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Abstract In this article parameter estimation problems for a nonlinear elliptic prob-
lem are considered. Using Tikhonov regularization techniques the identification
problems are formulated in terms of optimal control problems which are solved
numerically by an augmented Lagrangian method combined with a globalized se-
quential quadratic programming algorithm. For the discretization of the partial dif-
ferential equations a Galerkin scheme based on proper orthogonal decomposition
(POD) is utilized, which leads to a fast optimization solver. This method is utilized
in a bilevel optimization problem to determine the parameters for the Tikhonov reg-
ularization. Numerical examples illustrate the efficiency of the proposed approach.

1 Introduction

Parameter estimation problems for partial differential equations are very important
in application areas. Using Tikhonov regularization techniques (see, e.g., [20]) these
problems can often be expressed in terms of constrained optimal control problems
so that numerical optimization can be applied to solve the parameter identification
problems numerically. Here, we apply an augmented Lagrangian method (see, e.g.,
[2, 3]) combined with a globalized sequential quadratic programming (SQP) algo-
rithm as described in [6]. In this article we continue our successful development
of solution methods for parameter estimation problems for nonlinear elliptic partial
differential equations (PDEs); see [12, 13, 22]. The goal is to derive efficient, ro-
bust and fast solvers where the PDEs are discretized by a Galerkin scheme based
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on proper orthogonal decomposition. POD is a powerful method to derive low-
dimensional models for nonlinear systems. It is based on projecting the system onto
subspaces consisting of basis elements that contain characteristics of the expected
solution. This is in contrast to, e.g., finite element techniques, where the elements
of the subspaces are uncorrelated to the physical properties of the system that they
approximate. It is successfully used in different fields including signal analysis and
pattern recognition (see, e.g., [5]), fluid dynamics and coherent structures (see, e.g.,
[7, 15]) and more recently in control theory (see, e.g., [10]). The relationship be-
tween POD and balancing is considered in [9, 19, 23]. In contrast to POD approx-
imations, reduced-basis element methods for parameter dependent elliptic systems
are investigated in [1, 8, 16, 18], for instance.

In the present paper we determine numerically parameters in a Tikhonov regular-
ization. This regularization technique is used to formulate the identification problem
in terms of an optimal control problem. For any admissible parameter p € P,y C RY
let u(p) denote the solution to the underlying semilinear elliptic PDE. The identi-
fication problem is to find a parameter p* € P,q so that for a given (measurement)
data u, (e.g., on the boundary or on a part of the domain) the quantity ||u* — uy|| is
minimal, where u* = u*(p*). For a precise introduction we refer to Sect. 2. For the
Tikhonov regularization we take a k¥ > 0 and solve the optimal control problem

1 K
fniI;E e —ug||* + > |p|I> subjectto (s.t.) usolves PDEforpePy. (1)
p

By (u*, p*) we denote a (local) optimal solution to (1). Then we introduce the fol-
lowing bilevel optimization problem:

min|[u® —ug|®> st (p*,u¥) solves (1) for k > K, 2)
K

with x,; > 0. To solve (2) numerically we apply the MATLAB routine fmincon,
where the solution pair (p*,u*) to (1) is computed by a fast optimization solver
based on a POD Galerkin projection.

Note that the inner optimization problem (1) is non-convex, thus there might exist
more than one local minimum. By varying the Tikhonov parameter k we search an
optimal x* so that (1) for k¥ = x* yields a solution (p*,u*) for which the error in a
given norm between the state ™ and the noisy measuring data u, is minimal.

A similar approach compared to the method of solving the bilevel problem above
is to fix K, but start the inner optimization loop with varying starting values (p®,u).
In this work we only deal with the previous case (bilevel problem with varying x),
though. In both methods we exploit the fact that — using the POD approximation —
one optimization loop takes very little time. Thus, it is no matter of temporal cost to
solve an optimization problem like (1) many times successively.

The paper is organized in the following manner. In Sect. 2 we introduce the
underlying parameter estimation problem. The POD method is briefly reviewed in
Sect. 3. The POD basis is used to derive a POD Galerkin projection for the optimal
control problem. Finally, numerical examples are carried out in the last section. In
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particular, we apply the reduced-basis method to obtain appropriate snapshots for
the POD basis computation in one of the numerical tests.

2 The Identification Problem

Let Q CR? d = 2,3, be an open, bounded and connected set with Lipschitz-
continuous boundary I' = dQ. Letg > d/2+ 1 and r > d + 1. For given f € LI(Q),
geL(I'), ¢,q € L*(Q) with ¢ > ¢, > 0 in £ almost everywhere (a.e.) and
qg>4q,>0in Q a.e., 0 > 0 we consider the nonlinear problem

—cAu+qu+te*=f inQ,
(3)

J
c—u—&—ou:g inl.
on

There exists a unique weak solution u € H} (Q) = H'(2) NL™(Q) satisfying

/cVu-V(p+(qu+e“)(pdx+/Gu(pds:/ f(pdx+/g(pds @)
Q r Q0 r

for all ¢ € H'(Q), where the Banach space Hbl () is endowed with the common
norm ||u||Hb1 @) = lullg @)+ [ullz=(o) foru e H] (). Moreover, this solution be-

longs to C(Q). For a proof we refer the reader to [4], for instance.

2.1 Estimation of Diffusion and Potential Parameter

The goal of the first estimation problem is to identify the parameter pair
b= (qu) ePald: {ﬁ: (5aQ) €R2’52Ca andQZ%}

from measurements for the weak solution u € H bl (£) to (3) on the boundary I" and
on a subset £,, of the domain Q. Let a;,, denote nonnegative weights, &, &,
be positive regularization parameters and ¢z, € R stand for nominal parameters.
Introducing the quadratic cost functional

Jl(p,u):%/F|u—ur|2ds—}—%/Q |u—ug|2dx+%|c—cd‘2+%|q—qd‘2

for p = (c,q) € R? and u € H'(Q) we express the identification problem as the
following constrained optimal control problem

minJi(p,u) st p=(c,q) € Py and u € H}(Q) satisfy (4). )
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Throughout the paper we suppose that (5) admits at least one local solution x* =
(p*,u*) with p* = (c*,q*) € PL,.

2.2 Estimation of Varying Diffusion Parameter

In the second example we suppose that Q is split into two measurable disjunct
subsets ;, i = 1,2, and that ¢ is constant on £2;, i.e., ¢ = ¢; on £; for i = 1,2.
Hence, we introduce the set of admissible parameters by

Pzd:{ﬁ:(él,ﬁz)GRZ}Eianfori:1,2}‘ (©6)

al

The goal is to identify ¢ from given measurements for the weak solution u € Hé (Q)
to (3) on the boundary I'. Let a; denote a nonnegative weight, ki, k» be positive
regularization parameters and ¢ 4,¢2 ¢ € R stand for nominal potential parameters.
Introducing the cost functional

D(p,u) = %/}_|u—u1—‘2ds+ % ’6‘1 _Cl,d’2+% ‘C—Czﬁd|2 @)

for p = (c1,¢2) € R? and u € H'(Q) we express the identification problem as the
following constrained optimal control problem

minJy(p,u) st p=(ci,c2) € P5 and u € H) (Q) satisfies (4). (8)

We assume that (8) admits at least one local solution x* = (p*, u*) with p* = (¢}, c3).

3 The POD Method

In this section we introduce briefly the POD method. Suppose that for points p; €
P, j=1,...,nand i = 1,2, we know (at least approximately) the solution u; to
(3), e.g., by utilizing a finite element or finite difference discretization. We set

V =span{u,...,u,} C Hy(Q) C H'(Q) )
with d = dim'V < n. Then the POD basis of rank ¢ < d is given by the solution to

n 2
min Z Bj HM/ - Z{ (uj, 'l’i>H1(.Q) Vi

Vi Ve i H'(Q)

st (Vo Wiy (g =6j (10)

with nonnegative weights {8 j};le. For the choice of the f;’s we refer to [11, 14].
The solution to (10) is characterized by the eigenvalue problem

Ry =Ny, 1<i</U, (1)
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where Ay > A, > ... > A > ... > Ay > 0 denote the eigenvalues of the linear,
bounded, self-adjoint, and nonnegative operator % : H'(Q) — V defined by

Fz=Y Bjluj,2) i gyu; forze H'(Q); (12)
j=1

see [7, 14, 21]. Suppose that we have determined a POD basis {y;}/_,. We set
vi=span{yi,...,y} CVCH(Q). (13)

Then the following relation holds

n L 2 d
Y Bifwi- Y v v = X A (14)
= i=1 @ @) 4,
i.e., a rapid decay of the eigenvalues A; indicates that the vectors uy,...,u, can be

well approximated by taking only a few ansatz functions {y; le with ¢ < d.
Now we introduce the POD Galerkin scheme for (4) as follows: the function

ul =Y uly; €V solves

/cVu[~Vl//dX+/ (qué+e”£>lydx+/6u£y/ds
Q Q r

(15)
= / fq/dx+/ gwds forall y eV’
Q r
Problem (15) is a nonlinear system for the £ unknown modal coefficients u{ ey uf €
R.If ,
_Yiah
&) = T ~1 forl<d, (16)

holds, (15) is called a low-dimensional model for (4).

4 Numerical Experiments

In this section we present numerical examples for the identification problem. The
numerical tests are executed on a standard 3.0 GHz desktop PC. We are using the
MATLAB 7.1 package together with FEMLAB 3.1.

Run 1 (Problem (5)) Suppose that the domain €2 is given by

2
A

Q= {XZ (x1,x2)] B2

12 < 1} R (17)

see Fig. 1. In (3) we choose f =5, 6 =3/2,and g = —1. For ¢,y = 1.2 and g, = 11
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Q, Qm, and points where data is available
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Fig. 1 Run 1: Domain Q and the interior points for which we have measurements.

we calculate a finite element (FE) solution u”, = u"(c,x,qe.) with 1275 degrees of
freedom. The parameter pox = (Cex,¢ex) s OUr reference parameter.

Basis computation. We distinguish three different techniques in deriving a basis for
the Galerkin projection.

1) First we compute 20 snapshots by varying the parameters ¢ and ¢ simultane-
ously. We define the equidistant grid

(c,q) € {0.2,0.8,1.4,2} x {1,8,15,22,29} (18)

and calculate a POD model with £ = 6 basis functions. In (10) we choose trape-
zoidal weights. Thus, we consider

4 5 B
mlnz Z ﬁ,’ﬁj

£ 2
W (enaj) = Y (' (eia) wom o Vi (19)
i=1j=1 =1 H(Q

)

where

C) —C1
:72 5

Cit] —Ci—1 . C4—C3
pi= T fori=23, py= 2

i .

(20)
and

Br=D = a3, f=T28 )
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2)

3)

The relative error in the H'-norm between the FE state «_and the POD state
ul, = u(Coxy gex) is 6.2-1074,

Alternatively, we use the reduced-basis method (see [8, 16, 18], for instance)
in order to obtain a 6-dimensional model of the elliptic system. The idea of
the reduced-basis method is to choose the parameter instances for which the
snapshots are computed intelligently and to use these snapshots directly as basis
in the Galerkin projection. Therefore we apply the simplified formula taken

from [17]:
1
q,ﬁb:exp(—lny—f—kﬁq)—} fork=1,...,N, (22)

where we set ¥ = 0.02, gjuax =29, N =3, and 89 = In(¥ - gmax + 1) /N. Hence,
we find that the parameters for which the snapshots should be computed are:
q? = 4.3, ¢ = 12.68, and g5’ = 29. Analogously we set ¥ = 0.02, Cynax = 2,
M =2, and 8° =In(Y- cpax + 1) /M and choose

1
clr(b:exp(fln7+k'5c)*? k=1,...M, (23)

hence we find ¢/ = 0.91 and ¢’ = 2. Thus, the 6 reduced-basis elements are
the solutions u”(c, ¢) to (3) computed for the parameter instances

(c,q) € {0.91,2} x {4.3,12.68,29} (24)

The relative error in the H'-norm between the FE state !, and the reduced order
model u’? = u’(c,y,qeyx) is 1.7-1074.

The best approximation of the FE state can be obtained by combining both
methods (POD and reduced-basis). Therefore we compute 20 snapshots at the
parameter instances calculated by the reduced-basis ansatz (i.e., we set N =5
and M = 4 and use the formula from above again). We find that the snapshots
should be computed at the 20 snapshot pairings

(c,q) € {0.43,0.91,1.43,2} x {2.23,5.57,10.53,17.95,29}.  (25)

Then we construct a 6-dimensional POD basis. The relative error in the H'-
norm between the FE state 1, and this reduced order model u%y” = u’™® (Cex, gex)
is now about 1074,

We proceed by using this POD basis for the reduced-order modeling. The com-
putation of the POD solution takes 437 seconds (411 seconds thereof are for the
computation of the 20 FE snapshots whereas one solve of the nonlinear POD
model only takes 0.06 seconds). From Table 1 it can be observed that the rel-
ative error between the FE state and the POD state decreases as the number of

POD basis functions increases.

Identification problem. Now turn to the identification problem. Let ¢, = g, = 0.01
to ensure that both parameters are positive. Moreover, we choose c¢; = g4 =0, i.e.,
no a-priori knowledge on the parameters is available. We add a random noise of 8%
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(=4 (=5 (=6 (=7

H"‘]’_"‘ArbHHl<g)
1.2e-3 5.3e-4 1.0e-4 1.1e-5

Tt )

Table 1 Run 1: Relative errors between the FE state and the POD state for increasing number of
POD basis functions.

to the FE state u!.. For the weights in the cost functional we take a; = @ = 1000,
and we choose

Q= {x = (x1,02) € Q] (x1 +0.1)2 + (12— 0.1)2 < 0.852} (26)

for the partial measurement. Furthermore, we suppose that measurements are not
given on the whole subdomain £2,,, but only on 381 points (of totally 762 grid
points) in €,,. The points for which we have measurements (besides the points on
the boundary) are indicated by the circles in Fig. 1. Now we consider the bilevel
optimization problem (compare (2))

min /|uK—ur|2ds st (c*,q%,u¥) solves (5) for K., k, > 107'¢  (27)
r

Kk=(Ke,Kq)

By using the MATLAB function fmincon we determine — after 56.2 seconds —
the optimal weighting parameters ;= 0.1691 and k; = 10~®, For these optimal
weights we solve the reduced order model by means of an augmented Lagrange-
SQP algorithm and use the POD Galerkin projection. Altogether 50 SQP iterations
are required and we find numerically an optimal solution (¢*,¢*,u*) to (27); in par-
ticular, ¢* = 1.1972 and ¢* = 10.9827. Thus,

Hpex_P*||2

TR ~0.16% with pex = (Cex,qex) and p* = (¢*,4"). (28)
ex

The relative errors in the state variable to the exact (unnoisy) data and to the noisy
data are stated for 3 different norms in Table 2. The CPU time for the optimization is

llw—ull 2y Hu(l)*uHLzm Hu(z)*uHLz(r) ||M(3)*MHL2<I-)

[ Y Py 7y

u=ul, 0004592 0.091625 0.013806 0.018451
u=ur 0.037749 0.095162  0.042008  0.044252

Table 2 Run 1: Relative errors of the suboptimal state u* compared to the exact data !, and to the
noisy data ur- for the optimal (k7, &) = (0.1691,10~'°) and for (k') k'), j=1,2,3.

small compared to the POD computation time. The POD optimization algorithm for
(5) only takes 1.7 seconds. For comparison, when we use the FE discretized model



Estimation of Regularization Parameters by POD Model Reduction 11

in the augmented SQP-Lagrange algorithm, it takes about 290 seconds to obtain a

solution. Note that for the choice Kél) =5k} and Kq(l) = K;, we find the solution

¢1) = 1.1746 and ¢(!) = 10.9273, which gives

)
wzo.m with p1) = (¢, ¢(1) (29)

and the relative errors are as stated in Table 2. The same can be done with K‘¢<~2) =

0.2- & and k{”) = ;. We find ¢ = 1.2021 and ¢®) = 10.9947. Thus,

0
W ~0.05% with p® = (c?,¢?). (30)

Finally, we choose KC(S) = K€(,3) = 1076, The resulting parameters are c® =1.2034
and ¢©® = 10.9978, which gives

0
W ~0.04% with p@ = (c¥,¢4) GD

We observe that the relative error in the coefficients is smaller for both p(® and
p3) compared to p*. However, we observe from Table 2 that the relative errors of
the PDE solution u* on the boundary I" are the smallest ones. Note that in (27) the
term ||u — ur||? is minimized. For the absolute errors we refer to Table 3. Also the

||M**'4||L2(r) ||u(1)*“”L2(r) Hu(z)*“HLZ(r) H”Q)*“HLZ(F)

u=ul, 0.000166 0.003320 0.000500 0.000667
u=ur 0.001363 0.003437 0.001517 0.001598

Table 3 Run 1: Absolute errors of the suboptimal state u* compared to the exact data " and to
the noisy data ur for the optimal (k, ;) = (0.1691, 10719) and for (ng)., Kéj)), j=1,2,3.

h

absolute errors are for k* the smallest ones, in particular also the error of u* — ug,.

Run 2 (Problem (8)) Now let Q = {x = (x1,x2) |x} +x3 < 1} be the open unit cir-
cle in R? and the subdomains Q;, €, be given as

2 =0\2, &={x=(mmu)euIL L0t 41 3
with a = 0.5 and b = 0.4; see Fig. 2. In (3) we choose ¢ =20, f =4, 0 =2, and
g(x) =10+cos(mx; /2)-cos(mx2/2). For pex = (1 ex, C2.ex) = (0.8,1.3) we compute
the FE solution with 1070 degrees of freedom. To derive a POD basis we choose the
diffusion values p; = (n,m;) € R7, 1 < j < n, with
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Domain Q and subdomains Q1 and Q2

0.8

0.6

0.4

0.2

Fig. 2 Run 2: Domain 2 and subdomains €, €2,.

j=5k—1)+ilfor1 <kI<5, m=05+ fork=1,....,5  (33)

and compute the corresponding FE solutions u7 =u"(p ;) € H'(Q) to (3), i.e., we
have n = 25 snapshots {u’j’};’= 1- The computation of the snapshots requires 307
seconds. Next we compute the POD basis of rank ¢ = 7 as described in Sect. 3 and

construct the POD model «/(¢) which has a relative error to the FE state u of
1.38-10~*. Now (2) has the form

min / |uK —up|2ds s.t. (cF,cX,u®) solves (8) for k1, kK > 10716, (34)
k=(k1,K) JI

In the optimization algorithm for noisy data (3%) we choose a; = 100 and find

the optimal weight x* = (x{,%5) = (0.7534,0.0023). The corresponding opti-

mal coefficient is p* = (0.7873,1.3247). Moreover, the relative and absolute er-

rors in the state variable are stated in Table 4. If we take x(!) = (K‘l(l), K‘z(l)) =

iz |

T2 |u* _"‘”LZ(F)

u=u", 0004276 0.016811
u=ur 0012713 0.050184

Table 4 Run 2: Relative errors of the suboptimal state u* compared to the exact data !, and to the
noisy data ur for k1 = 0.7534 and x, = 0.0023.
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(107'°,10719) instead of x*, the result is p(!) = (0.7902,1.4185) solves (8). Then,

|Pex = PV |2/ | Pexll2 & 8%, but || pex — p*[l2/ || Pex|2 = 2%.
Now, let the subdomains €2 and €2, be given as

Q=0\D, Qb= {x = (x1,12) € Q|2+ (12 +0.1)% < 0.752}. (35)

We choose pex = (Clex; €2.ex) = (1.2,0.9), all other parameters in (3) remain the
same. Moreover, the measuring data u; is much more noisy (15%) than before.
In this case we observe that — due to the bigger noise — both components of
the ideal x* are far away from zero (see Fig. 3). The cost funtional in (2) for
k1) = (1071,1071) has a value of 0.2757, while for k* = (0.3465,0.6675) the
cost is only 0.2745. However, the relative error in the parameter p = (pi,p2)
is much smaller for the solution using k(! rather than k*. We observe ||pe, —
P2/ || Pexll2  0.8%, but || pex — p*[|2/ || pexl|2 ~ 14%.

Fig. 3 Run 2: Cost functional in (2) for a grid of different k¥ = (k, k2) (left plot) and contour plot
of the cost functional. The absolute minimum is approximately at k* = (0.35,0.67) (right plot).
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