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Abstract Model order reduction is a mathematical technique to transform nonlin-
ear dynamical models into smaller ones, that are easier to analyze. In this paper we
demonstrate how model order reduction can be applied to nonlinear electronic cir-
cuits. First we give an introduction to this important topic. For linear time-invariant
systems there exist already some well-known techniques, like Truncated Balanced
Realization. Afterwards we deal with some typical problems for model order re-
duction of electronic circuits. Because electronic circuits are highly nonlinear, it is
impossible to use the methods for linear systems directly. Three reduction methods,
which are suitable for nonlinear differential algebraic equation systems are summa-
rized, the Trajectory piecewise Linear approach, Empirical Balanced Truncation,
and the Proper Orthogonal Decomposition. The last two methods have the Galerkin
projection in common. Because Galerkin projection does not decrease the evalua-
tion costs of a reduced model, some interpolation techniques are discussed (Missing
Point Estimation, and Adapted POD). Finally we show an application of model or-
der reduction to a nonlinear academic model of a diode chain.
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1 Introduction

The dynamics of electrical circuits at time t can be generally described by the non-
linear, first order, differential-algebraic equation (DAE) system of the form:{

d
dt [q(x)]+ j(x)+Bu = 0, x(0) = x0,

y = h(x),
(1)

where x : R → Rd represents the unknown vector of circuit variables in time t, the
vector-valued functions q, j : R×Rd → Rd represent the contributions of, respec-
tively, reactive elements (such as capacitors and inductors) and of nonreactive ele-
ments (such as resistors) and B ∈ Rd×m is the distribution matrix for the excitation
vector u : R → Rm that controls the output response y : R → Rp. We assume that
d >> m, p. There are several established methods, such as sparse-tableau, modified
nodal analysis, etc. which generate the system (1) from the netlist description of
electrical circuit. The dimension d of the unknown vector x is of the order of the
number of elements in the circuit, which means that it can be extremely large, as
today’s VLSI (Very Large Scale Integrated) circuits have hundreds of millions of
elements.

Mathematical model order reduction (MOR) aims to replace the original model
(1) by a system of much smaller dimension, which can be solved by suitable DAE
solvers within acceptable time. Because we are only interested in the relationship
between u and y in the time-domain, the model can be replaced by a low-order
model for z : R→ Rr, like{

d
dt [q̃(z)]+ j̃(z)+ B̃u = 0, z(0) = z0,

y = h̃(z).
(2)

At present, however, only linear MOR techniques are well-enough developed
and properly understood to be employed [1]. To that end, we either linearize the
system (1) or decouple it into nonlinear and linear subcircuits (interconnect macro-
modeling of parasitic subcircuits [9]). For dynamical systems the observability and
controllability functions [1] are defined by

Lc(x0) = min{1
2

∫ 0

−∞

‖u(t)‖2dt : u ∈ L2(−∞,0), x(−∞) = 0, x(0) = x0}, (3)

Lo(x0) =
1
2

∫
∞

0
‖y(t)‖2dt, ∀τ∈[0,∞)u(τ) = 0, x(0) = x0. (4)

They represent the minimum amount of input energy to reach state x0 and the
output energy that comes free when starting at state x0 (compare kinetic and poten-
tial energy in mechanical systems). The system is in balanced form at basis V if the
(energy) ratio Lo(Vz)

Lc(Vz)
is balanced. For linear time-invariant (LTI) systems as
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ẋ = Ax+Bu, x(0) = x0,

y = Cx,
(5)

we have Lc(x0) = 1
2 xT

0 W−1x0 and Lo(x0) = 1
2 xT

0 Mx0, where W,M ∈ Rd×d are the
controllability and observability Gramians, which are symmetric positive definite
matrices. They satisfy the well-known Lyapunov equations

AW+WAT =−BBT , (6)
AT M+MA =−CT C. (7)

An LTI system is balanced w.r.t. basis V if W = VΣVT and M = V−T
ΣV−1 are

simultaneously diagonalized, such that

Lo(x)
Lc(x)

=
xT Mx

xT W−1x
=

xT V−T
ΣV−1x

xT V−1
Σ−1V−T x

=
zT Σ 2z

zT z
. (8)

For redundant systems the singular values of Σ converge rapidly to zero. This
allows to obtain an accurate reduced model by Truncated Balanced Realization
(TBR). There also exist many other much cheaper MOR techniques for LTI systems,
like PRIMA, PVL, PMTBR, SPRIM, etc. For the special case A = AT ,B = CT it
follows from (6), (7) that W = M. Then it is possible to find an orthogonal V such
that W = M = VΣVT are balanced.

For nonlinear systems as (1) it is no longer possible to apply these linear MOR
techniques. Then we try to exploit the (piecewise) linear structure as well as possi-
ble. The reduced model can be constructed for a benchmark simulation, such that it
is accurate if the solution is in the neighborhood of the benchmark solution. In this
paper we present the application of some promising nonlinear reduction methods on
some electronic circuit models. These are the Trajectory Piecewise Linear approach
(TPWL) [13] and the Proper Orthogonal Decomposition (POD) [2] supported by
the Missing Point Estimation (MPE) technique [5]. This paper does not include an
error analysis but interested readers could look at [7, 10, 13].

2 Model Order Reduction for Subcircuits

A continuously increasing number of functions is combined in each single inte-
grated circuit. Therefore, complex devices are designed in a modular manner. Func-
tional units like e.g., decoders, mixers, and operational amplifiers, are developed by
different experts and stored in device libraries. Other circuit designers then choose
these models according to their requirements and instantiate them in higher level
circuits. To enable the combination of different blocks, each model is equipped with
its own number of junctions, or pins, by which a communication with the outside
world is possible.



6 Arie Verhoeven et al

In the first instance, numerical simulations are run to verify a design. Hence, it is
desirable to have, besides the exact circuit schematic, a suitable description of the
individual model that enables fast simulations, i.e., a library of reduced subcircuit
models.

In circuits that are developed to act as a subcircuit in higher hierarchies a subset
of its nodes are terminals. To these nodes both known inner elements as well as
elements whose nature may change with different instantiations of the model are
connected. Due to Kirchhoff’s current law, the sum of all currents flowing into each
single node is zero at each timepoint. In terms of the network equations (1) the
contribution of currents from inner elements at the terminals is covered by d

dt q(x)
and j(x), respectively. As the nature, i.e. reactive or nonreactive, of the adjacent
elements in the final circuit is not known, when the cell is designed, additional
unknowns jpin, i.e. pin currents, are introduced on the subcircuit level. We assume
that the cell under consideration has de nodes and dpin < de of them are terminals.
Then we can extend (1) to

d
dt

[q(x)]+ j(x)+Bu(t)+Apinjpin = 0, (9)

with jpin ∈Rdpin and where Apin ∈ {0,1}d×dpin with dpin columns containing exactly
one non-zero element is an incidence matrix describing the topological distribution
of the pin.

The pin currents jpin can be determined when there is an external circuitry avail-
able, completing the network equations. During the process of developing the single
cell a suitable test bench that emulates the typical environment the subcircuit will
operate in later has to be defined by the designer.

Communication amongst electrical devices is done in terms of time varying volt-
ages and currents. Regarding the cell (9) we can either inject the currents jpin and get
the voltage response at the terminals or supply the voltages at the pins and receive
the according currents. The state x comprises the node voltages and the currents
through inductors and voltage sources. With the pin currents’ incidence matrix Apin
we can access the node voltages at the terminals by

xpin = AT
pin ·x. (10)

Now, current injection means regarding jpin as inputs returning xpin as the output.
Therefore, we can write

0 =
d
dt

[q(x)]+ j(x)+(BApin )
(

u(t)
jpin(t)

)
, (11)

y = AT
pinx. (12)

Voltage injection on the other hand implies that the node voltages at the terminals
are prescribed and corresponding pin currents are additional unknowns, i.e., they are
added to the state vector:
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0 =
d
dt

(
q(x)

0

)
+

( j(x)+Apinjpin

−AT
pinx

)
+

(
B

I

)(
u(t)

xpin(t)

)
(13)

y = (0 I)
(

x
jpin

)
(14)

Finally, the common structure of both approaches is

0 =
d
dt

[q̄λ (x̄λ )]+ j̄λ (x̄λ )+( B̄λ Cλ )
(

uλ (t)
upin,λ

)
, (15a)

yλ = CT
λ

x̄λ ∈ Rdpin,λ , (15b)

where we introduce λ as an identifier for the cell, taken from some set I of in-
dices. Viewed from the outside, the cell (15) appears just in terms of its input-output
behavior, i.e., given upin,λ ∈ Rdpin,λ it returns yλ .

Now, we turn our attention to the circuitry a cell might be embedded in. We
assume that the state space of this circuit level has dimension d, i.e., it is described
by the states x ∈Rd . Furthermore, we let this level consist of r ∈N instantiations of
cells, i.e., I = {1,2, . . . ,r}, only. After due consideration we see that this electrical
system is described by

0 = ∑
λ∈I

AT
λ

yλ , with Aλ ∈ {0,1}dpin,λ×d (16)

where yλ is determined by (15) with upin,λ = Aλ x for all λ ∈I .
As all the instantiated cells appear just in terms of their input-output behavior, we

are free to reduce the order of single models (15) and use them again on level (16).
Furthermore, as subcircuits are regarded as special elements, we can also include
other elements on this level. Hence we can write in general form again

d
dt

[q(x̂)]+ j(x̂)+ B̂û = 0, with x̂ =
(
xT ,yT

1 , . . . ,yT
r
)T

, (17)

which can be seen as a subcircuit on another level again. In this way, a hierarchical
model order reduction would be possible.

3 Trajectory Piecewise Linear Model Order Reduction

The idea behind the Trajectory Piecewise Linear (TPWL) method is to linearize
(1) several times along a given trajectory x̃(t) (corresponding to some typical input
ũ(t)) that satisfies

d
dt

[q(x̃)]+ j(x̃)+Bũ = 0. (18)

Note that in [16] an alternative version of TPWL is described where the nonlin-
ear functions q(t,x), j(t,x) are linearized around the Linearization Tuples (ti, x̃(ti)).
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Below the nonlinear system itself is linearized around the complete trajectory x̃(t).
Furthermore we can use just Linearization Points (LPs) x̃(ti) instead of Lineariza-
tion Tuples because the system in (1) does not depend explicitly on t and behaves
linearly with respect to u. Define y(t) = x(t)− x̃(t) and ū(t) = u(t)− ũ(t). Lineariz-
ing the nonlinear equation (1) gives us

d
dt

[q(x̃)]+ j(x̃)+Bũ+
d
dt

[C(x̃)y]+G(x̃)y+Bū = 0. (19)

Because the trajectory x̃(t) satisfies (18) we obtain the following time-varying
linear system for y

d
dt

[C(x̃(t))y(t)]+G(x̃(t))y(t)+Bū(t) = 0. (20)

The main idea of TPWL is to approximate the time-varying Jacobian matrices
C(x̃(t)),G(x̃(t)) by a weighted combination of piecewise constant matrices. Then
a (finite) sequence of linearized local systems is used to create a globally reduced
subspace. The final TPWL model is constructed as a weighted sum of all locally
linearized reduced systems. The disadvantage of standard linearization methods is
that they only deliver good results in the neighborhood of the chosen linearization
point (LP) x(ti) (see Fig. 1). To overcome this, several linearized models are cre-
ated in TPWL. The LPs can be computed simultaneously with the numerical time-
integration of (18) for the trajectory x̃(t). This procedure can be described by the
following steps:

1. Set an absolute accuracy factor ε > 0, set i = 1.
2. Linearize the system around x̃i = x̃(ti). This implies:

Ciẏ+Giy+Bū(t) = 0, (21)

with Ci = ∂

∂xq(x̃)
∣∣∣x̃i

and Gi = ∂

∂xj(x̃)
∣∣∣x̃i

, where x̃i stays for x̃(ti). Save Ci, and

Gi.
3. Reduce the linearized system to dimension r� d by an appropriate linear MOR

method, like “Poor Man’s TBR” [12] or by Krylov-subspace methods [11]. This
implies

Cr
i ż+Gr

i z+Br
i ū(t) = 0, (22)

where Cr
i = VT

i CiV, Gr
i = VT

i GiVi, Br
i = VT

i B with Vi ∈ Rd×ri , z ∈ Rri and
y ≈ Viz. Save the local projection matrix Vi. To preserve sparsity it could be
preferable to diagonalize the reduced systems afterwards, although this destroys
the orthogonality.

4. Integrate the original system (1) until ||x̃(tk)−x̃i||
||x̃i||

> ε . Then we choose x̃(tk) as
(i+1)-th LP. Set i = i+1 and go to step 2.

Steps 2 to 4 are repeated until the end of the given trajectory. In this way, a finite
number of locally reduced subspaces with bases V1, ...,Vs are created correspond-
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Fig. 1 The Linearization Points of this TPWL model are derived from the trajectory A. Because
solutions B and C are in the neighborhood of the surrounding balls, they can be efficiently simu-
lated using a TPWL model. But this is not the case for the solutions D and E.

ing to the LPs {x̃(t1), . . . , x̃(ts)}. All locally reduced subspaces are merged into a
globally reduced subspace and each locally linearized system (21) is now projected
onto this global subspace. The procedure can be described by the following steps:

1. Define Ṽ = [V1, . . . ,Vs] ∈ Rd×(r1+...+rs).
2. Calculate the SVD of Ṽ: Ṽ = UΣWT with U = [u1, . . . ,ud ] ∈ Rd×d ,Σ ∈ Rd×r̄s

and W ∈ Rr̄s×r̄s, where r̄ = (r1 + . . .+ rs)/s.
3. Define the new global projection matrix V ∈ Rd×r as [u1, . . . ,ur].
4. Project each local linearized system (21) onto V.

Because of the construction of the global projection matrix V it is approximately
true that R(Vi) ⊂ R(V) for i = 1, . . . ,s. All locally reduced linearized reduced
systems are combined in a weighted sum to build the global TPWL model. Note
that the TPWL model in [16] directly approximates x instead of y = x− x̃ by Vz.
Then it is necessary to add the defect of the trajectory x̃ to the new input vector. But
if the original state x = x̃ + y is approximated by x̃ + Vz the reduced state z ∈ Rr

satisfies
s

∑
i=1

wi(z)
[
VT CiVż+VT GiVz+VT Bū(t)

]
= 0. (23)

In (23) we need weighting functions wi(z) that satisfy
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s

∑
i=1

wi(z) = 1, wi(z) ∈ [0,1]. (24)

The weighting function wi(z) determines the influence of the i-th local system on
the global system. Therefore it equals zero if z is far from the i-th projected Lin-
earization Point VT x(ti). A very simple weighting function is defined by

wi(z) =

{
1 if i = min{ j | d j(z) = dmin(z)},
0 otherwise.

(25)

Here di(z) and dmin(z) are distance functions such that

di(z) = ‖z−VT x(ti)‖, i = 1, . . . ,s, (26)
dmin(z) = min{di(z), i = 1, . . . ,s}. (27)

A more advanced alternative, with two free parameters α,ε > 0, can be used like

w̄i(z) =

{
exp(− αdi(z)

dmin(z) ) if exp(− αdi(z)
dmin(z) ) > ε,

0 otherwise.
(28)

wi(z) =

[
s

∑
k=1

w̄k(z)

]−1

w̄i(z). (29)

The TPWL method delivers reduced models that are cheap to simulate because
the reduced model (23) does not need any evaluations of the original functions q, j
and Jacobian matrices C,G, because all matrices VT CiV,VT GiV and VT B can be
computed before the simulation. The reduction error of a TPWL method consists of
a linearization and a truncation part. This error can be controlled by use of the Lin-
earization Points [16, 17]. Clearly the accuracy becomes higher for a large number
of them. For strongly nonlinear systems the price is that a large number of Lin-
earization Points is required to keep the linearization error sufficiently small. If the
weighting functions wi(z) are not updated within the Newton method this will imply
additional stepsize restrictions.

In the next three sections we will show how nonlinear systems can be reduced
without linearization. Then the reduced models are obtained by Galerkin projection
of the original model.

4 Empirical Balanced Truncation

For LTI systems the controllability and observability Gramians also satisfy

W =
∫

∞

0
eAtBBT eAT

tdt, M =
∫

∞

0
eAT

tCT CeAtdt. (30)



Model Order Reduction for Nonlinear IC Models 11

Consider X(t) = [x1, . . . ,xm] = eAtB and Y(t) = [y1, . . . ,yn] = CeAt . Let δ (t) be
Dirac’s delta function, then xi and y j satisfy

d
dt

[q(xi)]+ j(xi) = biδ (t), xi(0) = 0, i = 1, . . . ,m, (31){
d
dt [q(x j)]+ j(x j) = 0, x j(0) = e j,

y j = h(x j),
j = 1, . . . ,n. (32)

Then it follows for LTI systems that the Gramians can be expressed in terms of the
correlations of the states and outputs

W =
∫

∞

0
eAtBBT eAT

tdt =
∫

∞

0
X(t)X(t)T dt =

m

∑
i=1

∫
∞

0
xi(t)xi(t)T dt, (33)

and

M =
∫

∞

0
eAT

tCT CeAtdt =
∫

∞

0
Y(t)T Y(t)dt =

n

∑
i=1

∫
∞

0
yi(t)

T yi(t)dt. (34)

If the states [x1, . . . ,xm] and [y1, . . . ,yn] are available, these Gramians W,M can
be numerically integrated as follows

W≈ Ŵ =
m

∑
i=1

1
N

N

∑
k=1

xi(tk)xi(tk)T , M≈ M̂ =
n

∑
i=1

1
N

N

∑
k=1

yi(tk)
T yi(tk). (35)

For LTI systems we have that Ŵ → W, M̂ → M if N → ∞. Empirical balanced
truncation (EBT) applies these formulae for Ŵ,M̂ to nonlinear systems with a larger
set of inputs and initial values to include also the nonlinear properties. It is a pow-
erful method because it really approximates the relationship between the input and
output and neglects all other phenomena but also needs a lot of experiments. Then
TBR or another linear MOR technique is used to balance Ŵ,M̂ by solving a sys-
tem of Lyapunov equations. Thus a basis V can be constructed by truncation. The
reduced model for z ∈ Rr is constructed by Galerkin projection.

5 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD), also known as the Principal Com-
ponent Analysis (PCA) and the Karhunen-Loéve expansion, is a special case of
Empirical Balanced Truncation. It approximates the controllability Gramian Ŵ by
using only one trajectory

Ŵ =
1
N

N

∑
k=1

x1(tk)x1(tk)T = VΣVT . (36)
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Because the two Gramians are assumed to be equal, the POD basis can be found
from the singular value decomposition

Ŵ = VΣVT , (37)

where V ∈ Rd×d is an orthogonal matrix and Σ a positive real diagonal matrix.
Thus the POD basis Vr = (v1 . . . vr ) is an orthonormal basis and derived from

the collected state evolutions (snapshots)

X = (x(t1) . . . x(tN)). (38)

The POD method is particularly popular for systems governed by nonlinear par-
tial differential equations describing computational fluid dynamics. Analytical so-
lutions do not exist for such systems and the collected data may serve as the only
adequate description of the system dynamics. The POD basis is found by minimiz-
ing the time-averaged approximation error given by

av(‖ x(tk)−xn(tk) ‖2) . (39)

The averaging operator av(·) is defined as:

av( f ) :=
1
N

N

∑
k=1

f (tk). (40)

Solving the minimization problem of (39) is equivalent to computing the eigen-
value decomposition of 1

N XXT . Because 1
N XXT is a symmetric positive definite

matrix there exists an orthogonal matrix Vr ∈ Rd×r and a positive real diagonal
matrix Λr ∈ Rr×r such that

1
N

XXT Vr = VrΛr. (41)

The term 1
N XXT equals the state covariance matrix. The POD basis is a subset

of the eigenvectors of this covariance matrix and is stored by the matrix Vr. The
most important POD basis function is the eigenvector corresponding to the first
eigenvalue. The truncation degree is determined from the eigenvalue distribution in
Λr = diag(λ1, . . . ,λr). Based on the commonly adopted ad-hoc criterion, the trun-
cation degree r should at least capture 99% of the total energy. The POD basis
minimizes, in Least Squares sense, (39) over all possible bases. Error estimates for
the solutions obtained from the reduced model are available in [10].

6 Galerkin Projection

For each t let the state x(t) ∈ Rd belong to a separable Hilbert space X , equipped
with the Euclidian inner product. Then for all t the state x can be expanded in a basis
V = (v1 . . . vd )
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x(t) =
d

∑
i=1

zi(t)vi. (42)

The basis is derived from various criteria based on the approximation quality of the
original state x by its truncated expansion xr as defined in (43)

x(t)≈ xr(t) =
r

∑
i=1

zi(t)vi. (43)

The order r of the truncated expansion is lower than the order d of the original
expansion. Different reduction methods yield different bases.

The reduced order model is the model that describes the dynamics of the basis
coefficients or the reduced state z = {z1, . . . ,zr}. In many methods the reduced order
model is derived by replacing the original state x by its truncated expansion xr and
projecting the original equations onto a truncated basis

Wr = (w1 . . . wr ). (44)

Galerkin projection of (1) onto Vr along Wr results in the reduced DAE model{
d
dt

[
WT

r q(Vrz)
]
+WT

r j(Vrz)+WT
r Bu = 0, z(0) = z0,

y = h(Vrz).
(45)

The original d-dimensional DAE model is reduced to an r-dimensional DAE re-
duced order model by means of the Galerkin projection. Unfortunately, the resulting
reduced order model (45) for z ∈Rr is not always solvable for any arbitrary trunca-
tion degree r. Furthermore, in contrast to TPWL this reduced model still needs eval-
uations of the original model, because the functions VT

r q(t,Vrz) and VT
r j(t,Vrz)

cannot be expanded before the simulation.
For circuit models the snapshots can be collected from a transient simulation with

fixed parameters and sources. The reduced model can also be used to approximate
the model for different parameters or sources as long as the solution still approxi-
mately lies in the projected space. For circuit models with a lot of redundancy the
reduced model can have a much smaller dimension. Unfortunately, direct applica-
tion of POD to circuit models does not work well in practice. Firstly, for Differen-
tial Algebraic Equations the Galerkin projection scheme may yield an unsolvable
reduced order model. This problem has been studied in more detail in [5, 14]. Sec-
ondly, the computational effort required to solve the reduced order model and the
original model is about the same in nonlinear cases. This is due to the fact that the
evaluation costs of the reduced model (45) are not reduced at all because Vr will be
a dense matrix in general.
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7 Missing Point Estimation (MPE)

As mentioned before, many MOR techniques for nonlinear systems as (1) use
Galerkin projection to obtain a reduced model of the following type

d
dt

[
WT q(Vz)

]
+WT j(Vz)+WT Bu = 0. (46)

The original state can be obtained by x = Vz. Thus indeed it is assumed that x ∈
R(V). If x ∈ Rd and V ∈ Rd×r where r � d it is clear that the reduced model (46)
is of much smaller size than the original model (1). For LTI systems with q(t,x) =
Cx and j(t,x) = Gx− s(t) it is really possible to reduce the simulation time for
small r. In particular if the reduced model is diagonalized, we certainly get a model
that is very cheap to solve. For the general case it is much worse because then the
evaluation costs are not reduced at all. But if the linear algebra part is dominant,
we still can expect a speed-up. Despite the resulting low dimensional model, the
computational effort required to solve the reduced order model and the original
model is relatively the same in nonlinear cases. It may even occur that the original
model is cheaper to evaluate than the reduced order model. The low dimensionality
is obtained by means of projection, either by the Galerkin projection method or
the least square method. In the projection schemes, the original numerical model
must be projected onto the projection space. It implies that the original model must
be re-evaluated when the original numerical model is time-varying, which is the
general case for nonlinear systems. A consequence is that the evaluation costs for
the reduced model are not reduced at all.

Missing Point Estimation (MPE) is a well-known technique that modifies the
matrix V such that only a part of the equations of the original model have to be eval-
uated. This makes POD applicable for model order reduction of nonlinear DAEs.
The Missing Point Estimation (MPE) was proposed in [2] as a method to reduce the
computational cost of reduced order, nonlinear, time-varying models. The method is
inspired by the Gappy-POD approach that was introduced by Everson and Sirovich
in [8]. More details can be found in [5, 15].

7.1 Adapted POD Method

Assume that we have a benchmark solution x̃(t) of the DAE (1). Consider the snap-
shot matrix X ∈ Rd×N . Consider the singular value decomposition of X:

X = UΣVT , (47)

where U∈Rd×d ,V∈RN×N are orthogonal matrices and Σ ∈Rd×N . Thus the corre-
lation matrix satisfies W = 1

N XXT = 1
N UΣΣ T UT . Because ΣΣ T ∈Rd×d is a positive

real diagonal matrix we can write ΣΣ T = Γ 2, where Γ ∈ Rd×d is another positive
real diagonal matrix.
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In contrast to POD we introduce the matrix L = UΓ ∈Rd×d , such that also W =
1
N LLT . Note that the columns of L are still an orthogonal basis but not orthonormal.
Then we transform the original system (1) by writing x = Ly and using orthogonal
Galerkin projection as follows

d
dt

[
LT q(Ly)

]
+LT j(Ly)+LT Bu = 0, x = Ly. (48)

Note that we are able to compute the matrix LT B before the simulation in con-
trast to the nonlinear functions LT q(Ly) and LT j(Ly). Therefore we are going to
approximate LT and L such that LT q(Ly) and LT j(Ly) become cheaper to evalu-
ate. Note that we will use different approximations for L and LT . Because L = UΓ

we can approximate it by UrΓrPr = LPT
r Pr where Ur ∈Rd×r and Γr ∈Rr×r consists

of the r most dominant singular values of Γ and Pr ∈ {0,1}r×d is a selection matrix.
The matrices Ur,Γr and Pr easily follow from the singular value decomposition. But
if we use this approximation we still have the problem that for each function f the
projected function LT f ≈ PT

r ΓrUT
r f needs all elements of f. Therefore we use here

also another approximation

LT ≈ TgPg = LT PT
g Pg, (49)

where Pg ∈ {0,1}g×d is another selection matrix and Tg ∈ Rd×g contains the g
columns of LT with largest norm. If the singular values of Γ decrease rapidly we
often need just a small number g of columns. This means that the aliasing error
‖TgPg −LT‖ also converges rapidly to zero. Now we can approximate the trans-
formed DAE (48) by

d
dt

[
LT PT

g Pgq(LPT
r Pry)

]
+LT PT

g Pgj(LPT
r Pry)+LT Bu = 0, x = Ly. (50)

Because L≈ LPT
r Pr and LT ≈ LT PT

g Pg it also follows that

LT ≈ PT
r PrLT PT

g Pg. (51)

Writing a = Pry ∈ Rr we get the following truncated system of r equations

d
dt

[
PrLT PT

g Pgq(LPT
r a)

]
+PrLT PT

g Pgj(LPT
r a)+PrLT Bu = 0, x = LPT

r a. (52)

Because L = UΓ and LT = Γ UT we can also write this system as

d
dt

[
ΓrUT

r PT
g Pgq(UrΓra)

]
+ΓrUT

r PT
g Pgj(UrΓra)+ΓrUT

r Bu = 0, x = UrΓra. (53)

This system is still badly scaled. Therefore we have to multiply all equations by
Γ−1

r and write z = Γra, such that we get
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d
dt

[
UT

r PT
g Pgq(Urz)

]
+UT

r PT
g Pgj(Urz)+UT

r Bu = 0, x = Urz. (54)

We need just g elements of the functions q, j in this case. Define q̄ = Pgq, j̄ = Pgj
and the matrices Wr,g = PrUT PT

g = UT
r PT

g ∈ Rr×g, B̄r = UT
r B. Then we get indeed

d
dt

[Wr,gq̄(Urz)]+Wr,g j̄(Urz)+ B̄ru = 0, x = Urz. (55)

Because the g selected elements q̄, j̄ of q, j only need a small subset of the el-
ements of Urz, it is possible to replace the dense matrix Ur by a sparse matrix
PT

h PhUr such that all unused rows of Ur are replaced by zero rows. The selection
matrix Ph can easily be found from the average absolute values of the Jacobian ma-
trices C,G along the benchmark solution. For many applications, e.g. circuit mod-
els, the required number h of rows is just slightly larger than g. Thus the matrix
Ūr,h = PhUr ∈ Rh×r is often of a relatively small size. In this manner we finally get
the following reduced model for z ∈ Rr

d
dt

[
Wr,gq̄(PT

h Ūr,hz)
]
+Wr,g j̄(PT

h Ūr,hz)+ B̄ru = 0, x = Urz. (56)

This reduced model can be simulated very efficiently because it does not need ex-
pensive function evaluations.

8 Applications

We consider the academic diode chain model shown in Fig. 2, that is described by
the following equations
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V1−Uin(t) = 0,

iE −g(V1,V2) = 0,

g(V1,V2)−g(V2,V3)−C d
dt V2− 1

RV2 = 0,

...

g(VN−1,VN)−g(VN ,VN+1)−C d
dt VN − 1

RVN = 0,

g(VN ,VN+1)−C d
dt VN+1− 1

RVN+1 = 0,

g(Va,Vb) =

{
Is(e

Va−Vb
VT −1) if Va−Vb > 0.5 V,

0 otherwise,

Uin(t) =


20 if t ≤ 10 ns,

170−15t if 10 ns < t ≤ 11 ns,
5 if t > 11 ns.

R C~ R C R C

U
in

V
2

V
300

V
1

Is=1e
-14A

V
T
=0.0256V

R=1e4Ω

C=1e-12F

Fig. 2 Structure of the test circuit

Fig. 3 shows the numerical solution (nodal voltage in each node) of the original
model at [0,70 ns], computed in MATLAB by the Euler Backward method with
fixed step sizes of 0.1 ns.

Fig. 4 indicates the redundancy of the model, as most of the eigenvalues of the
correlation matrix 1

N XXT can be neglected (left) and also the aliasing error of LT

rapidly converges to zero (right). Fig. 5 shows the relative errors over all nodes in
the time interval [0,70 ns], defined as ||Vz−x||

||x|| , for the reduced models of different
orders constructed by TPWL (left) and POD (right). For TPWL the relative error
is most of the time lower then the chosen error bound ε = 0.025. Furthermore, for
higher order reduced models, a smaller number of LPs has been used than for the
reduced models with lower order, as the local systems with higher orders are more
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Fig. 3 Numerical solution of the full-scale nonlinear diode chain model
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Fig. 4 The eigenvalues of the correlation matrix 1
N XXT (left) and the aliasing error of LT (right)

accurate. E.g. for a reduced model of order 100 we have used 42 LPs and for smaller
reduced models 60 LPs. The POD models are, as expected, more accurate, but much
slower to simulate than the TPWL models (see the corresponding extraction and
simulation times in Table 1). However, a significant speed up can be achieved by
combining the POD with MPE. The MATLAB scripts can be optimized by using the
command pcode *.m. Using also a modified Newton method it is even possible
to simulate the smallest POD model (k = g = 10) in 2.4 seconds, which is even
about 33 times faster! These results highly improve the numerical results in [14] for
the same example.
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Fig. 5 Relative errors over all nodes for the reduced models created by TPWL (left) and by POD
(right)

Table 1 Comparison of extraction and simulation times in seconds.

Model r Extr. time Sim. time Model r g Extr. time Sim. time

Original 302 0 79 POD 10 302 107 72
TPWL 10 285 1.0 POD 30 302 107 74
TPWL 25 278 1.4 POD + MPE 10 10 107 3.9
TPWL 50 202 2.4 POD + MPE 30 35 107 10.2

9 Conclusion and Outlook

In this paper we studied how nonlinear IC models can be reduced by TPWL and
POD. The first method has the advantage that it really approximates the system be-
havior of the linearized model. Well-developed linear model reduction techniques
can be used to reduce the linearized models. However, to maintain sufficient accu-
racy a large number of LPs is required, which implies a large extraction time. The
POD method delivers reduced models which are more accurate because there is no
linearization error. Adapted versions are necessary to achieve a reduction of the sim-
ulation time at all because of the expensive function evaluations. TPWL and POD
have in common that the reduced model is created around a benchmark solution that
has to be found first. To make nonlinear MOR applicable in practice it is therefore
essential that a proper benchmark solution can be calculated. This could be done by
a cheap integration method at a coarse time-grid or in a hierarchical way from typi-
cal trajectories per subcircuit. Both the MOR methods TPWL and POD seems to be
promising for reducing the simulation time for nonlinear DAE systems. They offer
a good starting point for further research on MOR of non-linear dynamical systems.
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