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Abstract We present a method for construction of the topological derivatives in
plane elasticity. It is assumed that a hole is created in the subdomain of the elastic
body which is filled out with isotropic material. The asymptotic analysis of elliptic
boundary value problems in singularly perturbed geometrical domains is used in
order to derive the asymptotics of the shape functionals depending on the solutions
to the boundary value problems. Our method allows for the asymptotic expansions
of arbitrary order, since the explicit solutions to the boundary value problems are
obtained by the method of elastic potentials. Some numerical results are presented
to show the applicability of the proposed method in numerical analysis of elliptic
problems.

1 Introduction

One of the most important applications of the topological derivatives of shape func-
tionals is elasticity, in particular in the fields of optimal design in structural mechan-
ics and the numerical solution for inverse problems of detection of small imper-
fections. The mathematical theory of asymptotic analysis of elliptic boundary value
problems in singularly perturbed domains, is considered in [6] and [10]. The method
of compound asymptotic expansions in the framework of the asymptotic analysis
leads to the asymptotic expansions of solutions and to the topological derivatives of
the shape functionals as it is described in details, e.g., in the paper [12] for bound-
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ary value problems of linearized elasticity. The concept of topological derivatives
of shape functionals [18] is derived in the framework of the method of compound
asymptotic expansions [10], one of the techniques used in the asymptotic analysis
of the boundary value problems in singularly perturbed geometrical domains. The
so-called truncation method is described, e.g., in [9] (see [3] for further develop-
ments). The asymptotic analysis in impedance imaging and the theory of composite
materials can be found, e.g., in [1].

We present here the results on asymptotics of the shape functionals for the spe-
cific class of the elliptic boundary value problems. Let there be given an elastic body
which occupies the reference domain Ω ⊂ Rd , d = 2,3, with the material proper-
ties defined by the Hooke’s tensor Ci jkl , i, j,k, l = 1, . . . ,d. We assume that there
is a ball BR(x) ⊂ Ω , R > 0, with the center x ∈ Ω , filled with an isotropic mate-
rial characterized by its Lame coefficients λ ,µ . We investigate the asymptotics for
ρ → 0 of the displacement and the stress fields in the body Ωρ = Ω \Bρ(x) due
to the creation of a small hole Bρ(x) ⊂ BR(x) of the radius R > ρ → 0. We also
perform the asymptotic analysis of some shape functionals depending on the so-
lution of the elasticity boundary value problems in Ωρ = Ω \Bρ(x) for ρ → 0. It
seems that the imposed condition on the isotropy of BR(x) cannot be avoided since
for the specific application of the existing methods of asymptotic analysis we need
the knowledge of fundamental solution of the elliptic operator in the region BR(x).
In order to obtain the required asymptotics in the whole domain we employ [21] a
domain decomposition technique combined with the fine analysis of the properties
of the Steklov-Poincaré operator Aρ , ρ ≥ 0, defined in the ball BR(x) as well as in
the ring C(R,ρ) = BR(x)\Bρ(x).

The paper contains the complete mathematical tools which are used to derive the
form of topological derivatives for the specific class of composite elastic materials
in two spatial dimensions.

2 Topological Derivatives of Shape Functionals in Isotropic
Elasticity

We are going to present the results which can be obtained for 2D boundary value
problems of linear elasticity. The results for 3D are not in the same explicit form.
The same type of results on topological derivatives is derived for the contact prob-
lems by means of the asymptotic analysis combined with the domain decomposition
technique [21].

We briefly introduce the concept of the topological derivative for an arbitrary
shape functional. The topological derivative denoted by TΩ of a shape functional
J (Ω) is introduced in [18] in order to characterize the infinitesimal variation of
J (Ω) with respect to the infinitesimal variation of the topology of the domain Ω .
The topological derivative allows us to derive the new optimality condition in the
interior of an optimal domain, if such a domain exists and if the shape functional
under studies admits the topological derivatives, for the shape optimization problem:
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J (Ω ∗) = inf
Ω

J (Ω). (1)

The optimal domain Ω ∗ is characterized by the first order condition [17] defined on
the boundary of the optimal domain Ω ∗, dJ(Ω ∗;V ) ≥ 0 for all admissible vector
fields V , and by the following optimality condition defined in the interior of the
domain Ω ∗:

TΩ∗(x)≥ 0 in Ω
∗. (2)

The other use of the topological derivative is connected with approximating the
influence of the holes in the domain on the values of integral functionals of solutions,
which allows us, e.g., to solve a class of shape inverse problems.

In general terms the notion of the topological derivative (TD) has the follow-
ing meaning. Assume that Ω ⊂ IRN is an open set and that there is given a shape
functional

J : Ω \K → IR (3)

for any compact subset K ⊂Ω . We denote by Bρ(x),x∈Ω , the ball of radius ρ > 0,
Bρ(x) = {y∈ IRN |‖y−x‖< ρ}, Bρ(x) is the closure of Bρ(x), and assume that there
exists the following limit

T(x) = lim
ρ↓0

J (Ω \Bρ(x))−J (Ω)

|Bρ(x)|
. (4)

The function T(x),x ∈ Ω , is called the topological derivative of J (Ω), and pro-
vides the information on the infinitesimal variation of the shape functional J if a
small hole is created at x ∈ Ω . This definition is suitable for Neumann–type bound-
ary conditions on ∂Bρ .

In many cases this characterization is constructive [5, 2, 3, 8, 12, 14, 15], i.e. TD
can be evaluated for shape functionals depending on solutions of partial differential
equations defined in the domain Ω .

2.1 Problem Setting for Elasticity Systems

We introduce the elasticity system in a form convenient for the evaluation of topo-
logical derivatives. Let us consider the elasticity equations in IRN , where N = 2 for
2D and N = 3 for 3D, 

div σ(u) = 0 in Ω

u = g on ΓD

σ(u)n = T on ΓN

(5)

and the same system in the domain with the spherical cavity Bρ(x0) ⊂ Ω centered
at x0 ∈ Ω , Ωρ = Ω \Bρ(x0),
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div σρ(uρ) = 0 in Ωρ

uρ = g on ΓD

σρ(uρ)n = T on ΓN

σρ(uρ)n = 0 on ∂Bρ(x0)

(6)

where n is the unit outward normal vector on ∂Ωρ = ∂Ω ∪∂Bρ(x0). Assuming that
0 ∈ Ω , we can consider the case x0 = 0.

Here u and uρ denote the displacement vectors fields, g is a given displacement
on the fixed part ΓD of the boundary, t is a traction prescribed on the loaded part ΓN
of the boundary. In addition, σ is the Cauchy stress tensor given, for ξ = u (eq. 5)
or ξ = uρ (eq. 6), by

σ(ξ ) = D∇
s
ξ , (7)

where ∇s(ξ ) is the symmetric part of the gradient of vector field ξ , that is

∇
s(ξ ) =

1
2

(
∇ξ +∇ξ

T )
, (8)

and D is the elasticity tensor,

D = 2µII +λ (I⊗ I) , (9)

with
µ =

E
2(1+ν)

, λ =
νE

(1+ν)(1−2ν)
and λ = λ

∗ =
νE

1−ν2 , (10)

E being the Young’s modulus, ν the Poisson’s ratio and λ ∗ the particular case for
plane stress. In addition, I and II respectively are the second and fourth order identity
tensors. Thus, the inverse of D is

D−1 =
1

2µ

[
II− λ

2µ +Nλ
(I⊗ I)

]
. (11)

The first shape functional under consideration depends on the displacement field,

Ju(ρ) =
∫

Ωρ

F(uρ)dΩ , F(uρ) = (Huρ ·uρ)p, (12)

where F is a C2 function. It is also useful for further applications in the framework
of elasticity to introduce the yield functional of the form

Jσ (ρ) =
∫

Ωρ

Sσ(uρ) ·σ(uρ)dΩ , (13)

where S is an isotropic fourth-order tensor. Isotropicity means here that S may be
expressed as follows

S = 2mII + l (I⊗ I) , (14)
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where l,m are real constants. Their values may vary for particular yield criteria.
The following assumption assures that Ju, Jσ are well defined for solutions of the
elasticity system.

(CONDITION A) The domain Ω has piecewise smooth boundary, which may have
reentrant corners with α < 2π created by the intersection of two planes. In addition,
g, t must be compatible with u ∈ H1(Ω ; IRN).

The interior regularity of u in Ω is determined by the regularity of the right
hand side of the elasticity system. For simplicity the following notation is used for
functional spaces,

H1
g (Ωρ) = {ψ ∈ [H1(Ωρ)]N | ψ = g on ΓD}, (15)

H1
ΓD

(Ωρ) = {ψ ∈ [H1(Ωρ)]N | ψ = 0 on ΓD}, (16)

H1
ΓD

(Ω) = {ψ ∈ [H1(Ω)]N | ψ = 0 on ΓD}, (17)

here we use the convention that, e.g., H1
g (Ωρ) stands for the Sobolev space of vector

functions [H1
g (Ωρ)]N .

The weak solutions to the elasticity systems are defined in the standard way.
Find uρ ∈ H1

g (Ωρ) such that, for every φ ∈ H1
ΓD

(Ω),∫
Ωρ

D∇
suρ ·∇s

φ dΩ =
∫

ΓN

T ·φ dS . (18)

We introduce the adjoint state equations in order to simplify the form of shape
derivatives of functionals Ju,Jσ . For the functional Ju they take on the variational
form: Find wρ ∈ H1

ΓD
(Ωρ),∫

Ωρ

D∇
swρ ·∇s

φ dΩ =−
∫

Ωρ

F ′
u(uρ) ·φ dΩ , (19)

for every φ ∈ H1
ΓD

(Ω), whose Euler-Lagrange equation reads
div σρ(wρ) = F ′

u(uρ) in Ωρ

wρ = 0 on ΓD

σρ(wρ)n = 0 on ΓN

σρ(wρ)n = 0 on ∂Bρ(x0)

(20)

while vρ ∈ H1
ΓD

(Ωρ) is the adjoint state for Jσ and satisfies for all test functions
φ ∈ H1

ΓD
(Ω) the following integral identity:∫

Ωρ

D∇
svρ ·∇s

φ dΩ =−2
∫

Ωρ

DSσ(uρ) ·∇s
φ dΩ , (21)

whose associated Euler-Lagrange equation becomes
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div σρ(vρ) = −2div

(
DSσρ(uρ)

)
in Ωρ

vρ = 0 on ΓD

σρ(vρ)n = −2DSσρ(uρ)n on ΓN

σρ(vρ)n = −2DSσρ(uρ)n on Sρ(x0) = ∂Bρ(x0)

(22)

Remark 0.1. We observe that DS can be written as

DS = 4µmII + γ (I⊗ I) (23)

where
γ = λ lN +2(λm+ µl) . (24)

Thus, when γ = 0, the boundary condition on ∂Bρ(x0) in equation (22) becomes
homogeneous and the yield criteria must satisfy the constraint

m
l

=−
(

µ

λ
+

N
2

)
, (25)

which is satisfied for the energy shape functional. In this particular case, tensor S is
given by

S =
1
2

D−1 ⇒ γ = 0 and 2m+ l =
1

2E
, (26)

which implies that the adjoint solution associated to Jσ can be explicitly obtained,
such that vρ =−(uρ −g).

2.2 Topological Derivatives in 2D Elasticity

We recall here the results derived in [18] for the 2D case. The principal stresses
associated with the displacement field u are denoted by σI(u), σII(u), the trace of
the stress tensor σ(u) is denoted by trσ(u) = σI(u)+σII(u). The shape functionals
Ju, Jσ are defined in the same way as presented before, with the tensor S isotropic
(that is similar to D). The weak solutions to the elasticity system as well as adjoint
equations are defined in standard way. Then, from the expansions presented in the
Appendix, we may formulate the following result [18]:

Theorem 1. The expressions for the topological derivatives of the functionals Ju, Jσ

have the form

T Ju(x0) =−
[

F(u)+
1
E

(auaw +2bubw cos2δ )
]

x=x0

=−
[

F(u)+
1
E

(4σ(u) ·σ(w)− trσ(u)trσ(w))
]

x=x0

(27)
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T Jσ (x0) =−
[

η(a2
u +2b2

u)+
1
E

(auav +2bubv cos2δ )
]

x=x0

=−
[
η(4σ(u) ·σ(u)− (trσ(u))2)

+
1
E

(4σ(u) ·σ(v)− trσ(u)trσ(v))
]

x=x0

(28)

Some of the terms in (27), (28) require explanation. According to equation (24)
for N = 2, constant η is given by

η = l +2
(

m+ γ
ν

E

)
. (29)

Furthermore, we denote

au = σI(u)+σII(u), bu = σI(u)−σII(u),
aw = σI(w)+σII(w), bw = σI(w)−σII(w),
av = σI(v)+σII(v), bv = σI(v)−σII(v).

(30)

δ denotes the angle between principal stress directions for displacement fields u and
w in (27), and for displacement fields u and v in (28).

Remark 0.2. For the energy stored in a 2D elastic body, tensor S is given by eq. (26),
γ = 0 and η = 1/(2E). Thus, since v = −(u− g), we obtain the following well-
known result

T Jσ (x0) =
1

2E

[
4σ(u) ·σ(u)− (trσ(u))2

]
x=x0

. (31)

3 Topological Derivatives for Contact Problems

In order to describe the domain decomposition method applied to the asymptotic
analysis, and introduce the Steklov-Poincaré operators for the rings C(R,ρ), ρ ≥ 0,
we present the related results for the two dimensional frictionless contact problems.
Such problems are non smooth, therefore, in general, only the first term of the ex-
terior asymptotic expansion of solutions can be derived. However, this leads to the
topological derivatives of some shape functionals. We change the notation, com-
pared to the previous sections, in particular u stands now for the displacement vec-
tor, and σ(u) is the corresponding stress tensor.

We consider the isotropic two dimensional elasticity problem in plane stress for-
mulation, the isotropy is in fact required only in the vicinity of a small hole. On
a part Γu of ∂Ω we assume that the body is clamped u = 0, the part Γg is loaded
σ(u).n = g and on the part Γc there is the frictionless contact

un ≥ 0, σn ≤ 0,

σnun = 0, σ τ = σ .n−σnn = 0.
(32)
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Here un = uini, σn = niσi jn j, σ .n = {σi jn j}i=1,2. We define also the ring C(R,ρ) =
B(R)\B(ρ) with R > ρ and such that B(R)⊂ Ω , as well as Ω(r) = Ω \B(r).

For such a problem it is impossible to evaluate topological derivatives of shape
functionals by means of adjoint variables without additional assumptions on the
strict complementarity type for the unknown solution. Therefore, we propose a
method for computing the perturbation, caused by the hole B(ρ), of the solution
itself.

The bilinear form corresponding to the elastic energy may be written as

a(ρ;u,v) =
1
2

∫
Ω(ρ)

σ(u) : ε(v)dx (33)

(σ : ε = σi jεi j) for u,v ∈ H1(Ω) and the work of external forces is

L(u) =
∫

Γg

u>gds. (34)

The method of the domain decomposition type is based on the analysis of the
Steklov-Poincaré operator Aρ defined in the following way. Consider the boundary
value problem

L w = 0 in C(R,ρ), σn(w) = 0 on ∂B(ρ), w = v on ∂B(R). (35)

Then we set
Aρ v = σn(w) on ∂B(R). (36)

Thus Aρ is a mapping

Aρ : H1/2(∂B(R)) 7→ H−1/2(∂B(R)). (37)

It can be demonstrated constructively that

Aρ = A0 +ρ
2A1 +ρ

4A2 + . . . (38)

in the linear operator norm corresponding to (37). Using this notation we have

a(ρ;u,u) =
1
2

∫
Ω(R)

σ(u) : ε(u)dx+
1
2

∫
C(R,ρ)

σ(u) : ε(u)dx (39)

as well as

1
2

∫
C(R,ρ)

σ(u) : ε(u)dx =
1
2
〈Aρ u,u〉∂B(R)

=
1
2
〈A0u,u〉∂B(R) +

1
2

ρ
2〈A1u,u〉∂B(R) +R(u,u)

(40)

where R(u,u) is of the order O(ρ4) on bounded sets in H1/2(∂B(R)). With A1 we
associate the bilinear form



Topological Derivatives in Plane Elasticity 11

b(u,v) =
1
2
〈A1u,u〉∂B(R). (41)

It is sufficient to consider the following approximation of the energy bilinear
form in order to construct one term exterior approximation of the solution to the
contact problem

a(ρ;u,u) := a(0;u,u)+ρ
2b(u,u). (42)

Denote by H1
Γu

(Ω) = {v ∈ H1(Ω) | v = 0 on Γu} the Sobolev space, and let K be
the convex cone

K = {v ∈ H1
Γu(Ω) | vn ≥ 0 on Γc}. (43)

Recall that the following variational inequality furnishes the weak solutions to our
contact problem in Ω(ρ)

u ∈ K : a(ρ;u,u−v)≥ L(v−u) ∀v ∈ K. (44)

Taking into account the approximation (42) and using abstract results on the differ-
entiability of metric projection onto the polyhedric convex sets in Dirichlet space
[16] we have the following result.

Theorem 2. For ρ sufficiently small we have on Ω(R) the following expansion of
the solution u with respect to the parameter ρ at 0+,

u = u0 +ρ
2q+o(ρ2) in H1(Ω(R)), (45)

where the topological derivative q of the solution u to the contact problem is given
by the unique solution of the following variational inequality

q ∈SK(u) : a(0;q,v−q)+b(u,v−q)≥ 0 ∀v ∈SK(u), (46)

where
SK(u) = {v ∈ H1

Γu(Ω) | vn ≤ 0 on Ξ(u), a(0;u,v) = 0}. (47)

The coincidence set Ξ(u) = {x ∈ Γc | un(x) = 0} is well defined [16] for any u ∈
H1(Ω), and u0 ∈ K is the solution of (44) for ρ = 0.

4 Complex Variable Method

In order to find an exact form of the Steklov-Poincaré operator in plane elasticity we
need an analytic form of the solution for the elasticity system in the ring, with gen-
eral displacement condition on the outer boundary and traction free inner boundary,
parameterized by the (small) inner radius ρ . Let us assume for simplicity that the
center of the ring lies at origin of the coordinate system, and take polar coordinates
(r,θ) with er pointing outwards and eθ perpendicularly in the counter-clockwise
direction. Then the displacement on the outer boundary r = R may be given in the
form of a Fourier series
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2µ(ur + iuθ ) =
k=+∞

∑
k=−∞

Ukeikθ . (48)

The regularity condition for the boundary data translate into some inequalities for
coefficients Uk, as will be made precise later.

The solution in the ring must be compared with the solution in the full circle, so
we will have to construct it as well. Probably the best tool for obtaining both exact
solutions is the complex variable method, described in [11]. It states that for plane
domains with one hole these solutions have the form

σrr − iσrθ = 2ℜφ
′− e2iθ (z̄φ

′′+ψ
′),

σrr + iσθθ = 4ℜφ
′,

2µ(ur + iuθ ) = e−iθ (κφ − zφ̄
′− ψ̄),

(49)

where φ , ψ are given by complex series

φ = A log(z)+
k=+∞

∑
k=−∞

akzk,

ψ =−κĀ log(z)+
k=+∞

∑
k=−∞

bkzk.

(50)

Here µ is the Lame constant, ν is the Poisson ratio, κ = 3− 4ν in the plain strain
case, and κ = (3−ν)/(1+ν) for plane stress.

Now we can substitute displacement condition for r = R into

2µ(ur + iuθ ) = 2κAr log(r)
1
z
− Ā

1
r

z+

+
p=+∞

∑
p=−∞

[κrap+1− (1− p)ā1−pr−2p+1− b̄−(p+1)r
−2p−1]zp

(51)

and obtain the infinite system of linear equations

p =−1: 2κAr log(r)+(κa0− b̄0)−2ā2r2 = U−1

p = 1: − Ā+κr2a2− b̄−2
1
r2 = U1

p /∈ {−1,1} : κrp+1ap+1− (1− p)ā1−pr−p+1− b̄−(p+1)r
−(p+1) = Up.

(52)

The traction-free condition

σ .er = [σrr,σrθ ]> (53)

on some circle means σrr = σrθ = 0. Hence, assuming r := ρ , we have another
infinite system
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p =−1: 2A+2ā2r2 +2
1
r2 b−2 = 0

p = 1: (κ +1)
1
r2 Ā = 0

p /∈ {−1,1} : (1+ p)ap+1 + ā1−pr−2p +
1
r2 bp−1 = 0.

(54)

Denote d0 = κa0 − b̄0 since a0,b0 appear only in this combination. Using (52) we
may recover the solution for the full circle. Because in this case the singularities
must vanish, we have b−k = a−k = A = 0 for k = 1,2, . . . and comparing the same
powers of r:

d0
0 = U−1 +

2
κ

Ū1, ℜa0
1 =

1
(κ −1)R

ℜU0, ℑa0
1 =

1
(κ +1)R

ℑU0

a0
k =

1
κRk Uk−1, b0

k =− 1
Rk [(k +2)

1
κ

Uk+1 +Ū−(k+1)], k > 1.

(55)

Now let us repeat the same procedure for the ring. Now the singularities may be
present, because 0 does not belong to the domain. Hence, from (52) for r = R and
(54) for r = ρ we obtain A = 0 and the formulas

d0 = A−1 +
2R4

κR4 +ρ4 Ū1, a2 =
R2

κR4 +ρ4 U1

ℜa1 =
R

(κ −1)R2 +2ρ2 ℜU0, ℑa1 =
1

κ +1
ℑA0

b−1 =− 2ρ2R
(κ −1)R2 +2ρ2 ℜU0, b−2 =− ρ4R2

κR4 +ρ4 Ū1

(56)

The rest of the coefficients will be computed later. However, we may at this stage
compare the results with known solutions for the uniformly stretched circle or ring
obtained in another way. In such a case U0 = 2µur(R) does not vanish and, for the
full circle, ψ = 0, φ = a0

1z with

a0
1 =

2µ

(κ −1)R
ur(R). (57)

For the ring we have φ = a1z, ψ = b−1
1
z where

a1 =
1

(κ −1)+2ρ2 2µuR(1), b−1 =− 2ρ2

(κ −1)+2ρ2 2µuR(1). (58)

After substitutions we obtain, in both cases, the same results as given in [7]. Simi-
larly the comparison with the solution for the ring with displacement conditions on
both boundaries, obtained in [4] also using complex method, confirms the correct-
ness of the formulas.
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There remains to compute the rest of the coefficients ak,bk for the case of the
ring. Taking p =−k, k = 2,3, . . . in conditions on both boundaries gives the system

κa−(k−1)R
−(k−1)− (k +1)āk+1Rk+1− b̄k−1Rk−1 = U−k

−(k−1)a−(k−1)ρ
2 + āk+1ρ

2(k+1) +b−(k+1) = 0,
(59)

while p = +k, k = 2,3, . . . results in

κak+1Rk+1 +(k−1)ā−(k−1)R
−(k−1)− b̄−(k+1)R

−(k+1) = Uk

(k +1)ak+1ρ
2(k+1) + ā−(k−1)ρ

2 +bk−1ρ
2k = 0.

(60)

These systems may be represented in a recursive form, convenient for numerical
computations and further analysis. Namely,

Sk(ρ) ·

[
ak+1

bk−1

]
=

[
Uk

Ū−k

]
(61)

where Sk has entries

Sk(ρ)11 = κRk+1− (k2−1)R1−k
ρ

2k + k2R−(k+1)
ρ

2(k+1)

Sk(ρ)12 =−(k−1)(R1−k
ρ

2(k−1)−R−(k+1)
ρ

2k)

Sk(ρ)21 =−(k +1)(Rk+1 +κR1−k
ρ

2k)

Sk(ρ)22 =−Rk−1−κR1−k
ρ

2(k−1)

(62)

as well as [
a−(k−1)

b−(k+1)

]
= Tk(ρ) ·

[
āk+1

b̄k−1

]
, (63)

where

Tk(ρ) =

[
−(k +1)ρ2k , −ρ2(k−1)

−k2ρ2(k+1) , −(k−1)ρ2k

]
. (64)

In fact the formulas (63), (61) are correct also for k = 0,1 and in the limit ρ −→ 0+,
but the derivation must separate these cases.

Thus, for given k > 1 and using some initial ak,bk obtained earlier, we may first
compute ak+1,bk−1 using (61) and then a−(k−1),b−(k+1) from (63).

We may now use the above results for the asymptotic analysis of the solution.
To simplify the formulas, we assume R = 1, which means only rescaling and does
not diminish generality (in general case ρ would be replaced by ρ/R). Then by
direct computation we get the following bounds for the differences between the
coefficients on the full circle and the ring. For the initial values of k they read



Topological Derivatives in Plane Elasticity 15

d0−d0
0 =−ρ

4 2
κ(κR4 +ρ4)

Ū1

a1−a0
1 =−ρ

2 2
(κ −1)R((κ −1)R2 +2ρ2)

ℜU0

a2−a0
2 =−ρ

4 1
κR2(κR4 +ρ4)

U1

(65)

and for higher values

|a3−a0
3| ≤Λ

(
|U2|ρ4 + |U−2|ρ2) (66)

and for k = 4,5, . . .

|ak −a0
k | ≤Λ

(
|Uk−1|ρ3(k−1)/2 + |U1−k|ρ3(k−2)/2

)
(67)

where the exponent k/2 has been used to counteract the growth of k2 in terms like
k2ρk/2. Similarly

|b1−b0
1| ≤Λ

(
|U2|ρ4 + |U−2|ρ2) (68)

and for k = 2,3, . . .

|bk −b0
k | ≤Λ

(
|Uk+1|ρ3(k+1)/2 + |U−(k+1)|ρ3k/2

)
. (69)

From relation (63) we get further estimates

|a−k| ≤Λρ
2k (

|Uk+1|+ |U−(k+1)|
)
, k = 1,2, . . .

|b−k| ≤Λρ
2(k−1) (|Uk−1|+ |U1−k|) , k = 3,4, . . .

(70)

Here Λ is a constant independent from ρ and Ui. Observe that the corrections pro-
portional to ρ2 are present only in a1, b1, a3, b−1, a−1. The rest is of the order at
least O(ρ3) (in fact O(ρ4)).

These estimates may be translated into the following theorem concerning the
solution of the elasticity system in the ring.

Theorem 3. The condition

‖u‖H1/2(∂B(R)) ≤Λ0 (71)

which in terms of Ui means

k=+∞

∑
k=−∞

√
1+ k2 |Uk|2 ≤Λ0 (72)

ensures that the expression for elastic energy concentrated in the ring splits into
the one corresponding to the full circle, correction proportional to ρ2 and the rest,
which is uniformly of the order Λ0ρ3.
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4.1 Numerical Illustration

We shall show two solutions corresponding to different boundary conditions on the
outer boundary, obtained using the representations derived above in terms of (in
these particular cases finite) complex series.
Rugby-like deformation. Let us take ur = s0 cos2 θ = 1

2 s0 + 1
2 s0 cos2θ . Hence

[Uk, k ∈ ZZ] = [. . . ,
1
2

µs0,0, U0 = µs0 ,0,
1
2

µs0, . . .]. (73)

The resulting distortion for size of the internal hole ρ = 0.2 at the radius r = 0.3 are
shown in Fig. 1 (solid line - undeformed, dashed - deformed ring, dotted - deformed
ball):

Fig. 1 Rugby-like and bubble-like distortions

Bubble-like deformation. Now we take ur = s0 sin4θ . Hence

[Uk, k ∈ ZZ] = [. . . ,µs0i,0,0,0, A0 = 0 ,0,0,0,−µs0i, . . .]. (74)

The resulting distortions for ρ = 0.2 and r = 0.3 shows also Fig. 1, using the same
types of lines.

In the second numerical experiment - bubble - only U−4 and U4 were nonzero,
which means that the difference between positions of the contour r = 0.3 for full
circle and the ring should behave like ρ6. In the first experiment it should be ρ2,
i.e. the influence of boundary condition should vanish quicker. The deformations
for ρ = 0.2 and several intermediate radii (dashed - undeformed, solid - deformed
contours) are visible in Fig. 2 and they confirm this observation.
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Fig. 2 The pattern of distortions for both experiments

5 Correction Term for Steklov-Poincaré Operator

The elastic energy contained in the ring has the form

2E (ρ,R) =
∫

C(ρ,R)
σ(uρ) : ε(uρ)dx =

∫
ΓR

uρ σ(uρ).nds. (75)

Since uρ = u on ΓR,

2E (ρ,R) =
∫

ΓR

uσ(uρ).nds. (76)

Now σ(uρ) is in fact of the form σ(uρ) = σρ(u), because uρ = u on ΓR, which
means that uρ = uρ(u). If we split σρ into

σρ(u) = σ
0 +ρ

2
σ

1(u)+O(ρ4) (77)

then
2E (ρ,R) = 2E (0,R)+ρ

2
∫

ΓR

uσ
1(u).nds+O(ρ4). (78)

Thus finding A1 reduces to computing σ1(u). From (49), (50) we know that σρ(u)
is a linear function of infinite vectors a = [ak, k∈ZZ], b = [bk, k∈ZZ], while σ0(u) is
the same function of a0,b0. Here a0,b0 are computed for B(R), while a,b correspond
to C(ρ,R). In order to obtain σ1(u) it is enough to express a,b as

a = a0 +ρ
2a1 +O(ρ4), b = b0 +ρ

2b1 +O(ρ4) (79)

because then
σ

1(u) = σ
1(a1,b1). (80)

In addition, the only nonzero terms in a1,b1 are a1
3,a

1
1,a

1
−1,b

1
−1,b

1
1.

Taking into account that A = 0 in (50) for our problem,
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φ = φ
0 +ρ

2
φ

1 +O(ρ4), ψ = ψ
0 +ρ

2
ψ

1 +O(ρ4) (81)

where
φ

1 = a1
−1

1
z

+a1
1z+a1

3z3, ψ
1 = b1

−1
1
z

+b1
1z. (82)

Using formulas derived in preceding section, we may explicitly compute the coeffi-
cients appearing in (82).

a1
−1 =−b̄0

1, a1
3 =

1
κR4 b0

1, b1
1 =

3+κ2

κR2 b0
1,

a1
1 =− 2

(κ −1)R2 ℜa0
1, b1

−1 =−2ℜa0
1.

(83)

As is obvious from earlier calculations, only U0, U2, U−2 will contribute to these
corrections, Since

Uk =
µ

π

∫ 2π

0
(ur + iuθ )e−ikθ dθ (84)

as well as
ur + iuθ = (u1 + iu2)e−iθ (85)

then

U0 =
µ

π

∫ 2π

0
(u1 + iu2)e−iθ dθ

U2 =
µ

π

∫ 2π

0
(u1 + iu2)e−3iθ dθ

U−2 =
µ

π

∫ 2π

0
(u1 + iu2)e+iθ dθ .

(86)

After collecting all formulas we obtain the final expression∫
ΓR

u>σ
1(u).nds =

1
R2

[2(κ −2)
(κ −1)2 (ℜU0)2− (κ +1)|U−2|2

− 9(κ +1)
κ2 |U2|2−

6(κ +1)
κ

ℜ(U2U−2)
]
.

(87)

From (86) it follows that

ℜU0 =
µ

π

∫ 2π

0
(u1 cosθ +u2 sinθ)dθ

U2 =
µ

π

∫ 2π

0
(u1 cos3θ +u2 sin3θ)dθ + i

µ

π

∫ 2π

0
(u2 cos3θ −u1 sin3θ)dθ

U−2 =
µ

π

∫ 2π

0
(u1 cosθ −u2 sinθ)dθ + i

µ

π

∫ 2π

0
(u2 cosθ +u1 sinθ)dθ .

(88)
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Here values of displacements are taken as ui(Rcosθ ,Rsinθ). After discretization
these integrals constitute weighted sums of values of ui at certain points on ΓR. If
we assume piecewise linear approximation over triangles, then it is well known that

uh
i (x) = x>

 x1
1 x1

2 1

x2
1 x2

2 1

x3
1 x3

2 1


−1

Uh
i = x>M−1Uh

i (89)

and
x>M−1Uh

i = (M−>x)>Uh
i = c>Uh

i (90)

where uh
i (x) is a value of the approximation of ui at a point x inside the triangle

defined by vertices x1,x2,x3 and Uh
i is a vector of the values of uh

i at these ver-
tices. Observe that c is a vector of weights with which nodal values enter into the
expression for uh

i (x).
Let now Uh = [uh1

1 ,uh1
2 , . . . ,uhK

1 ,uhK
2 ]> be a vector of nodal values of uh for the

global triangulation. Then we may write down the following formulae

µ

π

∫ 2π

0
u1 cosθ dθ = c>11Uh µ

π

∫ 2π

0
u2 sinθ dθ = s>21Uh

µ

π

∫ 2π

0
u1 cos3θ dθ = c>13Uh µ

π

∫ 2π

0
u2 sin3θ dθ = s>23Uh

µ

π

∫ 2π

0
u1 sinθ dθ = s>11Uh µ

π

∫ 2π

0
u2 cosθ dθ = c>21Uh

µ

π

∫ 2π

0
u1 sin3θ dθ = s>13Uh µ

π

∫ 2π

0
u2 cos3θ dθ = c>23Uh.

(91)

Here si j,ci j are sparse vectors of weights with which nodal values of u enter into
appropriate integrals. In this notation

(ℜU0)2 = ‖(c11 + s21)>Uh‖2

|U2|2 = ‖(c13 + s23)>Uh‖2 +‖(c23− s13)>Uh‖2

|U−2|2 = ‖(c11− s21)>Uh‖2 +‖(c21 + s11)>Uh‖2

ℜ(U2U−2) = (Uh)>(c13 + s23)(c11− s21)Uh

− (Uh)>(c23− s13)(c21 + s11)Uh.

(92)

Taking into account (87) we may conclude that the first term in the correction of
energy is a well defined quadratic form. Similar, only more complicated expressions
may be obtained for further asymptotics corresponding to ρ4.
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to a spherical or circular cavity, considering uncertain input data, JOTA (2009) in press

6. A. M. Il’in: Matching of Asymptotic Expansions of Solutions of Boundary Value Problems., vol.
102 of Translations of Mathematical Monographs, AMS (1992)

7. M. Kachanov, B. Shafiro, I. Tsukrov: Handbook of Elasticity Solutions: Kluwer Academic Pub-
lishers (2003)

8. T. Lewinski, J. Sokołowski: Energy change due to the appearance of cavities in elastic solids.
Int. J. Solids Struct. 40 (2003) pp. 1765–1803

9. M. Masmoudi: The toplogical asymptotic. In: Computational Methods for Control Applica-
tions, eds. R. Glowinski, H. Kawarada, J. Periaux, Gakuto (2002)

10. W. G. Mazja, S. A. Nazarov, B. A. Plamenevskii: Asymptotic theory of elliptic boundary value
problems in singularly perturbed domains: vol. 1, 2, Basel, Birkhäuser Verlag (2000)

11. N. I. Muskhelishvili: Some Basic Problems on the Mathematical Theory of Elasticity: Noord-
hoff (1952)

12. S. A. Nazarov, J. Sokołowski: Asymptotic analysis of shape functionals. Journal de Mathé-
matiques pures et appliquées 82 (2003) pp. 125–196
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