas are transformed to linear input of data
mining. Then these schemas along with given leaf correspondences act as input to
Closed Frequent Itemset Mining (CFIM) [12]. CFIM was originally used for market
basket analysis as to detect common patterns such as: ‘Shoppers who buy oatmeal and
sugar also buy milk.’ In the context of this paper, CFIM is applied for detecting
similar structures in a repository of electronic business document schemas.

Fig. 2. Iterative approach to finding UDM

The result of mining is redundancy groups (step 4) which are presented to the user
for judgment and are therefore also referred to as ‘proposals’ shown in Figure 3. Each
redundancy group is composed of redundant transactions. They are called redundant
because the transactions in these groups share the same set of items.

Fig. 3. Output of mining - Redundancy groups (proposals)

Transaction and item are the abstract terms used in frequent itemset mining
literature. Input to frequent itemset mining is a set of transactions. Each transaction is
associated to a set of items. In XML schemas, we only have elements that form the
trees of the type definitions. “Elements” are mapped to the notions of “transaction”
and “item” to apply frequent itemset mining. If we want to know the similarity
between two elements e1 and e2 of two different schemas S1 (containing e1) and S2
(containing e2), then e1 is a transaction and all inferior elements in S1 are e1’s items,
and e2 is another transaction with all inferior elements of e2 in S2 being e2’s items.

The very first iteration will result in presenting mining results as proposed, to the
user. However, in subsequent iterations user feedback is taken into account to
improve the results.

The ranked results are then presented to the user (Figure 3). The user can judge
about these proposals. Judging may involve acknowledging or approving a proposal,
disapproving a proposal, or making corrections to a proposal. The user judgment
produces agreed matchings (correspondences). The process repeats with user agreed
matchings in previous iteration added to the set of leaf correspondences. The process
is repeated until no new agreed matching is found.

In a learning approach, it is natural for a user to expect that judgment will result in
increased quality of proposals while the effort required to construct a correspondence
will decrease. Thus, we take some measures shown in step 5 of Figure 2 based on user
judgment in order to meet the user expectations. These measures include hiding,
adaptation of correspondences and backtracking.

Hiding correspondences
The hiding of proposals needs to take place because of the fact that user does not want
to go through long list of proposals every iteration, especially the proposals which are
already (dis)approved by the user. Thus it helps us reduce the number of proposals
presented to a user in each iteration. The hiding takes place in two cases: when a user
either approves a proposal or disapproves it. Disapproval of a proposal will result in
hiding only that particular correspondence as it does not add to any information about
other proposals. On the other hand, approval of a proposal provides a valuable insight.
From the hiding perspective, not only the approved correspondence is hidden but any
sub-correspondence if it exists is also removed from the list. S is a sub-
correspondence of correspondence T if transactions of S is a subset of transactions of
T. In order to see the motivation behind hiding the sub-correspondences, consider the
example: let A.InvoiceTo, B.BillTo and C.Invoice_To be a correspondence, where
each of A, B and C are different schemas. Then any of the subsets of a set
{A.InvoiceTo B.BillTo C.Invoice_To} is a called a sub-correspondence. Thus, if user
agrees that {A.InvoiceTo B.BillTo C.Invoice_To} is a match, then {A.InvoiceTo
B.BillTo}, {B.BillTo C.Invoice_To} and {A.InvoiceTo C.Invoice_To} must be a
match too. This implies that the system needs to hide not only {A.InvoiceTo B.BillTo
C.Invoice_To} but any of its subsets if present in the list of proposals. On the other
hand, if user approves { A.InvoiceTo B.BillTo} and {B.BillTo C.Invoice_To} instead
of {A.InvoiceTo B.BillTo C.Invoice_To}, by transitive property, we can then
conclude that {A.InvoiceTo C.Invoice_To} and hence {A.InvoiceTo B.BillTo
C.Invoice_To} is a match too. In this case also, the system needs to hide not only user
approved proposals but any other proposals that match as a result of that approval.
However, only approval of {A.InvoiceTo B.BillTo} will not lead to any conclusion
about {A.InvoiceTo B.BillTo C.Invoice_To} as relationship between {A.InvoiceTo
C.Invoice_To} and {B.BillTo C.Invoice_To} is yet unknown. Thus {A.InvoiceTo
B.BillTo C.Invoice_To} in this case will remain the part of list of proposals.

 Adapting correspondences
Adaption of correspondence is possible only in the case of approval of a
correspondence. In order to understand the concept behind adaptation, assume mining
algorithm proposes following redundancy groups:

g1: A.InvoiceTo, B.BillTo, C.Invoice_To
g2: A.InvoiceTo, B.Address, C.Address
g3: A.InvoiceTo, C.Organization
g4: A.InvoiceTo, B.BillTo, D.Address

Let’s assume user approves the group g1. That would mean A.InvoiceTo can only
form a correspondence with BillTo element from B schema and Invoice_To element
from C schema. If the transaction (e,g. A.InvoiceTo) from an approved group (e.g.
g1) forms a correspondence with any other schema element (e.g. B.Address,
C.Address) besides already approved ones (e.g. B.BillTo, C.Invoice_To), the
transaction from an approved group is said to be in conflict. In order to determine a
conflict, the algorithm for adaptation determines if any of the transactions (e.g.
A.InvoiceTo, B.BillTo or C.Invoice_To) from an approved group exists in some other
proposed group (e.g g2, g3 and g4). In our example, A.InvoiceTo exists in all three
other groups g2, g3 and g4, while B.BillTo exists in g4. Thus, we can see that
A.InvoiceTo is in conflict with B.Address and C.Address in g2 and with
C.Organizaion in g3. The transaction(s) in conflict must be removed from the
proposal in order to make it valid. The group g2 will then be adapted to:

g2’: B.Address, C.Address

Similarly A.InvoiceTo will be removed from g3 which reduces the group to a single
transaction. Such groups are removed (hidden) from the list of proposed ones.
Assuming there exists fourth schema D, which takes no part in an approved
correspondence g1. If any of the transactions from an approved group (A.InvoiceTo,
B.BillTo, C.Invoice_To) form a correspondence with a schema with which currently
no correspondence exists (D), such a group will not be affected. In our example, g4
will remain unaffected as it could still result in a valid correspondence.

Backtracking
Besides hiding and adaptation, the system allows the users to backtrack. Backtracking
means user can retrace the earlier judgments made if the user feels a mistake has been
made. One possible way of determining that the mistake may have been made is to
check the list of proposals. Approval of undesired correspondences may lead to
unwanted list of proposals.

In order to facilitate backtracking, two lists are displayed. One is the list of
previously approved correspondences where a user can click on each approved
correspondence to see which other correspondences are hidden, when this particular
correspondence was approved. The other one is the list of hidden correspondences,
clicking on each hidden correspondence will show the correspondence approved due
to which this particular correspondence was hidden. Backtracking can be performed
on two levels: individual correspondence level and iteration level.

Ranking of Proposals

The list of proposals generated by mining algorithm is ranked (step 7, Figure 2). To
understand why ranking is important, consider the following example:

Table 1. Data Structures

Type Elements
Customer ID, Name, DateOfBirth, Phone, City, Street, State, Zip, Country
Partner ID, DateOfBirth, Email, Fax, City, Country
Party ID, Name, Email, Address
BuyerParty ID, Phone, Fax, Address

Table shows the types (transactions) and their corresponding elements (one per
row), each belonging to a different schema. Obviously, there are some overlapping
elements among the types. These overlapping or common elements lead to redundant
types, that is, the types which share same set of elements (not necessarily all). Mining
results in set of redundancy groups as shown in the table below:

Table 2. Redundancy Groups (Proposals)

Group Redundant Types Common Elements
!! Customer, Partner, Party, Buyer Party ID
!! Customer, Partner ID, DateOfBirth, City, Country
!! Customer, Party ID, Name
!! Customer, BuyerParty ID, Phone
!! Partner, Party ID, Email
!! Partner, BuyerParty ID, Fax
!! Party, BuyerParty ID, Address

This table shows the common types which each group share and the elements those

types share among them (one per row) Even from this small example, it can be seen
that some redundancy groups are more interesting than others. For example, !!
although shared among fewer types, has more common elements and is thus more
interesting than !! which only shares ID of types. In real-world scenario, there can be
several such cases. Hence, it is important to rank mining results which orders
potentially interesting results higher than others.

A redundancy group !! could be more interesting than !!based on three factors.
Two of them are evident from the motivating example above: the number of types or
transactions in a group and the number of common elements which forms the core of
a group. However, it is also important to take uncommon items in a redundancy
groups into account as well. If ratio of common to uncommon elements for one of the
groups (!!) is higher than the other (!!), then !! could potentially be more interesting
than !!. The rank of a redundancy group is thus a product of three components: the
number of transactions, the number of common elements and ratio of common
elements to average number of elements in a group.

In an iterative approach where a user is not likely to go through all the proposals in
a single iteration, it is important to rank proposals in a way which makes the task of
finding a right correspondence easier for the user. Therefore to facilitate the user we
rank elements lower in the hierarchy higher. The reason is that it prevents the user
from overwhelming with lot of elements to compare. It can be argued that lower the
element in hierarchy (fewer children), fewer elements are needed to be matched. This
not only decreases the user effort but as more and more information becomes
available in subsequent iterations (by matching lower level elements) user becomes
more confident in decisions regarding the higher level element matching.

3 Evaluation

In this section, we will demonstrate the results and analyze them to verify our claim
that user-guided iterative approach for n-way schema matching results in an
increasingly improved accuracy. First we will describe the experimental design and
settings and then present the results in the light of those settings.

3.1 Experimental Design & Settings

Any schema integration approach is deemed successful by evaluating the quality of
correspondences it produces. It is also necessary to examine whether the approach is
able to find every possible correspondence to unify the schemas. Since our approach
is iterative, we not only evaluate the quality of final sets of correspondences, but also
assess the quality of proposals during iterations and at the end of all the iterations. But
what is quality? Quality encompasses correctness and completeness of an integration
proposal, which we have defined in the following ways:
Correctness of proposal
Here correctness is defined in terms of an individual proposal. Thus, it determines the
quality of a single proposal. Assuming the proposal is composed of 50 transactions
and 45 of them corresponds, precision or correctness of a proposal would be 0.9.
Thus, if there are 10 proposals in total and assuming 5 of them have precision of 1.0,
3 have 0.9 and 2 have 0.8. Then overall precision of 10 proposals would be 0.93 (5*1
+ 3*0.9 + 2*0.8)/10. This measure is used to assess the user effort required to correct
the proposal if it is not entirely correct. If 15 or 20 out of 50 transactions need to be
corrected, it would make sense for a user to ignore or discard such a proposal.
Correct correspondences-to-incorrect-correspondences ratio
Here the quality criteria refer to how many of the total proposals correspond. Proposal
is either precise or it is not, and it measures the overall quality of proposals in a list.
For example, there are 10 proposals in a list and 5 of them have precision of 1.0
according to quality criteria defined in point 1. Then the precision would be 0.5(5/10)
according to this criterion. This measure is used to take into account the fact that user
may not have complete knowledge of domain. If entire list of proposals are correct,
user is less likely to make a mistake.

Correctness and completeness of proposal
Besides correctness, this criterion also includes completeness. Completeness means,
transactions from each corresponding schema should be a part of correspondence.
Thus correct and complete proposals are the actual correspondence to be identified.
Correct but not complete proposals are sub-correspondences.
 Based on these definitions of quality we evaluate whether or not we were able to
achieve the following goals:
• G1: have quality proposals. The iterative process can be seen as a journey towards

an ideal UDM consisting of only semantically correct correspondences. To achieve
that target, the objective is to have high quality of proposals.

• G2: have better quality proposals at the top. Achieving 100% correct proposals
cannot be expected because matching is a subjective task. It can be expected that
there will be better and worse proposals. At the same time, there will be many
proposals when integrating multiple large schemas and we expect the user to only
go through certain top proposals before moving on to next iteration. Therefore,
ordering of the proposals is of the utmost importance. The proposals which are of
better quality must be ranked higher than others.

• G3: improve overtime. This is the whole purpose of learning that we gain from user
actions. The more information we obtain, the higher the chances that results would
improve. Improvement can occur in many ways: generating more semantically
correct proposals, the way these proposals are ordered, hiding or removing incorrect
proposals, automatic adaptation of proposals, etc.

• G4: minimize the number of iterations. To help reducing the user effort as in case of
very large schemas, computation can even take days.

• G5: find a Unified Data Model (UDM). This is the output that the system is
expected to produce. It consists of a set of schemas and a set of correspondences.

For space reasons, we will show the evaluation results for three of the above five
goals. We have used 5 XML hierarchal schemas. These schemas, CIDX, Noris, Excel,
Paragon and Apertum belong to the purchase order domain. We have used them
because on one hand they are fairly complex real-world schemas, and on the other,
their mappings are available which helped us simulate the user and verify our results.

In order to avoid manual specifications of mappings, or the acknowledgement or
rejection of proposed matches by the user, we have simulated a user which performs
these tasks automatically. The simulated user approves the first correct and complete
proposal from the list of proposals, while ignoring any proposal above it. Thus, the
user interaction is minimal, because he only approves the proposed matches. Any
incorrect proposals will be ignored and no corrections are made.

One proposal is approved every iteration if there remains an actual correspondence
to identify, otherwise algorithm stops. This was necessary to demonstrate
improvement during iterations, although algorithm is able to find approximately 80%
of actual correspondences to be identified in very first iteration. There were 14
correspondences to identify for 5 schemas and it took 14 iterations, as one
correspondence is identified in each one.

3.2 Experimental Results

Have better proposals at the top (G2): Analyze top N proposals presented to the
user with respect to quality.

For the five schemas, the number of proposals generated in the first iteration was 75.
We have set a limit of 10 proposals for which accuracy is demonstrated. If top 10
proposals’ accuracy is high, that would mean the user is most likely be able to find all
correspondences within these proposals over certain number of iterations. In order to
demonstrate the degree of accuracy for top 10 proposals, we will show where the first
correct and complete proposal lies in the list of proposals and what the average
quality of top 10 proposals is in comparison to average quality of all the proposals.

Table 2. Data for Average Index of first actual correspondence to identify

Index of first actual correspondence to identify
Best Worst Avg.

1 8 2
Table 3 represents the data for average index of the first correct and complete

proposal. Every 2nd proposal was the actual correspondence which user needed to
identify. This implies that our simulated user only needed to process 2 proposals in
every iteration, ignoring the first and approving the 2nd one. The worst index of 8
means that user should be able to find every correspondence within top 10 proposals.

Figure 4 shows average quality comparison for top 10 vs. all proposals. It can be
seen that there is a significant increase in quality of top 10 proposals in comparison to
all proposals. On average 4 out of 5 transactions correspond, while 8 out of 10
proposals were correct. This signifies that our ranking algorithm is able to order
proposals such that quality proposals are processed first by the user. This also shows
that even 56% correct proposals appear on top and hence represent significant quality.

Fig. 4. Average Quality comparison – top 10 proposals vs all proposals

Improve overtime (G3): Analyze top N proposals in order to demonstrate the
improvement in quality based on user feedback in previous iteration.

To demonstrate the improvement, we will show how proposal quality varies over
iterations and does the additional information lead to finding of missing
correspondences. Figure 5 shows the average quality of top 10 proposals over 14
iterations. The graph shows all quality variants as defined in the previous section. All
the three curves show similar trend of increase in accuracy and reaching peak point by
the 10th iteration. Ratio of correct to incorrect correspondences increases, as number
of iterations increase (see correct to incorrect ration curve). While only 50% of top 10
proposals were ‘correct’ when only leaf information was available, from 4th iteration
to 9th iteration the percentage increases to 90%. In the 10th iteration, there was no
‘incorrect’ proposal in top 10.

Fig. 5. Average quality of top 10 proposals (all variants)

The trend demonstrates the improvement in accuracy of proposals as additional
information is gained through user feedback. However, it can also be noted that there
is a falling trajectory after 10th iteration. One possible reason for this behavior is that
there are too few correspondences left to identify. Since our simulated user is not
rejecting any ‘incorrect’ proposals, but ignoring them, the number of incorrect
proposals may possibly be much higher as compared to correct proposals at this point
in time.

The demonstrated improvement in accuracy of proposals also leads to finding
missing correspondences during iterations. Figure 6 shows there were 6 missing
correspondences in first iteration, which were reduced to zero by the 13th iteration.
Thus our improvement measures of hiding and adapting proposals were successful in
finding all the correspondences to unify schemas.

Fig. 6. Missing Correspondences

Find UDM (G5): Analyze unified data model (UDM) with respect to quality in order
to assess the user guidance process.

It can be argued that the improvement during iterations, having best proposals at
the top and having quality proposals, would mean nothing if due to some missing
correspondences unified data model could not be accomplished. The correct and
complete UDM is obtained if correct and complete identified correspondences equals
number of actual correspondences to be found and false and missing correspondences
are zero. Our results show that we are able to identify every correspondence needed to
unify schemas and there were no missing correspondences. In addition, our simulated
user was ‘informed’ so no ‘incorrect proposals’ are expected to be approved.
Therefore, we can say that ideal (correct and complete) UDM is obtained.

Summing up, we can claim that the user-guided iterative approach for multi-
schema integration leads to increase in precision of proposals as additional
information becomes available. Although overall precision of proposals is low, we
have shown that proper ordering of proposals with the flexibility to iterate without
going through each and every proposal still makes that precision significant.
Moreover, the reliance on user feedback means it can affect the results both positively
and negatively. The user has the final word when it comes to a decision regarding the
proposed matches. If the user approves a seemingly ‘incorrect’ proposal, perhaps in
the user context it was the ‘correct’ match. However, through backtracking feature,
the user can always make corrections, if any proposal was approved by mistake.

4 Related work

A lot of research has been done in schema matching over the past decade. In [13] an
overview of the approaches is given. There are also many surveys reviewing matching
and mapping tools for schemas [14, 5, 15] and for ontologies [16]. Iterative approach
has been studied so far only in the context of two way schema matching. N-way
matching is not solved and remains a big area of research [11].

Two closest approaches to our work are [17, 18] which takes existing mappings
and user action history into account in order to incrementally and iteratively match
schemas. In order to address problems associated with single-shot approach, [17]

proposed to match schema incrementally, asking the user to select a single element
for which top-k matches are generated. The user action history is exploited to rank the
match candidates of a selected element. Our approach is similar in a sense that we
also generate top-k match candidates and use existing mappings and user action
history to rank these candidates. However, we generate top-k match candidates for
each element of the schema. It is true that it will result in lot of false positives but we
negate their impact by ranking the potentially correct matches higher as our results
show and allow the user to iterate without going through each match candidate.
Additionally, we not only exploit user action history for ranking of match candidates
but also molding the result set. For large schemas, the approach of selecting each
element and generating candidates does not seem feasible due to user effort and time
involved. In this respect, our approach is heuristic and is much more applicable.

In [18] the user is involved by presenting the best guess results to the user which
user can tailor according to their needs. More specifically, user can reject the
alignments they found to be incorrect. The rejected alignments are then excluded from
the result set in next iteration. In an evaluation, they demonstrated iterative
improvement by executing five iterations. For large ontologies or schemas, it appears
that their approach is going to take significant number of iterations before final result
set can be achieved. Moreover, their approach does not allow for undoing of previous
user actions. This is a significant drawback, because if user did accidently reject a
correct alignment, the process has to be started all over again. Our objective of
improving precision of the result set during iterations is similar, but it is more
interactive in a sense that we allow the user to approve, disapprove, and correct the
correspondences. Major learning occurs from approval action as it helps reducing the
size of match candidates significantly, not only the approved correspondence is
hidden but also any sub-correspondences and conflicting correspondences also get
hidden. We also learn if the user revokes an incorrect decision.

Finally, the two approaches described above perform pairwise matching. Though
some approaches are proposed for holistic schema matching, they are of single-shot
type. From the user interaction perspective, they follow a different matching process.
The learning occurs through statistical methods without user involvement. This
usually limits the success to specific domains, and especially to the domains with
limited number of concepts. In our case learning occurs through user involvement
which makes it much more generic. It can be expected that our approach performs
worse than other holistic approaches in domains where these approaches are expert.

5 Conclusions and Future Work

In this paper, we have described a user-guided iterative approach for large-scale multi
schema integration. The approach learns from a user feedback and produces matching
proposals with an increased accuracy during iterations. The role of a user is to judge
the proposals presented and guide the iterative matching process until a unified data
model is accomplished. The matching problem is abstracted to find the closed
frequent itemsets, using CFIM implementation. The output of CFIM is redundancy

groups or proposals. Among these proposals, some are more interesting than others.
There are three components which make a proposal interesting: the number of
transactions, the number of common elements and ratio of common elements to
average number of elements. Thus potentially more interesting proposals are ranked
higher than others. In ranking of proposals, preference is given to elements lower in
the hierarchy and they are ranked higher. This prevents a user from overwhelming
with lot of correspondences to compare. Moreover, as additional information becomes
available user becomes more confident in decisions regarding the higher level
correspondences.

We conducted a comprehensive evaluation of our work using large e-business
schemas. In the evaluation, we have proved our hypothesis that the iterative approach
leverages the growing confidence from the user feedback loop to better rank the
proposals with each iteration. At present we cannot guarantee overall higher level of
precision, but one thing where we are confident is that the proposals get more precise
than they were in the past, irrespective of the number and size of schemas.

In future, our work can be improved in different ways. Specifically, fragment-
based matching as proposed by [8] could be considered in order to solve the problem
of execution time that may arise in case of greater number of schemas. Furthermore,
more and larger schemas demand an advanced graphical user interface. Interactive
techniques proposed by [19] for matching tasks are needed to be taken into account.
Finally, a community driven approach where a group of users together (governance
board) match schemas is also a possibility [20, 21].

Acknowledgments: This research is conducted at SAP Research Karlsruhe,
Germany, under the supervision of Jens Lemcke. It is the part of iGreen Project for
providing users with “standardized, industry wide connectivity”. To support this, the
aim is to build a service network where small businesses can have access to secure e-
services. Semi-automatic integration of schemas is used to generate transformations
between different schemas. These transformations are then used in a service network
to facilitate German agricultural sector.

6 References

1. SAP Netweaver. Adaptive Technology for the Networked Enterprise [Online], Available at:
http://www.sap.com/platform/netweaver/index.epx [August 15, 2011]

2. Microsoft BizTalk Server, Microsoft BizTalk Server website [Online], Available at:
http://www.microsoft.com/biztalk/en/us/default.aspx, August 15, 2011]

3. IBM InfoSphere, InfoSphere Platform [Online], Available at: http://www-
01.ibm.com/software/data/infosphere/ [August 15, 2011]

4. Madhavan, J. Bernstein, P.A. and Rahm. E.: Generic Schema Matching with Cupid. In:
Proceedings of the 27th International Conference on Very Large Data Bases (VLDB '01),
p. 49–58. San Francisco, CA: Morgan Kaufmann Publishers Inc. (2001)

5. Rahm, E. and Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching.
In: VLDB Journal, Vol 10 Issue 4, p. 334-350, Berlin, Heidelberg: Springer (2001)

6. Berlin, J. and Motro, A.: Autoplex: Automated Discovery of Content for Virtual
Databases. In: C. Batini, F. Giunchiglia, P. Giorgini, & M. Mecella (eds.), Cooperative
Information Systems, Vol. 2172 of Lecture Notes in Computer Science, chap. 10, p. 108-
122. Berlin, Heidelberg: Springer (2001)

7. Doan, A.H. Domingos, P. and Halevy, A.Y.: Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach. In: Proceedings of the 2001 ACM SIGMOD
international conference on Management of data (SIGMOD '01), Vol 30 Issue 2, p. 509 –
520, New York: ACM (2001)

8. Rahm,E. Do,H.H. and Maßmann, S.: Matching large XML schemas, In: ACM SIGMOD
Record, Vol 33 Issue 4. New York: ACM (2004)

9. Bernstein, P.A. et al:. Industrial-strength Schema Matching. In: ACM SIGMOD Record,
Vol 33 Issue 4. New York: ACM (2004)

10. Euzenat, J. and Shvaiko, P.: A survey of schema-based matching approaches. Technical
report, Informatica e Telecomunicazioni, University of Trento (2007)

11. Rahm, E.: Towards Large-Scale Schema and Ontology Matching. Schema Matching and
Mapping, Data-Centric Systems and Applications. p.3-28. Springer (2011)

12. Uno, T. et al.: LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal
itemsets. In IEEE International Conference on Data Mining, Workshop on Frequent
Itemset Mining Implementations (FIMI), Brighton, UK (2004)

13. Bellahsene, Z. Bonifati, A., & Rahm, E: Schema Matching and Mapping. Data-Centric
Systems and Applications. Springer (2011)

14. Do, H. H. Melnik, S. and Rahm. E:. Comparison of Schema Matching Evaluations. In: A.
B.Chaudhri et al. eds. Web, Web-Services, and Database System. Berlin, Heidelberg:
Springer, p. 221-237 (2009)

15. Shvaiko, P., & Euzenat, J.: A Survey of Schema-Based Matching Approaches. J. Data
Semantics Vol. IV, p.146-171 (2005)

16. Noy, N. F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD
Record Vol. 33 Issue 4, p. 65-70 (2004)

17. Bernstein, P.A. Melnik, S. and Churchill, J.E.: Incremental Schema Matching. In:
Proceedings of the 32nd international conference on Very Large Data Bases (VLDB '06),
p. 1167–1170 (2006)

18. Chen, D. et al: A User Guided Iterative Alignment Approach for Ontology Mapping. In:
Semantic Web Enabled Web Service (SWWS), p. 51-56 (2008)

19. Falconer, S.M. and Noy, N.F.: Interactive Techniques to Support Ontology Matching. In: Z.
Bellahsene, A. Bonifati, E. Rahm (eds), Schema Matching and Mapping, p. 29-52. Springer
(2011)

20. Rech, J. et al.: Intelligent assistance for collaborative schema governance in the German
agricultural eBusiness sector. In: Proceedings of the 12th International Conference on
Information Integration and Web-based Applications & Services. New York: ACM (2010)

21. Zhdanova, V. and Shvaiko, P.: Community-Driven Ontology Matching. In: S. York and D.
John. The Semantic Web: Research and Applications. pp. 34-49, Berlin, Springer (2006)

