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Abstract In this work, we shall consider standard optimal control problems for
a class of neutral functional differential equations in Banach spaces. As the basis
of a systematic theory of neutral models, the fundamental solution is constructed
and a variation of constants formula of mild solutions is established. Necessary
conditions in terms of the solutions of neutral adjoint systems are established to deal
with the fixed time integral convex cost problem of optimality. Based on optimality
conditions, the maximum principle for time varying control domain is presented.

1 Introduction

Let X be a separable Banach space with norm ‖ · ‖X . For any fixed constant r >
0, we denote by L2

r = L2([−r,0];X) the space of all X-valued equivalence classes
of measurable functions which are square integrable on [−r,0]. Let X denote the
product Banach space X ×L2

r with the norm

‖φ‖X =
√
‖φ0‖2

X +‖φ1‖2
L2

r
for all φ = (φ0,φ1) ∈X . (1)

Consider the following neutral functional differential equation on X ,

d
dt

[
y(t) −

∫ 0

−r
D(θ)y(t +θ)dθ

]
= Ay(t)+

∫ 0

−r
dη(θ)y(t +θ)+ f (t)

for any t > 0,

y(0) = φ0, y0(·) = φ1(·), φ = (φ0,φ1) ∈X ,

(2)

Kai Liu
Division of Statistics and Probability, Department of Mathematical Sciences, The University of
Liverpool, Peach Street, Liverpool, L69 7ZL, U.K., e-mail: k.liu@liv.ac.uk

3



4 Kai Liu

where A : X → X with domain D(A) ⊂ X is the infinitesimal generator of a C0-
semigroup {S(t); t ≥ 0} on X and yt(θ) := y(t + θ) for any θ ∈ [−r,0] and t ≥ 0.
Here f (·) is some properly given function in X and η is the Stieltjes measure given
by

η(τ) =−
m

∑
i=1

χ(−∞,−ri](τ)Ai−
∫ 0

τ

B(θ)dθ , τ ∈ [−r,0]. (3)

It is assumed that 0 < r1 < r2 < · · · < rm ≤ r, Ai ∈ L (X), i = 1, · · · ,m, the family
of all bounded, linear operators on X and B(·), D(·) ∈ L2([−r,0];L (X)), the Ba-
nach space of all L (X)-valued equivalence classes of square integrable functions
on [−r,0].

The abstract formulation (2) in an infinite dimensional space has been well moti-
vated both theoretically and practically by such systems as neutral partial functional
differential equations. There exists an extensive literature which deals with various
problems of the so-called distributed parameter systems with time delays in a Ba-
nach space (see the monograph [19], for instance, and references cited therein for
a systematic statement). The system (2) in finite or infinite dimensions was consid-
ered in a systematic way by [8] and [19] in spaces of continuous functions, e.g., in
C([−r,0];X), the space of all continuous functions from [−r,0] into X . The same
phase spaces were also used by many works such as [7, 9] and references cited
therein. Although this choice certainly has its advantages, it is often useful to work
in Lp space instead. There are at least two good reasons for this setting. First, it
allows ones to work in a Hilbert space. This is particularly important in control,
stability and optimality theory in which an adjoint theory for the system (2) is es-
sentially needed, e.g., [1, 5, 6, 11, 17]. Unfortunately, as indicated in Hale and Lunel
[9], it is generally difficult to have an adjoint theory in a continuous functions space
setting. Second, the choice of Lp-phase space allows us to consider equations having
discontinuous solutions. This is the case when ones consider discontinuous initial
functions for (2) or the system is perturbed by some random resources with jumps
(cf. [14]).

Although there is some work, e.g., [13], on optimal control of functional differ-
ential equations in infinite dimensions available in the existing literature, there exist
however few results on the same topic for functional differential equations of neutral
type. The current work will devote itself to exploring some basic material. We shall
consider the fixed time integral convex cost problem for mild solutions of a class
of functional differential equations of neutral type in Banach spaces. To this end,
we first formulate and study a class of linear neutral systems to derive fundamental
results. Precisely, as the basis of whole theory we shall construct fundamental so-
lutions or Green operators and establish a variation of constants formula. Adjoint
neutral systems are considered and the associated representation formulae of ad-
joint states in terms of fundamental solutions are established. All of these will allow
us to present results on the existence of optimal controls, necessary conditions of
optimality and maximum principle.



Fundamental Solutions and Optimal Control of Neutral Systems 5

The following are some notations and terminologies to be used in the work.
The symbol R+ denotes the set of all nonnegative numbers and Rn denotes the n-
dimensional real vector space with the usual Euclidean norm ‖·‖Rn . For any λ ∈C1,
the symbols ℜ(λ ) and ℑ(λ ) denote the real and imaginary parts of complex number
λ , respectively. For any separable Banach space U , we use U∗ to denote its adjoint
space and 〈·, ·〉U,U∗ the dual pairing, respectively. We use L (U,X) to denote the
space consisting of all bounded linear operators T from U into X with domain U .
When X =U , L (X ,X) is denoted by L (X). Every operator norm is simply denoted
by ‖ ·‖ when there is no danger of confusion. The symbols D(T ) and R(T ) will be
used to denote the domain and range of operator T , respectively. For a closed linear
operator A on a dense domain D(A) ⊂ X into X , its adjoint operator is denoted by
A∗. Given an interval E ⊂ R1, the function χE denotes the characteristic function
on the interval E. For a measurable function f : R1 → X , its Laplace transform f̂ is
defined by

f̂ (λ ) =
∫

∞

0
e−λ t f (t)dt

whenever the Bochner integral exists.

2 Fundamental Solutions

In this section, we shall consider a class of linear autonomous neutral functional
differential equations on X which are defined formally by

d
dt

[
y(t) −

∫ 0

−r
D(θ)y(t +θ)dθ

]
= Ay(t)+

∫ 0

−r
dη(θ)y(t +θ) for any t > 0,

y(0) = φ0, y0(·) = φ1(·), φ = (φ0,φ1) ∈X ,

(4)

where A : X → X and η are defined as in (2) and (3). Generally, it is quite restrictive
to find a solution in the usual sense for the equation (4). Instead, it is hoped to
consider an “integrated” form of the system (4). To this end, we further assume
that for each i, i = 1, · · · , m, and θ ∈ [−r,0], R(D(θ)) ⊂ D(A) such that AD(·) ∈
L2([−r,0];L (X)).

Consider the following integral equation on X

y(t,φ) =
∫ 0

−r
D(θ)y(t +θ ,φ)dθ +S(t)

[
φ0−

∫ 0

−r
D(θ)φ1(θ)dθ

]
+

∫ t

0
S(t− s)

[∫ 0

−r
dη(θ)y(s+θ ,φ)+

∫ 0

−r
AD(θ)y(s+θ ,φ)dθ

]
ds, ∀t > 0,

y(0,φ) = φ0, y0(·,φ) = φ1(·), φ = (φ0,φ1) ∈X .

(5)
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For simplicity, we sometimes denote y(t,φ) and yt(·,φ) by y(t) and yt(·), respec-
tively, in the remainder of this work. The following existence and uniqueness of
solutions of Equation (5) can be established in the spirit of Datko [5] and Wu [18].

Theorem 1. For arbitrary T ≥ 0, φ = (φ0,φ1) ∈ X , (i) there exists a unique
solution y(t,φ) ∈ L2([−r,T ];X) of (5); (ii) for arbitrary t ∈ [0,T ], ‖y(t,φ)‖X ≤
Ceγt‖φ‖X almost everywhere for some constants γ ∈ R1 and C > 0.

The solution y(t,φ) of the equation (5) is called a mild solution of (4). For any x∈X ,
let φ0 = x, φ1(θ) = 0 for θ ∈ [−r,0) and φ = (x,0), we define the fundamental
solution G(t) ∈L (X), t ∈ R1, of (5) with such an initial datum by

G(t)x =

{
y(t,φ), t ≥ 0,
0, t < 0.

(6)

The term (6) implies that G(t) is a unique solution of the equation

G(t) = S(t)+
∫ 0

−r
D(θ)G(t +θ)dθ +

∫ t

0
S(t− s)

[∫ 0

−r
dη(θ)G(s+θ)

+
∫ 0

−r
AD(θ)G(s+θ)dθ

]
ds, if t ≥ 0,

G(t) = O, if t < 0,

(7)

where O is the null operator on X . It is immediate to see that G(t) is strongly con-
tinuous on R1 and satisfies

‖G(t)‖ ≤C · eγt , t ≥ 0, (8)

for some C > 0 and γ ∈ R1.

2.1 Variation of Constants Formula

Consider a class of non-autonomous neutral functional differential equations on X

d
dt

[
y(t) −

∫ 0

−r
D(θ)y(t +θ)dθ

]
= Ay(t)+

∫ 0

−r
dη(θ)y(t +θ)+ f (t)

for any t > 0,

y(0) = φ0, y0(·) = φ1(·), φ = (φ0,φ1) ∈X ,

(9)

where A : X → X , η are defined as in the last subsection and f (·) ∈ L2
loc(R+;X), the

Fréchet space of functions which belong to L2([0,T ];X) for any T ≥ 0. Once again,
we intend to consider the following integral equation of (9) on X ,
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y(t, f ,φ) =
∫ 0

−r
D(θ)y(t +θ , f ,φ)dθ +S(t)

[
φ0−

∫ 0

−r
D(θ)φ1(θ)dθ

]
+

∫ t

0
S(t− s)

[∫ 0

−r
dη(θ)y(s+θ , f ,φ)

+
∫ 0

−r
AD(θ)y(s+θ , f ,φ)dθ + f (s)

]
ds, ∀t > 0,

y(0,φ) = φ0, y0(·,φ) = φ1(·), φ = (φ0,φ1) ∈X .

(10)

It is extremely useful to find an explicit representation for the solution y(t, f ,φ)
of (10) in applications, e.g., in the optimal control theory. This is possible if we re-
strict the initial data of (10) to some proper subset of X . Indeed, let W 1,2([−r,0];X)
denote the Sobolev space of X-valued functions x(·) on [−r,0] such that x(·)
and its distributional derivative belong to L2([−r,0];X), and define W 1,2 = X ×
W 1,2([−r,0];X).

The following variation of constants formula (11) provides a representation for
solutions of (10) in terms of the fundamental solution G(t) ∈L (X).

Theorem 2. For arbitrary φ = (φ0,φ1)∈W 1,2, the solution y(t, f ,φ) of (10) can be
represented almost everywhere by

y(t, f ,φ) = G(t)φ0−V (t,0)φ1(0)+
∫ 0

−r
U(t,θ)φ1(θ)dθ

+
∫ 0

−r
V (t,θ)φ ′

1(θ)dθ +
∫ t

0
G(t− s) f (s)ds, t ≥ 0,

(11)

where for any t ≥ 0, the kernels

U(t,θ) =
∫

θ

−r
G(t−θ + τ)dη(τ) ∈ L2([−r,0];L (X)), θ ∈ [−r,0], (12)

and, similarly,

V (t,θ) =
∫

θ

−r
G(t−θ + τ)D(τ)dτ ∈ L2([−r,0];L (X)), θ ∈ [−r,0]. (13)

Proof. We first prove (11) by assuming f ∈ L2(R+;X)∩ L1(R+;X). To this end,
define

x(t) = G(t)φ0−V (t,0)φ1(0)+
∫ 0

−r
U(t,θ)φ1(θ)dθ +

∫ 0

−r
V (t,θ)φ ′

1(θ)dθ

+
∫ t

0
G(t− s) f (s)ds, t ≥ 0,

(14)

and x(t) = φ1(t) for t ∈ [−r,0). It is easy to see that x(t) ∈ L2([0,T ];X) and x(t) is
almost everywhere continuous on [0,T ]. For λ ∈C1 with ℜ(λ ) large enough, define
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M(λ ) = I−
∫ 0

−r
eλθ D(θ)dθ ,

N(λ ) = R(λ ,A)
[∫ 0

−r
eλθ dη(θ)+

∫ 0

−r
eλθ D(θ)dθ

]
,

(15)

where I denotes the identity operator on X and R(λ ,A) = (λ I−A)−1 is the resolvent
operator of A. From the structure of both M(λ ) and N(λ ), we see that M(λ ) → I
and ‖N(λ )‖ → 0 as ℜ(λ ) → +∞. This implies that there exists a real number λ0
such that for ℜ(λ ) ≥ λ0, both M−1(λ ) and [I−N(λ )M−1(λ )]−1 exist. Therefore,
we can apply the convolution theorem on Laplace transforms to (7) to obtain that

Ĝ(λ ) = R(λ ,A)+
∫ 0

−r
eλθ D(θ)dθ · Ĝ(λ )+R(λ ,A)

∫ 0

−r
eλθ dη(θ) · Ĝ(λ )

+R(λ ,A)
∫ 0

−r
eλθ AD(θ)dθ · Ĝ(λ ),

(16)

where Ĝ(λ ) denotes the Laplace transform of G(·). This yields that for ℜ(λ )≥ λ0,

Ĝ(λ ) = M−1(λ )
[
I−N(λ )M−1(λ )

]−1R(λ ,A). (17)

Note that the Laplace transform x̂(λ ) of x(·) makes sense for sufficiently large ℜ(λ ).
Therefore, we apply the convolution theorem on Laplace transforms to (14) and use
Fubini’s theorem to obtain that

x̂(λ ) = Ĝ(λ )
[
φ0−

∫ 0

−r
D(θ)φ1(θ)dθ +

( m

∑
i=1

Aie−λ ri

∫ 0

−ri

e−λτ
φ1(τ)dτ

)
+

(∫ 0

−r
eλθ B(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ

)
+

∫ 0

−r
λeλθ D(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ + f̂ (λ )

]
= Ĝ(λ )

[
φ0−

∫ 0

−r
eλθ D(θ)φ1(0)dθ +

∫ 0

−r
eλθ D(θ)

∫ 0

θ

e−λτ dφ1(τ)dθ

+
∫ 0

−r
eλθ dη(θ)

∫ 0

θ

e−λτ
φ1(τ)dτ + f̂ (λ )

]
.

(18)

On the other hand, since y(·) satisfies the equation (10) and note that y(t) = φ1(t)
for t ∈ [−r,0), we can use Fubini’s theorem again to calculate the Laplace transform
ŷ(λ ) of y(·) which is given by
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ŷ(λ ) =
∫ 0

−r
eλθ D(θ)dθ ŷ(λ )+

∫ 0

−r
eλθ D(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ

+R(λ ,A)
{[

φ0−
∫ 0

−r
D(θ)φ1(θ)dθ

]
+

[∫ 0

−r
eλθ dη(θ)+

∫ 0

−r
eλθ AD(θ)dθ

]
ŷ(λ )

+
[∫ 0

−r
eλθ dη(θ)

∫ 0

θ

e−λτ
φ1(τ)dτ+∫ 0

−r
eλθ AD(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ

]
+ f̂ (λ )

}
,

(19)

for sufficiently large ℜ(λ ). In terms of (15), we can rewrite (19) as

(M(λ )−N(λ ))ŷ(λ )

=
{(

I−
∫ 0

−r
eλθ D(θ)dθ

)
−R(λ ,A)

[∫ 0

−r
eλθ dη(θ)+

∫ 0

−r
eλθ AD(θ)dθ

]}
ŷ(λ )

=
∫ 0

−r
eλθ D(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ +R(λ ,A)

[
φ0−

∫ 0

−r
D(θ)φ1(θ)dθ

]
+R(λ ,A)

[∫ 0

−r
dη(θ)

∫ 0

θ

eλ (θ−τ)
φ1(τ)dτ+∫ 0

−r
AD(θ)

∫ 0

θ

eλ (θ−τ)
φ1(τ)dτdθ + f̂ (λ )

]
,

which immediately yields that

ŷ(λ ) = M−1(λ )
[
I−N(λ )M−1(λ )

]−1
{∫ 0

−r
eλθ D(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ

+R(λ ,A)
[
φ0−

∫ 0

−r
D(θ)φ1(θ)dθ

]
+R(λ ,A)

[∫ 0

−r
eλθ dη(θ)

∫ 0

θ

e−λτ
φ1(τ)dτ+∫ 0

−r
eλθ AD(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ

]
+R(λ ,A) f̂ (λ )

}
.

(20)

Then, by virtue of (17), it is immediate to see that for large ℜ(λ ),
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ŷ(λ ) = Ĝ(λ )
[
(λ I−A)

(∫ 0

−r
eλθ D(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ

)
+

φ0−
∫ 0

−r
D(θ)φ1(θ)dθ

+
∫ 0

−r
eλθ dη(θ)

∫ 0

θ

e−λτ
φ1(τ)dτ+∫ 0

−r
eλθ AD(θ)

∫ 0

θ

e−λτ
φ1(τ)dτdθ + f̂ (λ )

]
= Ĝ(λ )

[
φ0−

∫ 0

−r
eλθ D(θ)φ1(0)dθ +

∫ 0

−r
eλθ D(θ)

∫ 0

θ

e−λτ dφ1(τ)dθ

+
∫ 0

−r
eλθ dη(θ)

∫ 0

θ

e−λτ
φ1(τ)dτ + f̂ (λ )

]
.

(21)

Therefore, from (18) it follows that

ŷ(λ ) = x̂(λ )

for sufficiently large ℜ(λ ). By the uniqueness of Laplace transforms and the almost
everywhere strong continuity of y(t) and x(t) on R+, we obtain that

y(t) = x(t) for almost all t ∈ R+,

which proves the desired result. Lastly, we shall prove (11) for f ∈ L2
loc(R+;X). To

this end, it suffices to prove (11) for t ∈ [0,T ] with any fixed T ≥ 0. For a given
f ∈ L2

loc(R+;X) and T ≥ 0, we define the truncated function fT (t) = χ[0,T ](t) f (t).
Then fT (·) ∈ L2(R+;X)∩ L1(R1;X) and the corresponding solution yT (t) of (5)
satisfies (11) for all t ≥ 0. Since yT (t) = y(t) for t ∈ [0,T ], then (11) is true for all
f (·) ∈ L2

loc(R+;X). The proof is now complete. ut

3 Neutral Resolvent Operators

For each λ ∈C1, we define the densely defined, closed linear operator ∆(λ ,A,η ,D)
by

∆(λ ,A,η ,D) = λ I−A−
∫ 0

−r
eλθ dη(θ)−

∫ 0

−r
λeλθ D(θ)dθ .

The neutral resolvent set ρ(A,η ,D) is defined as the set of all values λ in C1 for
which the operator ∆(λ ,A,η ,D) has a bounded inverse in X .

Proposition 1. (i) Let x ∈ X, then
∫ t

0 G(s)xds ∈D(A) for almost all t ∈R+, and the
relation
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A
∫ t

0
G(s)xds = G(t)x− x−

∫ t

0

∫ 0

−r
dη(θ)G(s+θ)xds

−
∫ 0

−r
D(θ)G(t +θ)xdθ , t ∈ R+, x ∈ X ,

(22)

holds almost everywhere.
(ii) Let x ∈ D(A), then

∫ t
0 G(s)Axds ∈ X for almost all t ∈ R+, and the commu-

tative relation∫ t

0
G(s)Axds = G(t)x− x−

∫ t

0

∫ 0

−r
G(s+θ)dη(θ)xds

−
∫ 0

−r
G(t +θ)D(θ)xdθ , t ∈ R+, x ∈D(A),

(23)

holds almost everywhere.

Proof. We first prove the claim (i). For any x ∈ X and ε > 0, let A(ε) = ε−1(S(ε)−
I). We calculate A(ε)

∫ t
0 G(s)xds as follows:

A(ε)
∫ t

0
G(s)xds = ε

−1
∫ t

0

{
S(ε)

[
S(s)+

∫ 0

−r
D(θ)G(s+θ)dθ

+
∫ s

0
S(s−u)

(∫ 0

−r
dη(θ)G(u+θ)+∫ 0

−r
AD(θ)G(u+θ)dθ

)
du

]
−G(s)

}
xds

= ε
−1

∫ t

0

{
G(s+ ε)−G(s)+(S(ε)− I)

∫ 0

−r
D(θ)G(s+θ)dθ−∫ 0

−r
D(θ)G(s+θ + ε)dθ

+
∫ 0

−r
D(θ)G(s+θ)dθ −

∫
ε

0
S(ε − v)

[∫ 0

−r
dη(θ)G(s+ v+θ)

+
∫ 0

−r
AD(θ)G(s+ v+θ)dθ

]
dv

}
xds, t ≥ 0.

(24)

Note the strong continuity of G(t) and it is not difficult for us to deduce that
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lim
ε→0+

A(ε)
∫ t

0
G(s)xds = lim

ε→0+
ε
−1

∫
ε

0

(
G(t + s)−G(s)

)
xds

+
∫ t

0

∫ 0

−r
AD(θ)G(s+θ)xdθds− lim

ε→0+
ε
−1

(∫ t

0

∫ 0

−r
D(θ)G(s+θ + ε)dθds

−
∫ t

0

∫ 0

−r
D(θ)G(s+θ)dθ

)
xds−

∫ t

0

∫ 0

−r
dη(θ)G(s+θ)xds−∫ t

0

∫ 0

−r
AD(θ)G(s+θ)xdθds

= G(t)x− x− lim
ε→0+

ε
−1

(∫ t

0

∫ 0

−r
D(θ)G(s+θ + ε)dθds−∫ t

0

∫ 0

−r
D(θ)G(s+θ)dθds

)
x

−
∫ t

0

∫ 0

−r
dη(θ)G(s+θ)xds.

(25)

However, it is easy to see that

lim
ε→0+

ε
−1

(∫ t

0

∫ 0

−r
D(θ)G(s+θ + ε)dθds−

∫ t

0

∫ 0

−r
D(θ)G(s+θ)dθds

)
x

=
∫ 0

−r
D(θ) lim

ε→0+

{∫
ε

0
ε
−1G(t + s+θ)ds−

∫
ε

0
ε
−1G(s+θ)ds

}
xdθ =∫ 0

−r
D(θ)G(t +θ)xdθ .

(26)

Therefore,
∫ t

0 G(s)xds ∈D(A) for almost all t ∈ R+, and

A
∫ t

0
G(s)xds =G(t)x− x−

∫ t

0

∫ 0

−r
dη(θ)G(s+θ)xds−∫ 0

−r
D(θ)G(t +θ)xdθ , t ∈ R+,

(27)

almost everywhere. The proof of (i) is complete.
Next, we intend to prove the relation (23). Firstly, by definition note that for

sufficiently large ℜ(λ ),

∆(λ ,A,η ,D) = (λ I−A)
[
I−R(λ ,A)

∫ 0

−r
eλθ dη(θ)−R(λ ,A)

∫ 0

−r
λeλθ D(θ)dθ

]
,

and by using (15), we have that∥∥∥R(λ ,A)
∫ 0

−r
eλθ dη(θ)+R(λ ,A)

∫ 0

−r
λeλθ D(θ)dθ

∥∥∥
= ‖N(λ )−M(λ )+ I‖ ≤ ‖N(λ )‖+‖I−M(λ )‖→ 0 as ℜ(λ )→+∞.

(28)
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Hence, the bounded inverse[
I−R(λ ,A)

∫ 0

−r
eλθ dη(θ)−R(λ ,A)

∫ 0

−r
λeλθ D(θ)dθ

]−1

exists for sufficiently large ℜ(λ ). For such a ℜ(λ ) it is easy to deduce that

Ĝ(λ )x =
[
I−R(λ ,A)

∫ 0

−r
eλθ dη(θ)−R(λ ,A)

∫ 0

−r
λeλθ D(θ)dθ

]−1
R(λ ,A)x, ∀x∈X .

(29)
For any x ∈D(A), it then follows from (29) that

λ Ĝ(λ )x− x =

λ

[
I−R(λ ,A)

∫ 0

−r
eλθ dη(θ)−R(λ ,A)

∫ 0

−r
λeλθ D(θ)dθ

]−1
R(λ ,A)x

−
[
I−R(λ ,A)

∫ 0

−r
eλθ dη(θ)−R(λ ,A)

∫ 0

−r
λeλθ D(θ)dθ

]−1
R(λ ,A)(λ I−A)

·
[
I−R(λ ,A)

∫ 0

−r
eλθ dη(θ)−R(λ ,A)

∫ 0

−r
λeλθ D(θ)dθ

]
x

=
[
I−R(λ ,A)

∫ 0

−r
eλθ dη(θ)−R(λ ,A)

∫ 0

−r
λeλθ D(θ)dθ

]−1
R(λ ,A)

·
{

λ I−
(

λ I−A−
∫ 0

−r
eλθ dη(θ)−

∫ 0

−r
λeλθ D(θ)dθ

)}
x

= Ĝ(λ )
(

A+
∫ 0

−r
eλθ dη(θ)+

∫ 0

−r
λeλθ D(θ)dθ

)
x.

(30)

On the other hand, note that the following Laplace transform holds∫
∞

0
e−λ t

(∫ t

0

{
G(s)Ax+

∫ 0

−r
G(s+θ)dη(θ)x

}
ds+

∫ 0

−r
G(t +θ)D(θ)xdθ

)
dt

= λ
−1Ĝ(λ )

(
A+

∫ 0

−r
eλθ dη(θ)+

∫ 0

−r
λeλθ D(θ)dθ

)
x,

(31)

for sufficiently large ℜ(λ ). Therefore, by (30), (31) and the uniqueness of Laplace
transforms, we have that for all x ∈D(A),

G(t)x− x =
∫ t

0

{
G(s)Ax+

∫ 0

−r
G(s+θ)dη(θ)x

}
ds+∫ 0

−r
G(t +θ)D(θ)xdθ , t ∈ R+,

(32)

almost everywhere. This completes the proof of (ii). ut
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4 Adjoint Theory

In the sequel we shall assume that X is reflexive. We intend to establish an adjoint
theory of neutral functional differential equations. Let ψ∗ = (ψ∗

0 ,ψ∗
1 ) ∈ X ∗. The

“formal” transposed neutral system of (4) on X∗ is defined by

d
dt

[
y∗(t)−

∫ 0

−r
D∗(θ)y∗(t +θ)dθ

]
= A∗y∗(t)+

∫ 0

−r
dη

∗(θ)y∗(t +θ)+ f ∗(t),

t > 0,

y∗(0) = ψ
∗
0 , y∗0(·) = ψ

∗
1 (·),ψ∗ = (ψ∗

0 ,ψ∗
1 ) ∈X ∗,

(33)

where η∗(θ), D∗(θ) and A∗ denote the adjoint operators of η(θ), D(θ) and A,
respectively, and f ∗ ∈ L1([0,T ];X∗). It is well known that A∗ generates a C0-
semigroup S∗(t) on X∗ which is the adjoint of S(t), t ≥ 0. Hence, we can construct
a fundamental solution G∗(t) which is characterized as the unique solution of

G∗(t) = S∗(t)+
∫ 0

−r
D∗(θ)G∗(t +θ)dθ +

∫ t

0
S∗(t− s)

[∫ 0

−r
dη

∗(θ)G∗(θ + s)

+
∫ 0

−r
A∗D∗(θ)G∗(s+θ)dθ

]
ds, t ≥ 0,

G∗(t) = O, t < 0.

(34)

We denote by G∗(t) the adjoint of G(t), t ∈ R1. The following theorem shows that
G∗(t) = G∗(t) for all t ∈ R1.

Theorem 3. Let G∗(t) be the solution of (34). Then

G∗(t) = G∗(t) for almost all t ∈ R1.

Proof. Since G(t) satisfies (7), then

G∗(t) = S∗(t)+
∫ 0

−r
G∗(t +θ)D∗(θ)dθ +

∫ t

0

(∫ 0

−r
G∗(s+θ)dη

∗(θ)

+
∫ 0

−r
G∗(s+θ)D∗(θ)A∗dθ

)
S∗(t− s)ds, t ≥ 0.

(35)

Note that S∗(t) is strongly continuous on R+. Then by using (34), (35) and the
Lebesgue dominated convergence theorem, G∗(t)x∗ and G∗(t)x∗ are of exponential
order for each x∗ ∈ X∗. Hence, both G∗(t) and G∗(t) are Laplace transformable.
Taking Laplace transform on both sides of (34), we have for sufficiently large ℜ(λ )
that
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Ĝ∗(λ ) = R(λ ,A∗)+
∫ 0

−r
eλθ D∗(θ)dθ · Ĝ∗(λ )+R(λ ,A∗)

∫ 0

−r
eλθ dη

∗(θ) · Ĝ∗(λ )

+R(λ ,A∗)
∫ 0

−r
eλθ A∗D∗(θ)dθ · Ĝ∗(λ ),

(36)

where R(λ ,A∗) denotes the resolvent of A∗. Similarly to (15), ones can define

M∗(λ ) = I−
∫ 0

−r
eλθ D∗(θ)dθ ,

N∗(λ ) = R(λ ,A∗)
[∫ 0

−r
eλθ dη

∗(θ)+
∫ 0

−r
eλθ A∗D∗(θ)dθ

]
,

(37)

for arbitrary λ ∈ C1 with ℜ(λ ) large enough. It is easy to see that M∗(λ ) → I and
‖N∗(λ )‖ → 0 as ℜ(λ ) → +∞. This implies that for sufficiently large ℜ(λ ), both
M∗(λ )−1 and [I −M∗(λ )−1N∗(λ )]−1 exist. Therefore, by virtue of (37) and (36),
we can rewrite Ĝ∗(λ ) as

Ĝ∗(λ ) =
[
I−M∗(λ )−1N∗(λ )

]−1M∗(λ )−1R(λ ,A∗). (38)

On the other hand, the following equality holds

Ĝ(λ )
(

λ I−A−
∫ 0

−r
eλθ dη(θ)−

∫ 0

−r
λeλθ D(θ)dθ

)
= I (39)

for sufficiently large ℜ(λ ). Substituting λ = λ̄ (complex conjugate) into (39) and
taking its adjoint, we obtain

I =
(

λ̄ I−A−
∫ 0

−r
eλ̄ θ dη(θ)−

∫ 0

−r
λ̄eλ̄ θ D(θ)dθ

)∗
(Ĝ(λ̄ ))∗

=
(

λ I−A∗−
∫ 0

−r
eλθ dη

∗(θ)−
∫ 0

−r
λeλθ D∗(θ)dθ

)
Ĝ∗(λ ),

(40)

so that

Ĝ∗(λ ) =
(

I−A∗−
∫ 0

−r
eλθ dη

∗(θ)−
∫ 0

−r
λeλθ D∗(θ)dθ

)−1
. (41)

Note that we have
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R(λ ,A∗)−1M∗(λ )
[
I−M∗(λ )−1N∗(λ )

]
= R(λ ,A∗)−1[M∗(λ )−N∗(λ )]

= R(λ ,A∗)−1
{

I−
∫ 0

−r
eλθ D∗(θ)dθ−

R(λ ,A∗)
[∫ 0

−r
eλθ dη

∗(θ)+
∫ 0

−r
eλθ A∗D∗(θ)dθ

]}
= λ I−A∗− (λ I−A∗)

∫ 0

−r
eλθ D∗(θ)dθ −

∫ 0

−r
eλθ dη

∗(θ)−
∫ 0

−r
eλθ A∗D∗(θ)dθ

= λ I−A∗−
∫ 0

−r
λeλθ D∗(θ)dθ −

∫ 0

−r
eλθ dη

∗(θ).

(42)

Thus, ones have by virtue of (41) and (42) that

Ĝ∗(λ ) =
[
I−M∗(λ )−1N∗(λ )

]−1M∗(λ )−1R(λ ,A∗),

which, together with (38), immediately implies that for sufficiently large ℜ(λ ),

Ĝ∗(λ ) = Ĝ∗(λ )

and then by the uniqueness of Laplace transforms,

G∗(t) = G∗(t), t ∈ R+,

almost everywhere. Since G∗(t) = G∗(t) = O if t < 0, the desired result follows now.

Note that the adjoint B∗(θ), D∗(θ) of B(θ), D(θ) defined in (33) satisfy

B∗(·), D∗(·) ∈ L2([−r,0];L (X∗)),

respectively. For arbitrary ψ∗ = (ψ∗
0 ,ψ∗

1 )∈X∗×W 1,2([−r,0];X∗), the mild solution
y∗(t, f ∗,ψ∗) of the adjoint equation (33) exists and may be represented by

y∗(t, f ∗,ψ∗) = G∗(t)ψ∗
0 +V∗(t,0)ψ∗

1 (0)+
∫ 0

−r
U∗(t,θ)ψ∗

1 (θ)dθ

+
∫ 0

−r
V∗(t,θ)ψ∗

1 (θ)′dθ +
∫ t

0
G∗(t− s) f ∗(s)ds,

(43)

where

U∗(t,θ) =
∫

θ

−r
G∗(t−θ + τ)dη

∗(τ) ∈ L2([−r,0];L (X∗)
)
, θ ∈ [−r,0], (44)

and

V∗(t,θ) =
∫

θ

−r
G∗(t−θ + τ)D∗(τ)dθ ∈ L2([−r,0];L (X∗)

)
, θ ∈ [−r,0]. (45)
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Note that the operators U∗(t,θ) and V∗(t,θ) in (44) and (45) are not necessarily
identical with the adjoints U∗(t,θ) and V ∗(t,θ) of U(t,θ) and V (t,θ), respectively.
In particular, by an argument similar as for Proposition 1 ones can easily obtain the
following theorem.

Theorem 4. (i) Let x∗ ∈ X∗, then
∫ t

0 G∗(s)x∗ds ∈ D(A∗) for almost all t ∈ R+, and
the relation

A∗
∫ t

0
G∗(s)x∗ds = G∗(t)x∗− x∗−

∫ t

0

∫ 0

−r
dη

∗(θ)G∗(s+θ)x∗ds

−
∫ 0

−r
D∗(θ)G∗(t +θ)x∗dθ , t ∈ R+, x∗ ∈ X∗,

(46)

holds almost everywhere.
(ii) Let x∗ ∈ D(A∗), then

∫ t
0 G∗(s)A∗x∗ds ∈ X∗ for almost all t ∈ R+, and the com-

mutative relation∫ t

0
G∗(s)A∗x∗ds = G∗(t)x∗− x∗−

∫ t

0

∫ 0

−r
G∗(s+θ)dη

∗(θ)x∗ds

−
∫ 0

−r
G∗(t +θ)D∗(θ)x∗dθ , t ∈ R+, x∗ ∈D(A∗),

(47)

holds almost everywhere.

5 Optimal Control

Let T > 0 and U be a separable Banach space. Consider the following neutral hered-
itary controlled system on X :

d
dt

[
y(t)−

∫ 0

−r
D(θ)y(t +θ)dθ

]
= Ay(t)+

∫ 0

−r
dη(θ)y(θ + t)+ f (t)+Q(t)u(t),

t ∈ [0,T ],

y(0) = φ0, y0 = φ1, φ = (φ0,φ1) ∈W 1,2, u ∈Uad ,

(48)

where A, η , D are given as in (4), f ∈ L2([0,T ];X), Uad ⊂ L2([0,T ];U) and Q ∈
L∞([0,T ];L (U,X)).

The quantities y(·), u(·), Q and Uad in (48) denote a system state, a control, a
controller and a class of admissible controls, respectively. It is known by virtue of
Theorem 2 that the following form
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y(t) = G(t)
[
φ0−

∫ 0

−r
D(θ)φ1(θ)dθ

]
+

∫ 0

−r
U(t,θ)φ1(θ)dθ +

∫ 0

−r
V (t,θ)φ ′

1(θ)dθ

+
∫ t

0
G(t− s) f (s)ds+

∫ t

0
G(t− s)Q(s)u(s)ds

= y(t, f ,φ)+
∫ t

0
G(t− s)Q(s)u(s)ds, t ≥ 0,

(49)

is the mild solution of (48) where y(t, f ,φ) is given by (11).

5.1 Existence of Optimal Control

In what follows, the admissible set Uad is assumed to be closed and convex in
L2([0,T ];U). Let J = J(u) be the integral convex cost given by

J = R(y(T ))+
∫ T

0

(
P(y(t), t)+L(u(t), t)

)
dt, (50)

where R : X →R1, P : X× [0,T ]→R1 and L : U× [0,T ]→R1. We are interested in
the following control problem on the finite interval I = [0,T ]: find a control u ∈Uad
which minimizes the cost J subject to (48).

Assumption A1:

(1) R : X → R1 is continuous and convex, and there exists a constant c0 > 0 such
that R(x)≥−c0 on X ;

(2) P : X × [0,T ] → R1 is measurable in t ∈ [0,T ] for each x ∈ X and continu-
ous, convex in x ∈ X for t ∈ [0,T ], and there exists a constant c1 > 0 such that
P(x, t)≥−c1 on X × [0,T ];

(3) L : U × [0,T ] → R1 satisfies that for any u ∈ Uad , L(u(t), t) is integrable on
[0,T ] and the functional Γ : Uad → R1 given by

Γ (u) =
∫ T

0
L(u(t), t)dt

is continuous and convex. Moreover, there exists a monotone increasing func-
tion θ0 ∈C(R+;R1) such that limr→∞ θ0(r) = ∞ and

Γ (u) =
∫ T

0
L(u(t), t)dt ≥ θ0(‖u‖L2([0,T ];U)) for u ∈Uad .

Theorem 5. Assume that the assumption A1 is satisfied. Then there exists a control
u0 ∈Uad that minimizes the cost J in (50).

Proof. Let {un} be a minimizing sequence of J such that
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inf
u∈Uad

J(u) = lim
n→∞

J(un) = m0.

By virtue of A1, it follows that

J(u)≥ θ0(‖u‖L2([0,T ];U))− c0− c1T for u ∈Uad .

Hence, a standard argument with limr→∞ θ0(r) = ∞ yields that the minimizing se-
quence {un} is bounded in L2([0,T ];U), which, together with the closedness of Uad ,
implies that there exists a subsequence (which we denote it again by {un}) of {un}
and a u0 ∈Uad such that

un → u0 weakly in L2([0,T ];U). (51)

We denote yun(t) and yu0(t) the mild solutions of (48) corresponding to un and u0,
respectively. For any fixed x∗ ∈ X∗ and t ∈ [0,T ], since G(t) = O if t < 0, then we
have that for any t ≥ 0,

〈yun(t),x∗〉X ,X∗ = 〈y(t, f ,φ),x∗〉X ,X∗ +
∫ t

0
〈un(s),Q∗(s)G∗(t− s)x∗〉U,U∗ds, (52)

where y(t, f ,φ) is the mild solution of (48) corresponding to Q(·) = O. Since Q(t)∈
L (U,X) and G(t) is piecewise strongly continuous on [0,T ], it is easy to see that
the function Q∗(·)G∗(t−·)x∗ belongs to L2([0,T ];U∗). Hence, by virtue of (51) and
(52), it follows that

〈yun(t),x∗〉X ,X∗ → 〈y(t, f ,φ),x∗〉X ,X∗ +
∫ t

0
〈u0(s),Q∗(s)G∗(t− s)x∗〉U,U∗ds

= 〈y(t, f ,φ),x∗〉X ,X∗ +
〈∫ t

0
G(t− s)Q(s)u0(s)ds,x∗

〉
X ,X∗

= 〈yu0(t),x∗〉X ,X∗ as n → ∞,

(53)

i.e.,

yun(t)→ yu0(t) weakly in X as n → ∞. (54)

It is well known that continuity plus convexity imply weak lower semi-continuity.
Then the condition (1) in Assumption A1 and (54) with t = T imply

lim
n→∞

R(yun(T ))≥ R(yu0(T )). (55)

In a similar way, we have

lim
n→∞

P(yun(t), t)≥ P(yu0(t), t), t ∈ [0,T ]. (56)

It follows via Fatou’s lemma that
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lim
n→∞

∫ T

0
P(yun(t), t)dt ≥

∫ T

0
lim
n→∞

P(yun(t), t)dt ≥
∫ T

0
P(yu0(t), t), t ∈ [0,T ].

(57)
As for the term

∫ T
0 L(un(t), t)dt, it is clear from (3) in Assumption A1 that

lim
n→∞

Γ (un)≥ Γ (u0) =
∫ T

0
L(u0(t), t)dt. (58)

Therefore, by (55), (57) and (58) we have

m0 = inf
u∈Uad

J(u)≥ lim
n→∞

R(yun(T ))+ lim
n→∞

∫ T

0
P(yun(t), t)dt + lim

n→∞

Γ (un)

≥ R(yu0(T ))+
∫ T

0

[
P(yu0(t), t)+L(u0(t), t)

]
dt

= J(u0) >−∞,

(59)

so that m0 = J(u0). This proves that u0 is the optimal solution for J.

5.2 Optimality Condition

In this subsection, we shall seek necessary optimality conditions of the optimal so-
lution u for J in (50). The existence of optimal solutions is assumed but not the
closedness of Uad .

Assumption A2:

(1) R : X → R1 is continuous and Gâteau differentiable, and the Gâteau derivative
R′(x) ∈ X∗ for each x ∈ X ;

(2) P : X × [0,T ] → R1 is measurable in t ∈ [0,T ] for each x ∈ X and continuous,
convex on X for t ∈ [0,T ], and furthermore there exist functions ∂xP : X ×
[0,T ]→ X∗, θ1 ∈ L1([0,T ];R1), θ2 ∈C(R+;R1) such that:

(a) ∂xP(x, t) is measurable in t ∈ [0,T ] for each x ∈ X and continuous in x ∈ X
for t ∈ [0,T ] and the value ∂xP(x, t) is the Gâteau derivative of P(x, t) in the
first argument for (x, t) ∈ X × [0,T ], and

(b) ‖∂xP(x, t)‖X∗ ≤ θ1(t)+θ2(‖x‖X ) for (x, t) ∈ X × [0,T ];

(3) L : U × [0,T ] → R1 is measurable in t ∈ [0,T ] for each z ∈ U and continu-
ous, convex on U for each t ∈ [0,T ]. Moreover, there exist function θ3(·) ∈
L1([0,T ];R1) and constant M > 0 such that

|L(z, t)| ≤ θ3(t)+M‖z‖2
U for (z, t) ∈U × [0,T ].

Lemma 1. [12] Consider the function

J(v) = J1(v)+ J2(v)
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for any v ∈ L2([0,T ];U) where we assume that the functions Ji(v), i = 1, 2, are
continuous and convex. Further assume that the function v→ J1(v) is differentiable.
Then the unique element u in Uad satisfying J(u) = infv∈Uad J(v) is characterized by

J′1(u)(v−u)+ J2(v)− J2(u)≥ 0 for all v ∈Uad . (60)

Now we are in a position to state one of the main theorems in this section.

Theorem 6. Suppose that the assumption A2 holds and u ∈Uad is an optimal solu-
tion for J in (50). Then the integral inequality∫ T

0
〈v(t)−u(t),−Q∗(t)p(t)〉U,U∗dt +

∫ T

0

(
L(v(t), t)−L(u(t), t)

)
dt ≥ 0

for all v ∈Uad

(61)

holds, where

p(t) =−G∗(T − t)R′(yu(T ))−
∫ T

t
G∗(s− t)∂xP(yu(s),s)ds (62)

satisfies that for t ∈ [0,T ],

d
dt

[
p(t)−

∫ 0

−r
D∗(θ)p(t +θ)dθ

]
+A∗p(t)+∫ 0

−r
dη

∗(θ)p(t−θ)−∂xP(yu(t), t) = 0,

p(T ) =−R′(yu(T )), p(t) = 0, t ∈ (T,T + r],

(63)

in the weak sense.

Proof. By virtue of the assumption A2, we have by Lebesgue’s dominated conver-
gence theorem that

(J−Γ )′(u)(v−u) =
〈∫ T

0
G(T − s)Q(s)(v(s)−u(s))ds,R′(yu(T ))

〉
X ,X∗

+
∫ T

0

〈∫ s

0
G(s− τ)Q(τ)(v(τ)−u(τ))dτ,∂xP(yu(s),s)

〉
X ,X∗

ds.

(64)

Note that all integrals in (64) are well defined by making use of the assumption A2.
The first term of (64) can be written as∫ T

0
〈v(s)−u(s),Q∗(s)G∗(T − s)R′(yu(T ))〉U,U∗ds. (65)

Using the standard Fubini lemma, the second term of (64) is transformed as
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0

∫ s

0
〈G(s− τ)Q(τ)(v(τ)−u(τ)),∂xP(yu(s),s)〉X ,X∗dτds

=
∫ T

0
〈v(τ)−u(τ),Q∗(τ)

∫ T

τ

G∗(s− τ)∂xP(yu(s),s)ds〉U,U∗dτ.

(66)

If we define p(t) by (62) and apply Lemma 1 to the mapping J = (J−Γ )+Γ , then
the relations (64), (65) and (66) yield the inequality (61). For the last statement, note
that by virtue of (43), the function

−G∗(t)R′(yu(0))−
∫ t

0
G∗(t− s)∂xP(yu(T − s),T − s)ds, t ∈ [0,T ],

satisfies

d
dt

[
y∗(t)−

∫ 0

−r
D∗(θ)y∗(t +θ)dθ

]
= A∗y∗(t)+

∫ 0

−r
dη

∗(θ)y∗(t +θ)

−∂xP(yu(T − t),T − t), t ∈ [0,T ],
y∗(0) =−R′(yu(0)), y∗(θ) = 0, θ ∈ [−r,0).

(67)

A change of variable t → T − t yields the desired result. The proof is now complete.
ut

5.3 Maximum Principle

In view of Theorem 6, we can obtain from (61) the following “integral” maximum
principle:

max
v∈Uad

∫ T

0

(
〈v(t),Q∗(t)p(t)〉U,U∗ −L(v(t), t)

)
dt =∫ T

0

(
〈u(t),Q∗(t)p(t)〉U,U∗ −L(u(t), t)

)
dt.

(68)

It is possible to improve this result to establish the so-called “pointwise” maximum
principle for the convex cost (50). To this end, the assumption A2 is assumed at the
moment. Let the admissible set Uad be

Uad =
{

u ∈ L2([0,T ];U) : u(t) ∈U(t), t ∈ [0,T ]
}

, (69)

where the (time varying) control domain U(t)⊂U , t ∈ [0,T ], satisfies

Assumption A3:

(1) U(t) is closed and convex in U for each t ∈ [0,T ];
(2) For any t ∈ [0,T ], z ∈ IntU(t), the interior of U(t), there exists an ε0 > 0 such

that
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z ∈
( ⋂

s∈(t,t+ε0)

U(s)
)
∪

( ⋂
s∈(t−ε0,t)

U(s)
)
. (70)

Theorem 7. Let u ∈Uad be an optimal solution for J in (50). Then

max
z∈U(t)

{
〈Q(t)z, p(t)〉X ,X∗ −L(z, t)

}
= 〈Q(t)u(t), p(t)〉X ,X∗ −L(u(t), t), t ∈ [0,T ],

where p(t) is given by (62).

Proof. Let t ∈ [0,T ] and z∈ IntU(t). Since z satisfies (70), we suppose, for instance,
z ∈ ∩s∈(t,t+ε0)U(s). Then it is easy to see that for any ε > 0 the function

vε(s) =

{
u(s), s ∈ [0, t) or (t + ε,T ],
z, s ∈ [t, t + ε],

(71)

belongs to Uad for the u in (61). Substituting vε for v in (61) and dividing the result-
ing inequality by ε , we obtain

1
ε

∫ t+ε

t

{
〈z−u(s),−Q∗(s)p(s)〉U,U∗ +

(
L(z,s)−L(u(s),s)

)}
ds ≥ 0. (72)

Since all the integrands in (72) are integrable on [0,T ] by virtue of the assumption
A2, the Lebesgue density theorem can apply. Then by letting ε → 0 in (72), we have

〈z,Q∗(t)p(t)〉U,U∗−L(z, t)≤ 〈u(t),Q∗(t)p(t)〉U,U∗−L(u(t), t), t ∈ [0,T ]. (73)

Since the duality pairing 〈z,Q∗(t)p(t)〉U,U∗ is continuous in z, we see from (73) that
the maximum principle is true for such t ∈ [0,T ]. ut
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