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Abstract. Schema matching plays an important role in various fields of 
enterprise system modeling and integration, such as in databases, business 
intelligence, knowledge management, interoperability, and others. The 
matching problem relates to finding the semantic correspondences between two 
or more schemas. The focus of the most of the research done in schema and 
ontology matching is pairwise matching, where 2 schemas are compared at the 
time. While few semi-automatic approaches have been recently proposed in 
pairwise matching to involve user, current multi-schema approaches mainly 
rely on the use of statistical information in order to avoid user interaction, 
which is largely limited to parameter tuning. In this study, we propose a user-
guided iterative approach for large-scale multi-schema integration. Given n 
schemas, the goal is to match schema elements iteratively and demonstrate that 
the learning approach results in improved accuracy during iterations. The 
research is conducted in SAP Research Karlsruhe, followed by an evaluation 
using large e-business schemas. The evaluation results demonstrated an 
improvement in accuracy of matching proposals based on user’s involvement, 
as well as an easier accomplishment of a unified data model. 
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1 Introduction 

A schema represents a formal structure and can be of many types such as database 
schema, XML schema, ontology description, or domain conceptual description. The 
schema matching problem relates to finding the semantic correspondences between 
two or more schemas. Semantic heterogeneity arises from differences in naming, 
structure and the context in which these schemas are being used.  In the database 
field, schema matching is used to merge different relational schemas to produce a 
mediated schema. In e-business, it may be used to align business documents with 
varying data structures. In healthcare, record of a same patient may exists in various 
hospitals needing alignment in order to present a single view. However, this 



alignment comes at a cost. It takes a number of domain experts to manually inspect 
schemas in order to perfectly align them. Over time, and especially with the 
proliferation of the Web, number and size of schemas to be matched increases 
significantly. The complexity forces companies to find the matches manually often 
with the help of commercial tools such as [1], [2] and [3]. However, pure manual 
specification of mappings can both be time consuming and error-prone considering 
the number and size of schemas to be matched in this information age. 

In order to overcome this shortcoming, a lot of research has been done over the last 
decade. [4] were the first to propose treating schema matching as an independent 
problem. The focus of the most of the research done in schema and ontology 
matching is pairwise matching [5,6,7,4,8,9,10]. On the other hand, we do not find 
many examples where schemas are matched holistically. The goal of holistic or multi-
schema integration is to integrate more than two schemas at once which result usually 
in creating a mediated schema where all matching elements are represented only once. 
Thus holistic schema matching resembles the pairwise matching in a sense that it 
generalizes the problem from matching two schemas to n schemas. 

While few semi-automatic approaches have been proposed in pairwise matching to 
involve user, current holistic approaches rely on statistical information extracted from 
schemas in order to avoid user interaction. The user interaction is thus largely limited 
to parameter tuning. These n-way approaches are able to avoid user interaction and 
still match schemas to considerable degree of accuracy due to the fact that their 
algorithms operate in domains with quite limited number of distinct concepts [11]. 
The approaches are considered primarily for matching and integrating Web forms. 
The schemas are small and simple and consist of list of attributes. 

The problem arises when dealing with domains where schemas are large and 
complex. The example of one such domain is e-business, where exist several 
standards providing common message structures for organizations to exchange 
business information. For instance, CIDX is a data exchange standard for a chemical 
industry and RosettaNet for high-tech industry. Organizations adapt these standards to 
their specific needs. When organizations define mappings to conduct a business 
together, those mappings are always their own interpretations of the standard. Thus 
what is valid in one setting may not be true in other setting.  

In this study, we present a user-guided iterative approach for large-scale multi-
schema integration. Given n schemas, the goal is to match the elements iteratively and 
demonstrate that a learning approach results in an improved accuracy with each 
iteration. This results in a unified data model consisting of a set of schemas and a set 
of correspondences. For the realization of the unified data model, we complement 
human activities with a data mining technique for detecting similar structures in a 
repository of schemas. The purpose of the research is to show a mechanism of user 
involvement in n-way schema matching, benefits derived from the pairing of users 
and machine, while addressing the issues that possibly arise from a user involvement. 

This paper is structured as follows: Section 2 presents our approach to a user-
guided large-scale multi-schema integration. Section 3 is devoted to the evaluation of 
results. Section 4 reports the works related to ours, and Section 5 summarizes our 
conclusions and indicates the steps forward. 



2 Approach to a User-Guided Schema Integration 

This section describes the process of the user-guided iterative approach for a holistic 
schema matching. The main idea is to leverage the system’s growing confidence from 
the user feedback loop, to better rank the matching proposals with each iteration. 
Figure 1 shows a sample InvoiceTo schema. An XML schema consists of a root, 
intermediary elements (optional) and the leaves, together forming a hierarchy. Leaves 
are where actual information within the schema lies. Rests of the elements are used to 
structure the schema. Here we make an assumption that leaf correspondences are 
already given by the user, as it is situation with e-business standards 
(http://help.sap.com/bp_bniv2604/BBLibrary/Documentation/705_BB_ConfigGuide_
EN_DE.doc).  

 
Fig. 1. A sample schema 

Based on input schemas and leaf correspondences, system makes proposals to the 
user with varying degree of confidence as we move up the hierarchy of a schema. For 
elements higher in hierarchy, less information is available, so system will be less 
confident than for those which are lower in hierarchy. As user judges proposals and 
new matchings are found, this information gets added to the system repository and is 
used for making decisions in subsequent iterations. Consequently, system confidence 
increases with each iteration and it is likely to produce higher quality proposals. 
Figure 2 below shows the iterative process. 

In the first step, hierarchical input schemas are transformed to linear input of data 
mining. Then these schemas along with given leaf correspondences act as input to 
Closed Frequent Itemset Mining (CFIM) [12]. CFIM was originally used for market 
basket analysis as to detect common patterns such as: ‘Shoppers who buy oatmeal and 
sugar also buy milk.’ In the context of this paper, CFIM is applied for detecting 
similar structures in a repository of electronic business document schemas. 



 
Fig. 2. Iterative approach to finding UDM 

The result of mining is redundancy groups (step 4) which are presented to the user 
for judgment and are therefore also referred to as ‘proposals’ shown in Figure 3. Each 
redundancy group is composed of redundant transactions. They are called redundant 
because the transactions in these groups share the same set of items. 

 
Fig. 3. Output of mining - Redundancy groups (proposals) 

Transaction and item are the abstract terms used in frequent itemset mining 
literature. Input to frequent itemset mining is a set of transactions. Each transaction is 
associated to a set of items. In XML schemas, we only have elements that form the 
trees of the type definitions. “Elements” are mapped to the notions of “transaction” 
and “item” to apply frequent itemset mining. If we want to know the similarity 
between two elements e1 and e2 of two different schemas S1 (containing e1) and S2 
(containing e2), then e1 is a transaction and all inferior elements in S1 are e1’s items, 
and e2 is another transaction with all inferior elements of e2 in S2 being e2’s items. 

The very first iteration will result in presenting mining results as proposed, to the 
user. However, in subsequent iterations user feedback is taken into account to 
improve the results. 



The ranked results are then presented to the user (Figure 3).  The user can judge 
about these proposals. Judging may involve acknowledging or approving a proposal, 
disapproving a proposal, or making corrections to a proposal. The user judgment 
produces agreed matchings (correspondences). The process repeats with user agreed 
matchings in previous iteration added to the set of leaf correspondences. The process 
is repeated until no new agreed matching is found. 

In a learning approach, it is natural for a user to expect that judgment will result in 
increased quality of proposals while the effort required to construct a correspondence 
will decrease. Thus, we take some measures shown in step 5 of Figure 2 based on user 
judgment in order to meet the user expectations. These measures include hiding, 
adaptation of correspondences and backtracking.  

Hiding correspondences  
The hiding of proposals needs to take place because of the fact that user does not want 
to go through long list of proposals every iteration, especially the proposals which are 
already (dis)approved by the user. Thus it helps us reduce the number of proposals 
presented to a user in each iteration. The hiding takes place in two cases: when a user 
either approves a proposal or disapproves it. Disapproval of a proposal will result in 
hiding only that particular correspondence as it does not add to any information about 
other proposals. On the other hand, approval of a proposal provides a valuable insight. 
From the hiding perspective, not only the approved correspondence is hidden but any 
sub-correspondence if it exists is also removed from the list. S is a sub-
correspondence of correspondence T if transactions of S is a subset of transactions of 
T. In order to see the motivation behind hiding the sub-correspondences, consider the 
example: let A.InvoiceTo, B.BillTo and C.Invoice_To be a correspondence, where 
each of A, B and C are different schemas. Then any of the subsets of a set 
{A.InvoiceTo B.BillTo C.Invoice_To} is a called a sub-correspondence. Thus, if user 
agrees that {A.InvoiceTo B.BillTo C.Invoice_To} is a match, then {A.InvoiceTo 
B.BillTo}, {B.BillTo C.Invoice_To} and {A.InvoiceTo C.Invoice_To} must be a 
match too. This implies that the system needs to hide not only {A.InvoiceTo B.BillTo 
C.Invoice_To} but any of its subsets if present in the list of proposals. On the other 
hand, if user approves { A.InvoiceTo B.BillTo} and {B.BillTo C.Invoice_To} instead 
of {A.InvoiceTo B.BillTo C.Invoice_To}, by transitive property, we can then 
conclude that {A.InvoiceTo C.Invoice_To} and hence {A.InvoiceTo B.BillTo 
C.Invoice_To} is a match too. In this case also, the system needs to hide not only user 
approved proposals but any other proposals that match as a result of that approval. 
However, only approval of {A.InvoiceTo B.BillTo} will not lead to any conclusion 
about {A.InvoiceTo B.BillTo C.Invoice_To} as relationship between {A.InvoiceTo 
C.Invoice_To} and {B.BillTo C.Invoice_To} is yet unknown. Thus {A.InvoiceTo 
B.BillTo C.Invoice_To} in this case will remain the part of list of proposals.  

 Adapting correspondences  
Adaption of correspondence is possible only in the case of approval of a 
correspondence. In order to understand the concept behind adaptation, assume mining 
algorithm proposes following redundancy groups: 

 



g1: A.InvoiceTo, B.BillTo, C.Invoice_To 
g2: A.InvoiceTo, B.Address, C.Address 
g3: A.InvoiceTo, C.Organization 
g4: A.InvoiceTo, B.BillTo, D.Address 

Let’s assume user approves the group g1. That would mean A.InvoiceTo can only 
form a correspondence with BillTo element from B schema and Invoice_To element 
from C schema.  If the transaction (e,g. A.InvoiceTo) from an approved group (e.g. 
g1) forms a correspondence with any other schema element (e.g. B.Address, 
C.Address) besides already approved ones (e.g. B.BillTo, C.Invoice_To), the 
transaction from an approved group is said to be in conflict. In order to determine a 
conflict, the algorithm for adaptation determines if any of the transactions (e.g. 
A.InvoiceTo, B.BillTo or C.Invoice_To) from an approved group exists in some other 
proposed group (e.g g2, g3 and g4). In our example, A.InvoiceTo exists in all three 
other groups g2, g3 and g4, while B.BillTo exists in g4. Thus, we can see that 
A.InvoiceTo is in conflict with B.Address and C.Address in g2 and with 
C.Organizaion in g3. The transaction(s) in conflict must be removed from the 
proposal in order to make it valid. The group g2 will then be adapted to: 

g2’: B.Address, C.Address 

Similarly A.InvoiceTo will be removed from g3 which reduces the group to a single 
transaction. Such groups are removed (hidden) from the list of proposed ones. 
Assuming there exists fourth schema D, which takes no part in an approved 
correspondence g1. If any of the transactions from an approved group (A.InvoiceTo, 
B.BillTo, C.Invoice_To) form a correspondence with a schema with which currently 
no correspondence exists (D), such a group will not be affected. In our example, g4 
will remain unaffected as it could still result in a valid correspondence. 

Backtracking  
Besides hiding and adaptation, the system allows the users to backtrack. Backtracking 
means user can retrace the earlier judgments made if the user feels a mistake has been 
made. One possible way of determining that the mistake may have been made is to 
check the list of proposals. Approval of undesired correspondences may lead to 
unwanted list of proposals. 

In order to facilitate backtracking, two lists are displayed. One is the list of 
previously approved correspondences where a user can click on each approved 
correspondence to see which other correspondences are hidden, when this particular 
correspondence was approved. The other one is the list of hidden correspondences, 
clicking on each hidden correspondence will show the correspondence approved due 
to which this particular correspondence was hidden. Backtracking can be performed 
on two levels: individual correspondence level and iteration level.  



Ranking of Proposals 

The list of proposals generated by mining algorithm is ranked (step 7, Figure 2). To 
understand why ranking is important, consider the following example: 

Table 1. Data Structures 

Type Elements 
Customer ID, Name, DateOfBirth, Phone, City, Street, State, Zip,  Country 
Partner ID,  DateOfBirth, Email, Fax, City, Country 
Party ID, Name, Email, Address 
BuyerParty ID, Phone, Fax, Address 
 

Table shows the types (transactions) and their corresponding elements (one per 
row), each belonging to a different schema. Obviously, there are some overlapping 
elements among the types. These overlapping or common elements lead to redundant 
types, that is, the types which share same set of elements (not necessarily all). Mining 
results in set of redundancy groups as shown in the table below: 

Table 2. Redundancy Groups (Proposals) 

Group Redundant Types Common Elements 
!! Customer, Partner, Party, Buyer Party ID 
!! Customer, Partner ID, DateOfBirth, City, Country 
!! Customer, Party ID, Name 
!! Customer, BuyerParty ID, Phone 
!! Partner, Party ID, Email 
!! Partner, BuyerParty ID, Fax 
!! Party, BuyerParty ID, Address 

 
This table shows the common types which each group share and the elements those 

types share among them (one per row) Even from this small example, it can be seen 
that some redundancy groups are more interesting than others. For example,  !!  
although shared among fewer types, has more common elements and is thus more 
interesting than !! which only shares ID of types. In real-world scenario, there can be 
several such cases. Hence, it is important to rank mining results which orders 
potentially interesting results higher than others. 

A redundancy group !! could be more interesting than !!based on three factors. 
Two of them are evident from the motivating example above: the number of types or 
transactions in a group and the number of common elements which forms the core of 
a group. However, it is also important to take uncommon items in a redundancy 
groups into account as well. If ratio of common to uncommon elements for one of the 
groups (!!) is higher than the other (!!), then !! could potentially be more interesting 
than !!. The rank of a redundancy group is thus a product of three components: the 
number of transactions, the number of common elements and ratio of common 
elements to average number of elements in a group. 



In an iterative approach where a user is not likely to go through all the proposals in 
a single iteration, it is important to rank proposals in a way which makes the task of 
finding a right correspondence easier for the user. Therefore to facilitate the user we 
rank elements lower in the hierarchy higher. The reason is that it prevents the user 
from overwhelming with lot of elements to compare. It can be argued that lower the 
element in hierarchy (fewer children), fewer elements are needed to be matched. This 
not only decreases the user effort but as more and more information becomes 
available in subsequent iterations (by matching lower level elements) user becomes 
more confident in decisions regarding the higher level element matching. 

3 Evaluation 

In this section, we will demonstrate the results and analyze them to verify our claim 
that user-guided iterative approach for n-way schema matching results in an 
increasingly improved accuracy. First we will describe the experimental design and 
settings and then present the results in the light of those settings. 

3.1 Experimental Design & Settings 

Any schema integration approach is deemed successful by evaluating the quality of 
correspondences it produces. It is also necessary to examine whether the approach is 
able to find every possible correspondence to unify the schemas. Since our approach 
is iterative, we not only evaluate the quality of final sets of correspondences, but also 
assess the quality of proposals during iterations and at the end of all the iterations. But 
what is quality? Quality encompasses correctness and completeness of an integration 
proposal, which we have defined in the following ways: 
Correctness of proposal 
Here correctness is defined in terms of an individual proposal. Thus, it determines the 
quality of a single proposal. Assuming the proposal is composed of 50 transactions 
and 45 of them corresponds, precision or correctness of a proposal would be 0.9. 
Thus, if there are 10 proposals in total and assuming 5 of them have precision of 1.0, 
3 have 0.9 and 2 have 0.8. Then overall precision of 10 proposals would be 0.93 (5*1 
+ 3*0.9 + 2*0.8)/10. This measure is used to assess the user effort required to correct 
the proposal if it is not entirely correct. If 15 or 20 out of 50 transactions need to be 
corrected, it would make sense for a user to ignore or discard such a proposal. 
Correct correspondences-to-incorrect-correspondences ratio 
Here the quality criteria refer to how many of the total proposals correspond. Proposal 
is either precise or it is not, and it measures the overall quality of proposals in a list. 
For example, there are 10 proposals in a list and 5 of them have precision of 1.0 
according to quality criteria defined in point 1. Then the precision would be 0.5(5/10) 
according to this criterion. This measure is used to take into account the fact that user 
may not have complete knowledge of domain. If entire list of proposals are correct, 
user is less likely to make a mistake. 
 



Correctness and completeness of proposal 
Besides correctness, this criterion also includes completeness. Completeness means, 
transactions from each corresponding schema should be a part of correspondence. 
Thus correct and complete proposals are the actual correspondence to be identified. 
Correct but not complete proposals are sub-correspondences.  
 Based on these definitions of quality we evaluate whether or not we were able to 
achieve the following goals: 
• G1: have quality proposals. The iterative process can be seen as a journey towards 

an ideal UDM consisting of only semantically correct correspondences. To achieve 
that target, the objective is to have high quality of proposals. 

• G2: have better quality proposals at the top. Achieving 100% correct proposals 
cannot be expected because matching is a subjective task. It can be expected that 
there will be better and worse proposals. At the same time, there will be many 
proposals when integrating multiple large schemas and we expect the user to only 
go through certain top proposals before moving on to next iteration. Therefore, 
ordering of the proposals is of the utmost importance. The proposals which are of 
better quality must be ranked higher than others. 

• G3: improve overtime. This is the whole purpose of learning that we gain from user 
actions. The more information we obtain, the higher the chances that results would 
improve. Improvement can occur in many ways: generating more semantically 
correct proposals, the way these proposals are ordered, hiding or removing incorrect 
proposals, automatic adaptation of proposals, etc. 

• G4: minimize the number of iterations. To help reducing the user effort as in case of 
very large schemas, computation can even take days. 

• G5: find a Unified Data Model (UDM). This is the output that the system is 
expected to produce. It consists of a set of schemas and a set of correspondences. 

For space reasons, we will show the evaluation results for three of the above five 
goals. We have used 5 XML hierarchal schemas. These schemas, CIDX, Noris, Excel, 
Paragon and Apertum belong to the purchase order domain. We have used them 
because on one hand they are fairly complex real-world schemas, and on the other, 
their mappings are available which helped us simulate the user and verify our results. 

In order to avoid manual specifications of mappings, or the acknowledgement or 
rejection of proposed matches by the user, we have simulated a user which performs 
these tasks automatically. The simulated user approves the first correct and complete 
proposal from the list of proposals, while ignoring any proposal above it. Thus, the 
user interaction is minimal, because he only approves the proposed matches. Any 
incorrect proposals will be ignored and no corrections are made. 

One proposal is approved every iteration if there remains an actual correspondence 
to identify, otherwise algorithm stops. This was necessary to demonstrate 
improvement during iterations, although algorithm is able to find approximately 80% 
of actual correspondences to be identified in very first iteration. There were 14 
correspondences to identify for 5 schemas and it took 14 iterations, as one 
correspondence is identified in each one. 



3.2 Experimental Results 

Have better proposals at the top (G2): Analyze top N proposals presented to the 
user with respect to quality. 

For the five schemas, the number of proposals generated in the first iteration was 75. 
We have set a limit of 10 proposals for which accuracy is demonstrated. If top 10 
proposals’ accuracy is high, that would mean the user is most likely be able to find all 
correspondences within these proposals over certain number of iterations. In order to 
demonstrate the degree of accuracy for top 10 proposals, we will show where the first 
correct and complete proposal lies in the list of proposals and what the average 
quality of top 10 proposals is in comparison to average quality of all the proposals. 

Table 2. Data for Average Index of first actual correspondence to identify 

Index of first actual correspondence to identify 
Best  Worst Avg. 

1 8 2 
Table 3 represents the data for average index of the first correct and complete 

proposal. Every 2nd proposal was the actual correspondence which user needed to 
identify. This implies that our simulated user only needed to process 2 proposals in 
every iteration, ignoring the first and approving the 2nd one. The worst index of 8 
means that user should be able to find every correspondence within top 10 proposals. 

Figure 4 shows average quality comparison for top 10 vs. all proposals. It can be 
seen that there is a significant increase in quality of top 10 proposals in comparison to 
all proposals. On average 4 out of 5 transactions correspond, while 8 out of 10 
proposals were correct. This signifies that our ranking algorithm is able to order 
proposals such that quality proposals are processed first by the user. This also shows 
that even 56% correct proposals appear on top and hence represent significant quality. 

 
Fig. 4.  Average Quality comparison – top 10 proposals vs all proposals 

 



Improve overtime (G3): Analyze top N proposals in order to demonstrate the 
improvement in quality based on user feedback in previous iteration. 

To demonstrate the improvement, we will show how proposal quality varies over 
iterations and does the additional information lead to finding of missing 
correspondences. Figure 5 shows the average quality of top 10 proposals over 14 
iterations. The graph shows all quality variants as defined in the previous section. All 
the three curves show similar trend of increase in accuracy and reaching peak point by 
the 10th iteration. Ratio of correct to incorrect correspondences increases, as number 
of iterations increase (see correct to incorrect ration curve). While only 50% of top 10 
proposals were ‘correct’ when only leaf information was available, from 4th iteration 
to 9th iteration the percentage increases to 90%. In the 10th iteration, there was no 
‘incorrect’ proposal in top 10.  

 
Fig. 5. Average quality of top 10 proposals (all variants) 

The trend demonstrates the improvement in accuracy of proposals as additional 
information is gained through user feedback. However, it can also be noted that there 
is a falling trajectory after 10th iteration. One possible reason for this behavior is that 
there are too few correspondences left to identify. Since our simulated user is not 
rejecting any ‘incorrect’ proposals, but ignoring them, the number of incorrect 
proposals may possibly be much higher as compared to correct proposals at this point 
in time.  

The demonstrated improvement in accuracy of proposals also leads to finding 
missing correspondences during iterations. Figure 6 shows there were 6 missing 
correspondences in first iteration, which were reduced to zero by the 13th iteration. 
Thus our improvement measures of hiding and adapting proposals were successful in 
finding all the correspondences to unify schemas. 



 
Fig. 6. Missing Correspondences 

Find UDM (G5): Analyze unified data model (UDM) with respect to quality in order 
to assess the user guidance process. 

It can be argued that the improvement during iterations, having best proposals at 
the top and having quality proposals, would mean nothing if due to some missing 
correspondences unified data model could not be accomplished. The correct and 
complete UDM is obtained if correct and complete identified correspondences equals 
number of actual correspondences to be found and false and missing correspondences 
are zero. Our results show that we are able to identify every correspondence needed to 
unify schemas and there were no missing correspondences. In addition, our simulated 
user was ‘informed’ so no ‘incorrect proposals’ are expected to be approved. 
Therefore, we can say that ideal (correct and complete) UDM is obtained.  

Summing up, we can claim that the user-guided iterative approach for multi-
schema integration leads to increase in precision of proposals as additional 
information becomes available. Although overall precision of proposals is low, we 
have shown that proper ordering of proposals with the flexibility to iterate without 
going through each and every proposal still makes that precision significant. 
Moreover, the reliance on user feedback means it can affect the results both positively 
and negatively. The user has the final word when it comes to a decision regarding the 
proposed matches. If the user approves a seemingly ‘incorrect’ proposal, perhaps in 
the user context it was the ‘correct’ match. However, through backtracking feature, 
the user can always make corrections, if any proposal was approved by mistake. 

4 Related work 

A lot of research has been done in schema matching over the past decade. In [13] an 
overview of the approaches is given. There are also many surveys reviewing matching 
and mapping tools for schemas [14, 5, 15] and for ontologies [16]. Iterative approach 
has been studied so far only in the context of two way schema matching. N-way 
matching is not solved and remains a big area of research  [11]. 

Two closest approaches to our work are [17, 18] which takes existing mappings 
and user action history into account in order to incrementally and iteratively match 
schemas. In order to address problems associated with single-shot approach, [17] 



proposed to match schema incrementally, asking the user to select a single element 
for which top-k matches are generated. The user action history is exploited to rank the 
match candidates of a selected element. Our approach is similar in a sense that we 
also generate top-k match candidates and use existing mappings and user action 
history to rank these candidates. However, we generate top-k match candidates for 
each element of the schema. It is true that it will result in lot of false positives but we 
negate their impact by ranking the potentially correct matches higher as our results 
show and allow the user to iterate without going through each match candidate. 
Additionally, we not only exploit user action history for ranking of match candidates 
but also molding the result set. For large schemas, the approach of selecting each 
element and generating candidates does not seem feasible due to user effort and time 
involved. In this respect, our approach is heuristic and is much more applicable. 

In [18] the user is involved by presenting the best guess results to the user which 
user can tailor according to their needs. More specifically, user can reject the 
alignments they found to be incorrect. The rejected alignments are then excluded from 
the result set in next iteration. In an evaluation, they demonstrated iterative 
improvement by executing five iterations. For large ontologies or schemas, it appears 
that their approach is going to take significant number of iterations before final result 
set can be achieved. Moreover, their approach does not allow for undoing of previous 
user actions. This is a significant drawback, because if user did accidently reject a 
correct alignment, the process has to be started all over again. Our objective of 
improving precision of the result set during iterations is similar, but it is more 
interactive in a sense that we allow the user to approve, disapprove, and correct the 
correspondences. Major learning occurs from approval action as it helps reducing the 
size of match candidates significantly, not only the approved correspondence is 
hidden but also any sub-correspondences and conflicting correspondences also get 
hidden. We also learn if the user revokes an incorrect decision. 

Finally, the two approaches described above perform pairwise matching.  Though 
some approaches are proposed for holistic schema matching, they are of single-shot 
type. From the user interaction perspective, they follow a different matching process. 
The learning occurs through statistical methods without user involvement. This 
usually limits the success to specific domains, and especially to the domains with 
limited number of concepts. In our case learning occurs through user involvement 
which makes it much more generic. It can be expected that our approach performs 
worse than other holistic approaches in domains where these approaches are expert. 

5  Conclusions and Future Work 

In this paper, we have described a user-guided iterative approach for large-scale multi 
schema integration. The approach learns from a user feedback and produces matching 
proposals with an increased accuracy during iterations. The role of a user is to judge 
the proposals presented and guide the iterative matching process until a unified data 
model is accomplished. The matching problem is abstracted to find the closed 
frequent itemsets, using CFIM implementation. The output of CFIM is redundancy 



groups or proposals. Among these proposals, some are more interesting than others. 
There are three components which make a proposal interesting: the number of 
transactions, the number of common elements and ratio of common elements to 
average number of elements. Thus potentially more interesting proposals are ranked 
higher than others. In ranking of proposals, preference is given to elements lower in 
the hierarchy and they are ranked higher. This prevents a user from overwhelming 
with lot of correspondences to compare. Moreover, as additional information becomes 
available user becomes more confident in decisions regarding the higher level 
correspondences. 

We conducted a comprehensive evaluation of our work using large e-business 
schemas. In the evaluation, we have proved our hypothesis that the iterative approach 
leverages the growing confidence from the user feedback loop to better rank the 
proposals with each iteration. At present we cannot guarantee overall higher level of 
precision, but one thing where we are confident is that the proposals get more precise 
than they were in the past, irrespective of the number and size of schemas. 

In future, our work can be improved in different ways. Specifically, fragment-
based matching as proposed by [8] could be considered in order to solve the problem 
of execution time that may arise in case of greater number of schemas. Furthermore, 
more and larger schemas demand an advanced graphical user interface. Interactive 
techniques proposed by [19] for matching tasks are needed to be taken into account. 
Finally, a community driven approach where a group of users together (governance 
board)  match schemas is also a possibility  [20, 21]. 
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