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Abstract This work concerns the factorization of a second order elliptic bound-
ary value problem defined in a star-shaped bounded regular domain, in a system of
uncoupled first order initial value problems, using the technique of invariant em-
bedding. The family of domains is defined by a homothety. The method yields an
equivalent formulation to the initial boundary value problem by a system of two un-
coupled Cauchy problems. The singularity at the origin of the homothety is studied.

1 Introduction

The invariant embedding technique consists in embedding the initial problem in a
family of similar problems depending on a parameter, which are solved recursively.
It has been used by Bellman [1] and Lions [6] (in the infinite dimensional case)
to derive the optimal feedback law in linear-quadratic optimal control problems. It
yields a factorization of the optimality system. In our approach, the invariant em-
bedding is used spatially. Each problem is defined over a subdomain limited by a
mobile boundary (see Fig. 1), depending on the parameter. Defining an operator re-
lating the value of the solution, or its derivative, with the mobile boundary condition
(Dirichlet-Neumann or Neumann-Dirichlet, for example), we find a family of oper-
ators on functions defined on the mobile boundary satisfying a Riccati equation. The
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method applied to cylindrical domains has been presented in [4, 5]. Here we partic-
ularize the study to the two dimensional Poisson equation with a Dirichlet boundary
condition: −∆u = f , in Ω , u|Γa

= 0. The assumption on the shape of the domain is
less restrictive than in [4, 5] and the invariant embedding is realized by a homothety.
The family of curves which limits the subdomains defined by the invariant embed-
ding are homothetic to one another, and we consider the moving boundary starting
on the outside boundary of the domain and shrinking to a point. We show some re-
sults dealing with the singularity that will appear at that point. The factorization of
the boundary value problem can be viewed as an infinite dimensional generalization
of the block Gauss LU factorization.

Fig. 1 The star-shaped domain

2 Definition of the Problem and Regularization

Let Ω ⊂R2 be an open bounded regular domain containing the origin O, star-shaped
with respect to O, with boundary Γa = ∂Ω . We consider the Poisson problem with
Dirichlet data

(P)

{
−∆u = f , in Ω

u|Γa = 0,
(1)

where f ∈ L2(Ω). In spite of the particularization to the Laplacian operator in this
definition, we believe that the same procedure could be applied to any strongly el-
liptic self-adjoint problem.

Applying the (spatial) invariant embedding method to this problem, we must start
defining a family of subdomains limited by a boundary sweeping over the initial
domain Ω .

We start dealing with the case where the family of curves which limits the subdo-
mains, starts on the boundary of the domain and shrinks homothetically to a point.
Since the mobile boundary reduces to a point, a singularity will necessary appear
at that point. We must make, as a consequence, a regularization around this point
and a possible way to do it, is to define an auxiliary domain, where we introduce a
fictitious boundary around the singular point. In this case, however, we introduce a
perturbation of the solution so, naturally, we must choose the new boundary condi-
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tion, in a way that we can obtain the convergence of this auxiliary problem to the
initial one. With this purpose, we will consider the following auxiliary problem:

(Pε)


−∆uε = f , in Ω \Ωε

uε |Γa = 0∫
Γε

∂uε

∂n
dΓ = 0, uε |Γε

is constant.

(2)

Here, Ωε is an open regular domain verifying Ω ε ⊂ Ω and Γε , which is homo-
thetical to Γa with ratio ε < 1, is the boundary of Ωε . This problem is well posed.
We can justify the choice of the boundary conditions on Γε with the fact that the
condition ∫

Γε

∂uε

∂n
dΓε = 0 (3)

corresponds to a null total flux.
It’s easy to see that Uε = {uε ∈H1(Ω \Ωε) : uε|Γa

= 0 ∧ uε|Γε

is constant} is a
Hilbert space and that the variational formulation of problem (Pε) is

uε ∈Uε∫
Ω\Ωε

∇uε ∇vε dΩ =
∫

Ω\Ωε

f vε dΩ , ∀vε ∈Uε .
(4)

We prove that when ε → 0, problem (Pε) reduces to problem (P), that is, uε ,
the solution of problem (Pε), converges to u, the solution of problem (P), by
means of the next theorem, which proof can be found in [3]:

Theorem 1. Let uε (respectively, u) be the solution of (Pε )
(
respectively, (P)

)
and

ũε =

{
uε , in Ω \Ωε

uε = uε |Γε
, in Ωε .

(5)

Then,
ũε →

ε→0
u, H1(Ω)− strong. (6)

3 Invariant Embedding in a Star-shaped Domain

We start defining polar coordinates by means of x = ρ cos(θ),y = ρ sin(θ), 0 < ρ ≤
ϕ(θ), where ρ = ϕ(θ) defines the boundary Γa. Here, ϕ(θ) ∈ C 1([0,2π]) is such
that ϕ(2π) = ϕ(0), ϕ ′(2π) = ϕ ′(0) and 0 < k0 < ϕ(θ) < k1. In the coordinates
(τ,θ), where τ = ρ/ϕ(θ), the Laplace equation becomes
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1

ϕ2(θ)
+

(ϕ ′(θ))2

ϕ4(θ)

)
∂ 2u
∂τ2 +

(
−2

ϕ ′(θ)
ϕ3(θ)

)
1
τ

∂ 2u
∂τ∂θ

+
(
−ϕ ′′(θ)

ϕ3(θ)
+2

(ϕ ′(θ))2

ϕ4(θ)
+

1
ϕ2(θ)

)
1
τ

∂u
∂τ

+
1

ϕ2(θ)
1
τ2

∂ 2u
∂θ 2 =− f

(7)

Now, let α be the angle (OM,n) where M is a point on Γa and n is the outward
normal to Γa at M. We assume that −π/2 < α0 ≤ α ≤ α1 < π/2. We consider the
homothety of center O and ratio 0 < τ < 1, which transforms Ω to Ωτ with bound-
ary Γτ , and the following system of curvilinear coordinates: for M ∈ Ω , (τ, t) are
such that M′, the image of M by a 1/τ homothety, belongs to Γa and t,0 ≤ t < t0,
is the curvilinear abscissa of M′ on Γa (where t0 is the length of Γa). This new sys-
tem of coordinates and the one defined previously are related through the equalities
cos(α)dt = ϕ dθ and tan(α) = ϕ ′

ϕ
. In these coordinates, the exterior normal to Γτ

can be written as
∂

∂n
=− 1

ϕ cos(α)
∂

∂τ
+

tan(α)
τ

∂

∂ t
, and the Laplace equation takes

the form

− ∂

∂τ

(
τ

ϕ cos(α)
∂uτ

∂τ
− tan(α)

∂uτ

∂ t

)
− ∂

∂ t

(
− tan(α)

∂uτ

∂τ
+

ϕ

τ cos(α)
∂uτ

∂ t

)
= τ f ϕ cos(α).

(8)

Using the technique of invariant embedding, we embed problem (Pε ) in a family
of similar problems defined on Ω \Ωτ = {(s, t)∈ ]τ,1[×]0, t0[}, for every τ ∈ [ε,1).

For each problem we impose the Neumann boundary condition
∂uτ

∂n
|Γτ

= h, where
Γτ is the moving boundary:

(Pτ,h)



− ∂

∂τ

(
τ

ϕ cos(α)
∂uτ

∂τ
− tan(α)

∂uτ

∂ t

)
− ∂

∂ t

(
− tan(α)

∂uτ

∂τ
+

ϕ

τ cos(α)
∂uτ

∂ t

)
= τ f ϕ cos(α), in Ω \Ωτ

uτ |Γa = 0

uτ|t=0
= uτ|t=t0

,
∂uτ

∂ t
|t=0 =

∂uτ

∂ t
|t=t0

∂uτ

∂n
|Γτ

=− 1
ϕ cos(α)

∂uτ

∂τ
+

tan(α)
τ

∂uτ

∂ t
= h.

(9)

In order to apply a method similar to the one used by Lions [6] for decoupling
the optimality conditions associated to an optimal control problem of a parabolic
equation, we define P(τ)h = γτ|Γτ

, where γτ is the solution of
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∂

∂τ

(
τ

ϕ cos(α)
∂γτ

∂τ
− tan(α)

∂γτ

∂ t

)
+

∂

∂ t

(
− tan(α)

∂γτ

∂τ
+

ϕ

τ cos(α)
∂γτ

∂ t

)
= 0, in Ω \Ωτ

γτ|Γa
= 0

∂γτ

∂n
|Γτ

= h

γτ|t=0
= γτ|t=t0

,
∂γτ

∂ t
|t=0 =

∂γτ

∂ t
|t=t0

(10)

and r(τ) = βτ|Γτ

, where βτ is the solution of



− ∂

∂τ

(
τ

ϕ cos(α)
∂βτ

∂τ
− tan(α)

∂βτ

∂ t

)
− ∂

∂ t

(
− tan(α)

∂βτ

∂τ
+

ϕ

τ cos(α)
∂βτ

∂ t

)
= τ f ϕ cos(α), in Ω \Ωτ

βτ|Γa
= 0

∂βτ

∂n
|Γτ

= 0

βτ|t=0
= βτ|t=t0

,
∂βτ

∂ t
|t=0 =

∂βτ

∂ t
|t=t0 .

(11)

By linearity of (Pτ,h), the following relation holds true

uτ(τ) = P(τ)h+ r(τ). (12)

Then taking h =
∂u
∂n

(τ) on Γτ , it is clear that uτ(τ ′) = u(τ ′) for τ ≤ τ ′ ≤ 1. Then

u(τ) = P(τ)
∂u
∂n

(τ)+ r(τ). (13)

Taking the derivative of the previous equality, in a formal way, with respect to τ , we
can derive (cf Sect. 4) the following system of uncoupled, first order in τ , equations:
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∂P
∂τ

− ϕ sin(α)
τ

∂

∂ t
P+

P
τ

∂

∂ t

(
ϕ sin(α)

)
+

P
τ2

∂

∂ t

(
ϕ cos(α)

∂

∂ t
P
)

−P
τ

=−ϕ cos(α) I

∂ r
∂τ

− ϕ sin(α)
τ

∂ r
∂ t

+
P
τ2

∂

∂ t

(
ϕ cos(α)

∂ r
∂ t

)
=−P f ϕ cos(α)

P
(
− 1

ϕ cos(α)
∂u
∂τ

+
tan(α)

τ

∂u
∂ t

)
+ r = u.

(14)

Again from (13), and considering the initial conditions on Γa, we also obtain
P(1) = 0 and r(1) = 0, which corresponds to the initial conditions of the first two
equations above. We will define the initial condition for the last equation in Sect. 5.
The Riccati equation for P which depends only on the operator and the shape of the
domain in problem P , can be solved for decreasing τ once for all. For each data
( f ), the problem is now solved by integrating two Cauchy problems: the one on r
for τ decreasing from 1 to 0 and the one on u backwards in τ .

4 Arriving to the Uncoupled System

Considering uε , solution of (4) and vε , solution of the homogeneous equation ∆vε =
0 with arbitrary boundary condition on Γε and using the Green formula, we obtain
in the (τ, t) coordinates

∫ 1

ε

∫ t0

0

τ

ϕ cos(α)
∂vε

∂τ

∂uε

∂τ
− tan(α)

(
∂vε

∂ t
∂uε

∂τ
+

∂vε

∂τ

∂uε

∂ t

)
+

ϕ

τ cos(α)
∂vε

∂ t
∂uε

∂ t
dt dτ =−ε

∫ t0

0

(
1

ϕ cos(α)
∂vε

∂τ
− tan(α)

ε

∂vε

∂ t

)∣∣∣∣
τ=ε

uε |τ=ε dt.

(15)

A similar formula holds for Ω \Ωτ = {(s, t) ∈ ]τ,1[×]0, t0[}.
Deriving the resulting equality with respect to the variable τ , we obtain

∂

∂τ

(∫ 1

τ

∫ t0

0

(
s

ϕ cos(α)
∂vτ

∂τ

∂uτ

∂τ
− tan(α)

(
∂vτ

∂ t
∂uτ

∂τ
+

∂vτ

∂τ

∂uτ

∂ t

)
+

ϕ

scos(α)
∂vτ

∂ t
∂uτ

∂ t

)
dt ds

)
=− ∂

∂τ

(∫ t0

0

(
τ

ϕ cos(α)
∂vτ

∂τ
− tan(α)

∂vτ

∂ t

)
uτ dt

)
⇒∫ t0

0

(
τ

ϕ cos(α)
∂vτ

∂τ

∂uτ

∂τ
− tan(α)

(
∂vτ

∂ t
∂uτ

∂τ
+

∂vτ

∂τ

∂uτ

∂ t

)
+

ϕ

τ cos(α)
∂vτ

∂ t
∂uτ

∂ t

)
dt

=
∫ t0

0

∂

∂τ

((
τ

ϕ cos(α)
∂vτ

∂τ
− tan(α)

∂vτ

∂ t

)
uτ

)
dt =−

∫ t0

0

∂

∂τ

(
τ

∂vτ

∂n
uτ

)
dt.

(16)
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Then, using (13) and the Laplace equation (8) we have successively,

∫ t0

0

(
τ

ϕ cos(α)
∂vτ

∂τ

∂uτ

∂τ
− tan(α)

(
∂vτ

∂ t
∂uτ

∂τ
+

∂vτ

∂τ

∂uτ

∂ t

)
+

ϕ

τ cos(α)
∂vτ

∂ t
∂uτ

∂ t

)
dt

=−
∫ t0

0

(
∂

∂τ

(
τ

∂vτ

∂n

)
P

∂uτ

∂n
+ τ

∂vτ

∂n
∂P
∂τ

∂uτ

∂n
+ τ

∂vτ

∂n
P

∂

∂τ

(
∂uτ

∂n

)
+

∂

∂τ

(
τ

∂vτ

∂n

)
r + τ

∂vτ

∂n
∂ r
∂τ

)
dt

=
∫ t0

0

(
∂

∂ t

(
tan(α)

∂vτ

∂τ
− ϕ

τ cos(α)
∂vτ

∂ t

)
P

∂uτ

∂n
− τ

∂vτ

∂n
∂P
∂τ

∂uτ

∂n
+

∂vτ

∂n
P

∂uτ

∂n

+
∂vτ

∂n
P

[
∂

∂ t

(
tan(α)

∂uτ

∂τ
− ϕ

τ cos(α)
∂uτ

∂ t

)
− f τϕ cos(α)

]
+

∂

∂ t

(
tan(α)

∂vτ

∂τ
− ϕ

τ cos(α)
∂vτ

∂ t

)
r− τ

∂vτ

∂n
∂ r
∂τ

)
dt.

(17)

Therefore, using once again (13) and integrating by parts in t the right hand side,
the equality becomes∫ t0

0

(
τ

ϕ cos(α)
∂vτ

∂τ

∂uτ

∂τ
− tan(α)

∂vτ

∂ t
∂uτ

∂τ
− tan(α)

∂vτ

∂τ

∂uτ

∂ t

+
ϕ

τ cos(α)
∂vτ

∂ t
∂uτ

∂ t

)
dt

=
∫ t0

0

(
− tan(α)

∂vτ

∂τ

∂uτ

∂ t
+

ϕ

τ cos(α)
∂vτ

∂ t
∂uτ

∂ t

− τ
∂vτ

∂n
∂P
∂τ

∂uτ

∂n
+

∂vτ

∂n
P

∂uτ

∂n
− ∂vτ

∂ t
tan(α)

∂uτ

∂τ
+

∂vτ

∂ t
ϕ

τ cos(α)
∂uτ

∂ t

− ∂vτ

∂n
P f τϕ cos(α)− τ

∂vτ

∂n
∂ r
∂τ

)
dt.

(18)

After simplification, we obtain∫ t0

0

τ

ϕ cos(α)
∂vτ

∂τ

∂uτ

∂τ
dt

=
∫ t0

0

(
− τ

∂vτ

∂n
∂P
∂τ

∂uτ

∂n
+

∂vτ

∂n
P

∂uτ

∂n
+

∂vτ

∂ t
ϕ

τ cos(α)
∂uτ

∂ t

− ∂vτ

∂n
P f τϕ cos(α)− τ

∂vτ

∂n
∂ r
∂τ

)
dt.

(19)

Expressing the t and τ derivatives in terms of normal derivatives, we get
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0

(
τϕ cos(α)

∂vτ

∂n
∂uτ

∂n
−ϕ sin(α)

∂vτ

∂n
∂

∂ t

(
P

∂uτ

∂n

)
−ϕ sin(α)

∂vτ

∂n
∂ r
∂ t

−ϕ sin(α)
∂

∂ t

(
P

∂vτ

∂n

)∂uτ

∂n

)
dt

=
∫ t0

0

(
− τ

∂vτ

∂n
∂P
∂τ

∂uτ

∂n
+

∂vτ

∂n
P

∂uτ

∂n
− τ

∂vτ

∂n
∂ r
∂τ

+
ϕ cos(α)

τ

∂

∂ t

(
P

∂vτ

∂n

) ∂

∂ t

(
P

∂uτ

∂n

)
+

ϕ cos(α)
τ

∂

∂ t

(
P

∂vτ

∂n

)∂ r
∂ t

− ∂vτ

∂n
P f τϕ cos(α)

)
dt.

(20)

From the principle of invariant embedding,
∂uτ

∂n
on Γτ is arbitrary so that we can

separate the parts depending and independent of this quantity, obtaining(
τϕ cos(α)

∂vτ

∂n
,

∂uτ

∂n

)
−

(
ϕ sin(α)

∂

∂ t
◦P

∂vτ

∂n
,

∂uτ

∂n

)
−

(
ϕ sin(α)

∂vτ

∂n
,

∂

∂ t
◦P

∂uτ

∂n

)
=

(
− τ

∂vτ

∂n
,

∂P
∂τ

∂uτ

∂n

)
+

(
∂vτ

∂n
,P

∂uτ

∂n

)
+

(
ϕ cos(α)

τ

∂

∂ t
◦P

∂vτ

∂n
,

∂

∂ t
◦P

∂uτ

∂n

) (21)

and (
ϕ sin(α)

∂vτ

∂n
,

∂ r
∂ t

)
=

(
P

∂vτ

∂n
, f τϕ cos(α)

)
+

(
τ

∂vτ

∂n
,

∂ r
∂τ

)
−

(
ϕ cos(α)

τ

∂

∂ t
◦P

∂vτ

∂n
,

∂ r
∂ t

)
,

(22)

where
∂vτ

∂n
is an arbitrary test function. This corresponds to (14).

5 Defining u(0)

In this section we study the limit of problem (Pε) when ε goes to zero, that is when
the hole shrinks to the origin. This is useful to define an initial condition for the
equation for u in the factorized form.

Theorem 2. Considering uε the solution of problem (Pε ), uε |Γε
is bounded by a

constant not depending on ε .

Proof. The first part of the proof consists on showing that we have

infΓε
wε ≤ uε |Γε

≤ supΓε
wε , (23)
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where wε ∈ H1
0 (Ω) is the solution of the problem

−∆wε = f̃ε =

{
f , Ω \Ωε

0, Ωε .
(24)

From −∆wε = f̃ε , in H1
0 (Ω), we find∫

Ω

−∆wε =
∫

Ω

f̃ε =
∫

Ω\Ωε

f =−
∫

Γa

∂wε

∂n
. (25)

On the other hand, from the formulation of problem (Pε ) and choosing a test func-
tion equal to one, we find∫

Ω\Ωε

−∆uε =
∫

Ω\Ωε

f =−
∫

Γε

∂uε

∂n
−

∫
Γa

∂uε

∂n
=−

∫
Γa

∂uε

∂n
. (26)

Therefore, we have the equality
∫

Γa

∂uε

∂n
=

∫
Γa

∂wε

∂n
.

Let us now suppose that uε |Γε
= cε < infΓε

wε . Then, uε −wε satisfies:
−∆(uε −wε) = 0, in Ω \Ωε

(uε −wε)|Γa
= 0

(uε −wε)|Γε
< 0.

(27)

From (27), and using the maximum principle, we can also conclude that uε −
wε ≤ 0, in Ω \Ωε and, in fact, uε −wε < 0, in Ω \Ωε . As a consequence, using the

definition of directional derivative, we find that
∂uε

∂n
|Γa ≥

∂wε

∂n
|Γa .

From
∂ (uε −wε)

∂n
|Γa ≥ 0 and

∫
Γa

∂ (uε −wε)
∂n

= 0 we conclude that

∂ (uε −wε)
∂n

|Γa = 0. Therefore, we have uε −wε < 0, in Ω \Ωε , and (uε −wε) = 0,

in Γa. Using Lemma 3.4 of [2], for each point of Γa, we find
∂ (uε −wε)

∂n
> 0 a.e. on

Γa and we reach a contradiction. So, we must have infΓε
wε ≤ cε .

Analogously, one can show that cε ≤ supΓε
wε .

For the second part of the proof, using [2] (Theorem 8.15, page 189, with q = 4),
we can show that ‖wε‖L∞(Ω) is bounded by a constant not depending on ε (it only
depends on constants concerning ‖ f‖L2(Ω) and the size of Ω ) and the result follows.

ut

Now we are able to establish the value of u on the origin.

Theorem 3. Let f ∈ C 0,α(Ω) Then, when ε converges to 0, uε|Γε

converges to u(0).

Proof. Considering u the solution of problem (P), since f ∈ C 0,α(Ω), we have
u ∈ C 2,α(Ω). Let, as previously, −∆wε = f̃ε , wε ∈ H1

0 (Ω). Therefore, vε = wε −u



12 Jacques Henry, Bento Louro, and Maria C. Soares

satisfies −∆(vε) = g̃ε , where g̃ε =

{
− f , Ωε

0, Ω \Ωε .
Using again [2] we can show

that ‖vε‖L∞(Ω) ≤ k(‖vε‖L2(Ω) +‖g̃ε‖L2(Ω)), where k is a constant not depending on
ε . When ε → 0 we have ‖vε‖L2(Ω) → 0 and ‖g̃ε‖L2(Ω) → 0, then ‖vε‖L∞(Ω) → 0. So,
for δ > 0 there exists ε > 0 such that |vε(x)| ≤ δ

2 and |u(x)−u(0)| ≤ δ

2 ,∀x∈Ωε∪Γε .
Then, for x∈Γε , |wε(x)−u(0)|= |vε(x)+u(x)−u(0)| ≤ δ and consequently,−δ ≤
infΓε

(wε(x))−u(0) = infΓε
(wε(x)−u(0))≤ supΓε

(wε(x)−u(0)) = supΓε
(wε(x))−

u(0) ≤ δ . Using (23), we find −δ ≤ infΓε
wε − u(0) ≤ uε |Γε

− u(0) ≤ supΓε
wε −

u(0)≤ δ , which implies that uε |Γε
→ u(0), when ε → 0. ut

6 Conclusion

Considering H1
τ,p(I ), where I denotes the interval (0, t0), to be the space of func-

tions v verifying v ∈ L2(I ),
1

cos(α)
∂v
∂ t

∈ L2(I ) and such that v has periodic

boundary conditions v(0) = v(t0), we can define H1/2
τ,p (I ) as the 1/2 interpolate

between H1
τ,p(I ) and L2(I ), and

(
H1/2

τ,p (I )
)′

as the 1/2 interpolate between(
H1

τ,p(I )
)′ and L2(I ). The final result is synthesized as follows - denoting by

(., .) the scalar product in L2(I ), then P, r and uτ satisfy:

1. The operator

P ∈L
(
L2(I ),H1

τ,p(I )
)
∩L

((
H1/2

τ,p (I )
)′

,H1/2
τ,p (I )

)
∩L

((
H1

τ,p(I )
)′

,L2(I )
)

,

(28)

bounded as a function of τ , satisfies, for every h, h̄ in L2(I ), the Riccati equa-
tion (

dP
dτ

h, h̄
)
−

(
ϕ sinα

τ
h,

∂

∂ t
◦Ph̄

)
−

(
∂

∂ t
◦Ph,

ϕ sinα

τ
h̄
)

−
(

ϕ cosα

τ2
∂

∂ t
◦Ph,

∂

∂ t
◦Ph̄

)
−

(
1
τ

h,Ph̄
)

=−
(
ϕ cosα h, h̄

) (29)

in D ′(0,1), with the initial condition P(1) = 0.
2. For every h in H1/2

τ,p (I ), r satisfies the equation(
∂ r
∂τ

,h
)
−

(
ϕ sinα

τ

∂ r
∂ t

,h
)
−

(
ϕ cosα

τ2
∂ r
∂ t

,
∂

∂ t
◦Ph

)
=−(ϕ cosα f ,Ph)

(30)
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in D ′(0,1), with the initial condition r(1) = 0.

3. For every h in
(

H1/2
τ,p (I )

)′
, u satisfies the equation(

1
ϕ cosα

∂u
∂τ

,Ph
)
−

(
tanα

τ

∂u
∂ t

,Ph
)

+ 〈u,h〉
H1/2

τ,p (I ),
(

H1/2
τ,p (I )

)′
= 〈r,h〉

H1/2
τ,p (I ),

(
H1/2

τ,p (I )
)′ (31)

in D ′(0,1), with the initial condition given by Theorem 3.

Moreover, taking Q =
P
τ

as unknown and µ = log(τ) as variable, the above Ric-
cati equation can also take the simpler form(

dQ
dµ

h, h̄
)
−

(
ϕ sinα h,

∂

∂ t
◦Qh̄

)
−

(
∂

∂ t
◦Qh,ϕ sinα h̄

)
−

(
ϕ cosα

∂

∂ t
◦Qh,

∂

∂ t
◦Qh̄

)
=−

(
ϕ cosα h, h̄

)
,

(32)

and, identically, the equation for the residue r becomes(
∂ r
∂ µ

,h
)
−

(
ϕ sinα

∂ r
∂ t

,h
)
−

(
ϕ cosα

∂ r
∂ t

,
∂

∂ t
◦Qh

)
=−

(
e2µ

ϕ cosα f ,Qh
)
,

(33)
with initial conditions, respectively, Q(0) = 0 and r(0) = 0. Then u satisfies(

1
ϕ cosα

∂u
∂ µ

,Qh
)
−

(
tanα

∂u
∂ t

,Qh
)

+ 〈u,h〉
H1/2

τ,p (I ),
(

H1/2
τ,p (I )

)′
= 〈r,h〉

H1/2
τ,p (I ),

(
H1/2

τ,p (I )
)′ (34)

The initial condition on u given by Theorem 3 is now valid at µ = −∞. These
equations allow us to seek an explicit formula for the solution of (P), through
homographic transformation, as the Riccati equation has constant coefficient in µ .

From the numerical point of view, one can consider a spatial discretization of
the problem adapted to the system of coordinates (t,τ) (or (t,µ)), which leads to a
linear system of equations. Then there exists a particular discretization of the system
(32), (33), (34) through which we can recover the Gauss block LU factorization of
this linear system. That is why we claim that the proposed factorization is an infinite
dimensional generalization of the Gauss factorization. But other discretizations exist
that give new directly computable discretizations of the original Poisson boundary
value problem. They will be presented elsewhere.
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