
Grounded System Dynamics: A Procedure for
Underpinning System Dynamics with a Domain

Modeling Method

F.P (Fiona) Tulinayo1, P. (Patrick) van Bommel1, and H.A (Erik) Proper1,2

1 Institute of Computing and Information Sciences, Radboud University Nijmegen
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands, EU.

2 Public Research Centre Henri Tudor, 29 avenue John F. Kennedy
Luxembourg-Kirchberg, Luxembourg

F.Tulinayo@science.ru.nl, pvb@cs.ru.nl, e.proper@acm.org

Abstract. In this paper, we present a procedure Grounded System Dy-
namics (GSD) which we use as a guide to underpin a System Dynamics
(SD) model with a domain modeling method called Object-Role Mod-
eling (ORM). GSD is a combination of two existing methods (SD with
ORM). By combining these two methods we generate synergy effects by
using already existing modeling methods and by so doing we overcome
some of the weaknesses of SD model building. Secondly, transforma-
tion of information from an ORM model of dynamic domains into an
SD model is achieved. To apply the GSD procedure to a real-life case
(Mukono Health Center (MHC), we use SD-ORM mapped constructs.
As a result from the GSD procedure application, is an SD model to
which we define quantitative foundations that result into simulations.
Our approach(GSD) has been validated using case studies one of which
is described in this paper. From this conclusions are drawn.

Keywords: System Dynamics, Object-Role Modeling

1 Introduction

System Dynamics as a method was developed by Jay Forrester and dates as
far back as 1961. A review and history can be found in [8]. It combines both
quantitative and qualitative aspects [19] to explore complex models. In SD qual-
itative models, the structural features of the process are made explicit through
casual loop diagrams [15]. In this paper however, we draw our attention to the
quantitative aspect where stock and flow diagrams [7] are created and sets of
equations input into the stock and flow diagram resulting into simulations. These
simulations allow a modeler to provide quantitative estimates of system effects
[15]. There have been earlier comparative studies between SD and other meth-
ods [21,6,2,4,3]. In these studies, a number of views on how SD relates or can
work with these methods are given. In the context of enterprise modeling SD is
typically used in process analysis design and optimization.

2 Tulinayo, Bommel, and Proper

Consideration of many variables and complication in untangling the ques-
tion of causation makes complex [28] system dynamics models hard to concep-
tualize and describe. Richardson [20] particularly states that; “.....of the three
tasks-model conceptualization, model formation and model understanding. Un-
questionably the two most difficult are the two that are least formal- conceptu-
alization and understanding. The future of the field needs software support for
understanding the links between stock and flow/ feedback structure and dynamics
behavior.” From this statement we note that, model conceptualization is one of
the main issues in SD modeling. This issue is further emphasized in [16,20,13,18].
Sharif [22] also states that; “....there is a strong case for starting to apply sys-
tems dynamics methods more openly in the BPM and MIS research fields, as I
feel the tools and techniques available are vastly under-rated in terms of their
applicability and capability to provide novel representations of real-world situa-
tions.....”. In Sharif’s statement, he justifies why SD should be combined with
other methods. In this research therefore, we contribute to addressing the is-
sue of SD model conceptualization by adding domain modeling as a support in
the creation of SD models. This is because domain modeling identifies relation-
ships among all entities within the scope of the problem domain and provides a
structural view of the domain hence, improving model conceptualization. As an
example of a domain modeling language, we use ORM in particular because of
its conceptual focus and roots in verbalization. Underpinning of SD with ORM
will not only improve SD model conceptualization but also make input data
reusable and transferable (from one system to another or from one organization
to another).

ORM is a fact-oriented approach for modeling information and querying the
information content of a business domain at a conceptual level [11]. ORM is
comparable to Entity Relationship (ER) Diagrams in use [5]. It has a graphical
constraint notation that is claimed to be far more expressive for data modeling
purposes than, for example, Unified Modeling Language (UML) class diagrams
or industrial Entity Relationships (ER) diagrams [11]. ORM takes a static per-
spective on the domain in the sense that it aims to capture the fact types and
entity types that play a role in the (dynamic) domain, while SD takes a dy-
namic perspective in which the dynamic behavior of the domain is captured.
When modeling ORM only, the information for the dynamic perspective (the
richness of an SD model in this regard) is missing.

In figure 1 we present a logical framework where we show the strengths and
gaps in both ORM and SD. We also show why grounding SD with ORM is
necessary and of what impact it is to the domain of enterprise modeling and
strategic decision making.

To underpin SD with a domain modeling method, we use the design science
approach because it focuses on first clarifying the goals of the artifacts (which in
this case is GSD) and then on building and carefully evaluating the utility of the
artifacts, and to a lesser degree, their reliability and validity [12]. Design science
approach further places additional emphasis on the iterative construction and
evaluation of artifacts which in this case are; the GSD procedure and its resulting

Grounded System Dynamics 3

SD Takes a dynamic
perspective on the

domain

ORM cannot model the
reactive behavior of a
system because it takes
a static perspective on a

domain

Object‐Role Modeling

Strengths

 It can be linked to
database

 Identifies
relationships among

all entities within

the scope of a

domain

 Provides a structural
view of the domain

 Focuses on deriving
models from natural

expression

System Dynamics

Strengths

 Produces simulations
that are rigorously used
to deduce the
behavioral
consequences over
time

Gaps

 Lacks instruments for
discovering and
expressing precise
language based
concepts in domains.

 Poor model
conceptualization

 Models are complex
and untangling the
question of causation
is hard

 It does not explicitly
represent human
decision making
process

Grounded System

Dynamics

 Enables reuse of input
data

 Better System
Dynamics model
conceptualization

 Possible reuse of
input data and
transferability

 Clear naming of SD
variables

 System Dynamics
models linked to the
database

 A basis for
development of a tool
that will aid in
understanding model
behavior

In strategic decision making there is lack of a
mechanism to explicitly represent human

decision making processes, whereas enterprise
modeling lacks a mechanism to analyze and

optimize processes

Strategic Decision Making and
Enterprise Modeling

Offers a basis

for

underpinning

a dynamic

method (SD)

with a static

method

(ORM) on a

domain

Has a conceptual

focus and roots

in verbalization

Powerful in

behavior

analysis and

policy design

Fig. 1. Research problem and underlying principles

model(s). Design science approach also aims to ensure that the artifact (GSD
procedure) is well grounded in both theory and empirical evidence to establish
its validity, reliability, and practical utility. In this study we have so far identified
the extent to which features of ORM static models can be transformed into SD
models [26]; mapped ORM and SD concepts [27] and presented an investigation
on the update behavior of the two methods [25].

The aim of this paper therefore, is to use the mapped SD-ORM concepts
presented in [27] as a basis for this procedure. This procedure is what we follow
while underpinning SD model(s) with a domain modeling method. We also ap-
ply this procedure (GSD) to a case where we input quantifications that lead to
simulation results. These simulation results provide information about the prob-

4 Tulinayo, Bommel, and Proper

lem domain, allow continuous testing of assumptions and sensitivity analysis of
parameters [17].

The rest of the paper proceeds as follows; In sections 2 and 3 respectively
brief introductions to SD and ORM are given. In section 4, a GSD outline is given
and applied with the help of a case. In subsection 4.3, snapshots of some of the
simulation results are presented and discussed. Finally, in section 5 conclusions
plus hints for further work are given.

2 Brief introduction to SD Stock and Flow Diagrams

The system dynamics stock and flow diagram3 elements include: stocks, flows,
feedback loops (connectors or information links) and converters. In fig 2 we have
stock ‘Admitted patients’ depicted as a box and defined as a container (reser-
voir) containing quantities describing the state of the system. The value of a
stock changes overtime [3] through flows. Flows can be imagined as pipelines
with a valve that controls the rate of accumulation to and from the stocks. They
are represented as double solid lines with a direction arrow. The arrow indicates
the direction of flow into or from a stock see ‘patient ’ in fig 2. Flows are in-
fluenced by stocks and converters. Converters either represent fixed quantities
(constants) or variable quantities (Auxiliaries). Auxiliary variables are informa-
tional concepts having an independent meaning that contain information inform
of equations or values that can be applied to stocks, flows, and other convert-
ers in the model [14]. An example of an auxiliary in fig 2 is ‘Patient arrival ’.
Constants are state variables which do not change [3] for example PatientName.
On the STELLA SD software which we are using, both auxiliary variables and

Admitted

Patients

Patient

Patient name Patient arriv al

Fig. 2. SD basic building blocks

constants are depicted as small circles. Information from auxiliaries, constants
and flows, is shared through connectors (information links). Two types of con-
nectors exist, the action connectors (depicted as solid wires) and information
connectors (depicted as broken wires) [24] see connectors from ‘Patient arrival
to patient ’ and from ‘Patient to patient Name’ respectively. These connectors
3 For SD terminologies used in this paper we use [23] and all SD models are drawn using

an SD STELLA 9.0.2 software. This is because STELLA is easy to use and offers a
practical way to dynamically visualize and communicate how complex systems and
ideas really work.

Grounded System Dynamics 5

are immaterial and link inputs to decision function of a rate. The underpinned
meaning to these connectors is that information about the value at the start of
the connector influences information at the arrow tip of that connector. Connec-
tors can feed information into or out of flows and converters but only extract
information out of stocks [14]. Lastly, we have the sectors which are subsystems
or subcomponents within a system. They hold/handle all decisions, stocks, in-
formation about a particular element or area and contain different information
that is used in an information system. Sectors have not been represented in fig
2, but can be seen in fig 9.

3 Brief introduction to ORM

ORM basic building blocks are entity types (object types), value types and roles
[10]4. An object type is a collection of objects with similar properties, in the set-
theoretical sense. Objects are things of interest, they are either entity or value
types. Object types are designated by solid-line named ellipses see; Patient and
Labor Ward in fig 3. Object types have reference modes, see fig 3, where object
type Patient has reference mode id. This reference mode indicates how a single
value relates to that object type. Instances of value types are constants with a
universally understood denotation, and hence require no reference scheme. They
are identified solely by their values, their state never changes and are designated
by dotted ellipse see Patient Name. The semantic connections between object
types are depicted as combinations of boxes and are called fact types. Each box
represents a role and is connected to an object type or a value type. The roles
denote the way entity types participate in that fact type. The number of roles

Fig. 3. ORM basic building blocks

in a fact type is referred to as fact type arity and the semantics of the fact type
are put in a fact predicate. A predicate is basically a sentence with object holes
in it, one for each role as depicted in fig 3 (see; arrives at, is for, is admitted)
etc. These predicate names are written beside each role and are read from left
to right, or top to bottom. It is through predicates that entity types relate to
each other. Note that the constraints in fig 3 are not discussed because they are
outside the scope of this paper. But these and more can be found in [10].

4 For ORM terminologies in this paper, we use [10] and to model ORM models we use
Microsoft Visual Modeler 2005.

6 Tulinayo, Bommel, and Proper

4 Grounded System Dynamics (GSD)

After mapping the SD-ORM constructs [27], we now present a procedure which
we are to follow while underpinning SD models with ORM. To achieve this, we
conducted multiple discussions, read various scholarly works and in a step by
step manner, we were able to come up with this procedure which we refer to
as Grounded System Dynamics (GSD). GSD is a combination of two existing
methods (SD with ORM). By combining these two methods we generate synergy
effects by using already existing modeling methods and by so doing we overcome
some of the weaknesses of SD model building. Secondly, transformation of in-
formation (data) from an ORM model of dynamic domains into an SD model is
achieved. Underpinning of SD with ORM is done by following five steps which
we outline is subsection 4.1. In these steps we map different SD constructs to
ORM constructs and explain how they relate to one another. For a clear guide
and explanation, we apply this outline to a case study of Mukono Health Center
(MCH) in subsection 4.2.

4.1 GSD procedure outline

In this subsection we describe the steps followed in transforming ORM model
concepts into SD model concepts.

1. Identify all possible stocks.
2. Identify all relevant flows.
3. Identify possible converters.
4. Identify possible connectors (information links).
5. Create sectors.

4.2 Case Study

At MHC we looked at the process pregnant women go through on their due
dates. MHC receives an average of 250 deliveries per month. It has a total of
sixteen maternal employees that is; two doctors who are available on phone in
case of any emergency, nine nurses and five volunteers. There are eleven beds
in total, available for admissions. Most of these beds are given to patients who
have caesarian birth because they require a lot of attention and tend to stay
longer at the health center.
The process: A patient comes to the labor ward with her antenatal card from
the antenatal clinic. She queues up. Her waiting time depends on a number of
factors including; her arrival time, the number of patients around and number
of nurses on duty. When her turn comes, the nurse on duty takes her history
and then examines her. This examination takes approximately 30 minutes. The
nurse also establishes the patient’s labor stage. If the patient is 4cm dilated,
she is admitted to the general ward. She only returns for examination if there
is any complication or after 4 hours. During this time, after every 30 minutes
monitoring of the labor progress, status of the mother and cervical dilation is

Grounded System Dynamics 7

done. When the patient is 8cm dilate, she is taken to the delivery room which
has only two beds. While there, the nurse monitors descending of the head 2
hourly and the sticker. For normal progress the liquor is clear. When the patient
has 10 cm dilate, she is ready to give birth. After delivery, she is taken back to
the general labor ward. Normal delivery patients stay at the labor ward for a
maximum period of 24 hours and patients who have had caesarian birth stay for
a period of 4-7 days. On discharge, the baby is taken for immunization. From
this given information, we now construct an ORM model shown in fig 4.

Fig. 4. MHC Labor suite developed ORM model

We use the developed ORM model in fig 4 to apply the GSD outlined pro-
cedure in subsection 4.1.

[Step 1:] Identify all possible stocks
In order for us to generate stocks, we identify an ORM element that has similar
characteristics to a system dynamics stock; that is it holds items, accumulates
and can be measured. The element found to have these characteristics is a role.
But not all roles are mapped to a system dynamics stock. It’s only the unary fact
types that are mapped to a SD Stock. This is because they relate to one object
type and contain objects from that particular object type. The total number of
unary fact types therefore is equal to the total number of stocks in an SD model.

The identified unary fact types from fig 4 are; newborn baby, medical person-
nel, admitted patient, Patient History and Labor ward and are depicted as stocks
in fig 5. Note that all unary fact types have words like ‘is a’, ‘has’ and ‘is in’ at
the beginning of each unary fact type predicate but when represented as stocks
these prepositions are removed. This enables us make the stock name clear. Sec-
ondly, for some stocks for example; newborn and admitted we concatenate (join
two character strings end-to-end) the unary fact type name with the object type
name they relate with to get the stock name newborn baby and admitted patient
respectively.

This makes identification of the object type connecting to the unary fact
type (stock) plus its quantification easy. Note that in fig 4, each object type
has a unary fact type. This may not be the case with all ORM models but we

8 Tulinayo, Bommel, and Proper

newborn

baby
admitted

patient

medical

personnel

Patient

History
Labor

Ward

Fig. 5. Identified stocks from MHC Labor suite ORM model

advise the modeler to have a unary fact type attached to each object type so
that objects in each object type have a store.

[Step 2:] Identify all relevant flows
The element identified to be similar to an SD flow in ORM is an object type. This
is because it connects different roles. That is, for each role connection, objects
held by that object type play a unique role. Flows in SD connect to different
stocks and converters through connectors.

newborn

baby

admitted

patient
medical

personnel

Patient

History
Antenatal

Card

attendantpatient

baby

Labor

Ward
empty bed

Fig. 6. Flows from MHC labor suite ORM model are connected to stocks

The identified flows from fig 4 are ‘Empty bed ’, ‘Patient ’, ‘Attendant ’, ‘An-
tenatal card ’ and ‘Baby ’ and are represented in fig 6.

[Step 3:] Identify possible converters
Converters include constants and auxiliary variables. Auxiliary variables from
a conceptual point of view are informational concepts having an independent
meaning. They are similar to fact types that have more than one role.5 This is
because they combine two or more variables consistently that cause change to
the recipient, have an independent meaning and relate to more than one element.
The roles contained by these fact types have predicate names.

We use these predicate names to name the auxiliary variables. This is done
by concatenating the object type name with the fact type name. For example;
roles ‘examines’ and ‘is examined by ’ make a fact type which we refer to as
‘examination’, this fact type name is concatenated to object type name patient
giving us a flow name, ‘patient examination’ see fig 7. We also include value types
which we map to constants in SD. This is because a value type is identified solely
by its value and it never changes its state (i.e. it is a constant). On the other
hand, constants in SD are state variables which do not or change slowly [3] that
they could be assumed constant for the time scope of the model. Note that the

5 In this paper we only consider binary and ternary fact type to be similar to auxiliary
variables but all fact types with more than one role are referred to as auxiliary
variables

Grounded System Dynamics 9

newborn

baby

admitted

patient

medical

personnel

Patient

History

Patient

arriv al

Antenatal Card

Attendant

Patient

monitoring

Antenatal

card recordingPatient

Baby

Labor

Ward

Baby

Immunization

Bed

allocation

Patient

examination

Patient

discharge

Examination

duration

Patient

waiting

Occupied

bed

Empty bed

Patient

deliv ery

Fig. 7. Auxiliary variables identified from binary and ternary fact types

roles played by these value types are not included in the model as auxiliary
because they are assumed constant.

[Step 4:] Identify possible connectors (information links).
After Identifying the converters, we now introduce the connectors. connectors
are immaterial and connect inputs of a decision function to a rate. They are
similar to predicators in ORM since they both act as connectors of two elements
which are; object types to roles in ORM and, converters to flows and stocks in
SD.

admitted

patient

patient

medical

personnel
attendant

Patient

monitoring

Antenatal

card recording

Labor

ward
empty

bed

Bed

allocation

Occupied

bed

Patient

waiting

Patient

discharge

newborn

baby
baby

Patient

deliv ery

Baby

Immunization

Patient

examination
Examination

duration

Patient

History

Patient

arriv al

Antenatal

card

Fig. 8. Information Links introduced in SD MHC Labor suite SD model

With the help of ORM verbalization, the direction of the connectors is de-
termined, that is from an object type to a role. Using some of the verbalization
in fig 4 as examples, we show how these verbalizations help in identifying the
direction of some connectors in fig 8. For example:

– We have verbalization “Patient delivers baby”. In this verbalization, we have
two object types which are mapped to SD flows. Here our focus is on the
connector connecting auxiliary ‘Patient delivery ’ to flow ‘baby ’. The direction
of the arrow is determined by the way a modeler reads from role ‘delivers’

10 Tulinayo, Bommel, and Proper

to object type (flow) ‘baby’. Not forgetting that an auxiliary is made up of
more than one role. Therefore, this implies that an auxiliary may have more
than one connector either connecting to or from it.

– As a second example let us look at verbalization “Antenatal card is recorded
by Attendant”. In this verbalization we have object types (flows) ‘Antenatal
card ’ and ‘Attendant ’. In fig 8 we see that flow ‘Antenatal card ’ has a con-
nector directional arrow facing auxiliary “Antenatal card recording”. This is
because the verbalization is read from object type ‘Antenatal card ’ to role ‘is
recorded by’. We also have another connector coming from flow ‘Attendant ’
to “Antenatal card recording” which comes from verbalization ‘Attendant ’
records ‘Antenatal card.

We note here that, the verbalization alone cannot give us all the necessary
connectors (it can only give us links from one direction but not feedback). We
therefore advise the modeler(s) to further identify the feedback.

[Step 5:] Create sectors
In [9,1] it is stated that ORM conceptual object types act as semantic ‘glue’. This
means that an ORM model is a network of allied object types and relationship
types [9]. Sectors on the other hand are SD elements and are subcomponents
within a system that handle all information about a particular element. If they
are subcomponents that means they contain different elements and when put
(‘glued’) together they make a complete system. Therefore, object types plus
their ‘glued’ roles are similar to SD sectors because when both are ‘glued’ or put
together they make up a complete model (either ORM or SD) and contain more
than one element. The total number of sectors therefore, is equal to the total
number of object types in fig 4. In each sector we have an object type plus roles
connected to it. The sectors identified from fig 4 are as follows:

Sector Empty bed which comprises of object type Empty bed plus roles; ‘Is
occupied by ’, ‘is allocated to’ and ‘is in labor ward ’.

Sector Attendant which comprises of object type Attendant plus roles; ‘Is a
medical personnel’, ‘monitors’, ‘records’, ‘examines’, ‘discharges’, ‘is waited for
by’ and ‘immunizes’.

Sector Patient which comprises of object type Patient plus roles; ‘is examined
by ’, ‘is discharged by ’, ‘is admitted ’, ‘is monitored by ’, ‘occupies’, ‘is allocated ’,
‘is arrives’, ‘has’, ‘delivers’, and ‘waits for ’.

Sector Baby which comprises of object type Baby plus roles; ‘is a newborn’,
‘is immunized by ’, and ‘is delivered by ’.

Sector Antenatal Card which comprises of object type Antenatal Card plus
roles; ‘has patient History ’, ‘is recorded by ’, and ‘is for ’.

Here we note that, fact types that make an auxiliary variable have more than
one role. Therefore, auxiliary variables relating to more than one flow are put in
one of the sectors with the flow it connects too.

In conclusion, having applied the GSD procedure to a case, the modelers
achieved two main things: One, better conceptualization of the underlying SD
model concepts. And two, an SD model that is underpinned with an ontology
domain modeling method.

Grounded System Dynamics 11

Admitted

patient

Patient

Medical

personnel

Attendant

Patient

monitoring

Antenatal

card recording

Labor

ward
Empty

bed

Bed

allocation

Occupied

bed

Patient

waiting

Patient

discharge

Newborn

baby
Baby

Patient

deliv ery
Baby

Immunization

Patient

examination

Examination

duration

Patient

History

Patient

arriv al

Antenatal

Card

Sect…l card

Sector Patient

Sector Attendant

Sector Empty bed

Se…Baby

Fig. 9. Sectors identified from MHC Labor suite ORM model

4.3 Simulation Results

In this section, we use figs 10 a) and 10 b) to show some of the resulting SD model
simulations. To obtain these simulation results, we started by stating the initial
values for all stocks. Then defined input quantities and formulas for all auxiliary
variables starting with patient arrival which is an input to flow patient. Some
auxiliary inputs for example Patient waiting duration are captured with a time
delay. This delay function returns a delayed value input using a fixed time lag.
For example in fig 9, we have variable Patient waiting duration where its input
parameter is equal to DELAY [Attendant, 30 minutes]. This input parameter
causes variable patient waiting lag behind variable attendants by 30 minutes.
This means that for the first 30 minutes of the simulation, the delay returns the
initial value of Patient since no initial value is specified.

a) b)

Fig. 10. Some of the simulation results of fig 9

For variables patient arrival and patient discharge in figure 10 a), we have
oscillations. This is so because the quantitative measure to these variables has
no defined limit. In fig 10 b), we see that over a period of time the gap between
variables medical personnel and admitted patients keep on increasing. Secondly,
in fig 10 b), we see that delivering patients are consistently increasing over a

12 Tulinayo, Bommel, and Proper

period of time and at the 51st week they rise above the newborn babies. The
increase of delivering patients above new born babies at week 51 is an indicator
that these simulation results are not completely reliable. This may be due to
lack of outflows which drains the stocks.

From the input SD simulation algorithms whose choice depended on vari-
ables involved in the MHC labor suite SD/ORM model. In conclusion, the final
simulation results in fig 9 do not give conclusive results. This is because some of
the system dynamics construct e.g. outflows are not represented in the model.
We believe that with more studies and application of the GSD procedure to
different case domains, better simulation results will be achieved.

5 Conclusions and further work

This study is a work in progress and as such it is not possible to draw any firm
conclusions on the end results. At the current stage it is possible to say that the
GSD procedure is a good guide in transforming ORM models into SD models.
This procedure gives the modeler better conceptualization of different variables
plus reasons as to why a particular SD element is mapped to that ORM element.

Secondly, much as we have followed a GSD procedure to transform ORM
model concepts into SD model concepts, we note here that, not all ORM and
SD elements have been represented. For example; in SD we have elements like
Conveyors, queues, decision process diamonds and Biflows missing and in ORM
we have all constraints missing. Therefore, for further research we recommend
that an investigation on how these missing elements can be used (mapped) to
improve the GSD transformed SD model.

In step 2 of the GSD procedure, we realize that outflows are not represented
in fig 6, yet in a system dynamics stock and flow model, a stock has both an
inflow and outflow to drain the stock. Stocks accumulation is dependent on their
flows and are mathematically calculated as the integration of net inflows:

Stock(t)
∫ t

0

[Inflow(s)−Outflow(s)]ds + Stock(t0) (1)

with Inflows and Outflows denoting the values of the outflow at anytime s
between the initial time t0 and the present time t [23]. The net flow determines
the rate of change of any stock:

d(Stock)/dt = Inflow(t)−Outflow(t) (2)

Therefore, we suggest that some auxiliary variables be referred to as out flows for
example; Patient discharge can be used as an outflow from admitted patient and
a new variable like death could be introduced in the model to act as an outflow
from newborn baby. That way we have both inflows and outflows represented in
the model.

So far, the GSD procedure has been applied to one case already and we will
continue to apply it to other case studies. We will further refine the procedure and

Grounded System Dynamics 13

also devote more attention to coming up with a generic meta-model. Finally, a
comparison of the SD model development process with the GSD procedure using
various case studies will be done.

References

1. A. Bloesch and T.A. Halpin. Conceptual queries using ConQuer-II. In D.R. Embley
and R. Goldstein, editors, Proceedings of 16th Int. Conf. on conceptual modeling,
volume 1331, pages 113–126. Springer LNCS, Los Angeles, November 1997.

2. A. Borshchev and A. Filippov. From System Dynamics and Discrete Event to
Practical Agent Based Modeling: Reasons, Techniques, Tools. 22nd International
Conference of the System Dynamics Society, 2004.

3. L. Burmester and G. Matthias. Combining System Dynamics and Multidimen-
sional Modelling - A Metamodel Based Approach. In Proceedings of the 14th

Americas Conference on Information Systems. Toronto, ON, Canada, August 2008.

4. L. C. Chang and Y. M. Tu. Attempt to Integrate System Dynamics and UML in
Business Process Modeling . In J.D. Sterman, N.P. Repenning, R.S. Langer, J.I.
Rowe, and J.M. Yanni, editors, Proceedings of the 23rd International Conference of
the System Dynamics Society. System Dynamics Society, Boston, USA, July 2005.

5. P.P. Chen. The Entity-Relationship Model-Towards a Unified View Data. ACM
Transactions of database systems, 1(1):9–36, March 1976.

6. J. Duggan. A Comparison of Petri Net and System Dynamics Approaches for Mod-
elling Dynamic Feedback Systems. 24th International Conference of the Systems
Dynamics Society, Nijmegen, The Netherlands, July 2006.

7. M. Elf, M. Putilova, L. von Koch, and K. Ohrn. Using System Dynamics for
Collaborative Design: a Case Study. BMC Health Services Research, 7:123, August
2007.

8. J.W. Forrester. Industrial Dynamics. MIT Press, 1961.

9. T.A. Halpin and A. Bloesch. Data modeling in UML and ORM: A comparison.
Journal of Database Management, 10(4):4–13, 1999.

10. T.A. Halpin and T. Morgan. Information Modeling and Relational Databases.
Morgan Kaufmann Publishers, 2nd edition, 2008.

11. T.A. Halpin and G. Wagner. Modeling Reactive Behavior in ORM. In Conceptual
Modeling, Proc. of the 22nd ER2003 Conference, volume 2813, pages 567–569.
Springer LNCS, Chicago, October 2003.

12. A.R. Hevner, S.T. March, J. Park, and S. Ram. Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105, March 2004.

13. D. C. Lane. The Emergence and use of diagramming in system dynamics: a critical
account. System Research and Behavioral Science, 43:1135–1150, 2008.

14. J.D. Leaver and C.P. Unsworth. System Dynamics Modeling of Spring Behavior
in the Orakeikorako Geothermal Field. Elsevier Ltd, 36(2):101–114, April 2007.

15. N. Melao and M. Pidd. A Conceptual Framework for Understanding Business
Processes and Business Process Modelling. Information Systems Journal, 10:105
– 129, 2000.

16. J.D.W. Morecroft. A Critical Review of Diagramming Tools for Conceptualizing
Feedback System Models. Dynamica, 8(1):20–29, 1982.

17. J.D.W. Morecroft. System Dynamics and Microworlds for Policymakers. European
Journal of Operations Research, 35(3):301–320, June 1988.

14 Tulinayo, Bommel, and Proper

18. G.N. Papageorgiou and A. Hadjis. New Planning Methodologies in Strategic Man-
agement; An Inter-Paradigm System Dynamics Approach. In B. C. Dangerfield,
editor, Proceedings of the 26th International Conference of the System Dynamics
Society. System Dynamics Society, Athens, Greece, July 2008.

19. M. Pidd. Tools for Thinking: Modelling in Management Science. John Wiley, The
Atrium, South Gate, Chichester, 2nd edition, 2003.

20. G. Richardson. Problems for the future of system dynamics. System Dynamics
Review, 12:141–157, 1996.

21. J. Scholl. Agent-based and System Dynamics Modeling: A call for cross study and
joint research. In Proceedings of the 34th Annual Hawaii International Conference
on System Sciences (HICS), volume 3, pages 1–10. Maui, Hawaii, January 2001.

22. A. M. Sharif. Industrial Viewpoint can systems dynamics be effective in modeling
dynamic business systems? Business Process Management Journal, 11(3):612–615,
2005.

23. J. D. Sterman. Business Dynamics- Systems Thinking and Modeling for a Complex
World. McGraw Hill Higher Education, edition, 2000.

24. K.S. Tan, M.D. Ahmed, and D. Sundaram. Sustainable Enterprise Modelling and
Simulation in a Warehouse Context. In Business Process Management Journal,
volume 16, pages 871–886. Emerald Group Publishing Limited, 2010.

25. F.P. Tulinayo, A. Groessler, S.J.B.A. Hoppenbrouwers, and P. van Bommel. Com-
plementing System Dynamics with Object-Role Modeling. In A. Ford, D.N Ford,
and E.G Anderson, editors, Proceedings of the 27th International Conference of the
System Dynamics Society. System Dynamics Society, Albuquerque, New Mexico,
USA, July 2009.

26. F.P. Tulinayo, S.J.B.A. Hoppenbrouwers, and H.A. Proper. Integrating System
Dynamics with Object-Role Modeling. In Janis Stirna and Anne Persson, editors,
The Practice of Enterprise Modeling, volume 15, pages 77–85. Springer Berlin Hei-
delberg, Stockholm, Sweden, November 2008.

27. F.P. Tulinayo, S.J.B.A. Hoppenbrouwers, P. van Bommel, and H.A. Proper. In-
tegrating System Dynamics with Object-Role Modeling and Petri Nets. In
Werner Esswein Jan Mendling, Stefanie Rinderle-Ma, editor, Enterprise Modelling
and information systems Architectures, pages 41–54. GI-Edition, IFIP, Ulm, Ger-
many, September 2009.

28. Z. Zhang, L. Jai, and Y. Chai. A New Kind Methodology for Controlling Complex
Systems. International Journal of Engineering Applied Sciences, 6(2), 2010.

	Grounded System Dynamics: A Procedure for Underpinning System Dynamics with a Domain Modeling Method
	F.P (Fiona) Tulinayo cl@@auth, P. (Patrick) van Bommel cl@@auth, H.A (Erik) Proper
	Introduction
	Brief introduction to SD Stock and Flow Diagrams
	Brief introduction to ORM
	Grounded System Dynamics (GSD)
	GSD procedure outline
	Case Study
	Simulation Results

	Conclusions and further work

