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Abstract In this article, we present the Free Material Optimization (FMO) problem
for plates and shells based on Naghdi’s shell model. In FMO – a branch of structural
optimization – we search for the ultimately best material properties in a given design
domain loaded by a set of given forces. The optimization variable is the full material
tensor at each point of the design domain. We give a basic formulation of the prob-
lem and prove existence of an optimal solution. Lagrange duality theory allows to
identify the basic problem as the dual of an infinite-dimensional convex nonlinear
semidefinite program. After discretization by the finite element method the latter
problem can be solved using a nonlinear SDP code. The article is concluded by
a few numerical studies.

1 Introduction

Structural optimization deals with the problem of finding the stiffest structure sub-
jected to a set of given loads and boundary conditions, when only a limited amount
of material resources is available. Nowadays, this approach plays an important role
in the construction of light-weight structures like airplanes and cars. Large parts
of these objects as, for instance, the fuselage, consist of thin-walled structures like
shells and plates. This is the reason why structural optimization of shells has re-
ceived a lot of attention in the design optimization community over the last couple
of years. For example, shape optimization techniques have been used to vary the ge-
ometry and boundary of a shell with the goal to stiffen the structure [6]. Various ap-
proaches try to identify the optimal topology of a shell in the sense of 0–1–designs.
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For an overview in the case of plates see [4]. On spherical shells it is possible to
calculate the topological derivative and to exploit this information with the purpose
of finding the optimal position of holes [17]. Only recently, free sizing optimization
taking strength and stability constraints into account has been used to improve the
design of shell structures [7].

Another important class of shell design problems is based on material optimiza-
tion. Here the design variables reflect not only the distribution of material in the
design domain, but also the local properties of the material. The methods used in
the area of material optimization differ in the choice of the admissible set of ma-
terials. In [18] a pseudo density of the material is varied using a SIMP-approach.
Rather than cutting the solution space down to 0–1–designs the author proposes to
realize the optimal solution using foams that can be produced in manifold densities.
In aerospace industry the use of composite materials is very common. In [23] the
authors suggest to design composite shells by optimization of the material selection
and fibre angles in a laminated shell structure. It is even possible to consider fully
anisotropic elasticity tensors as admissible set for the design optimization as shown
for Reissner-Mindlin plates in [2]. Finally, there are approaches taking advantage of
adaptive methods – either by changing the parametrization of the design space dur-
ing optimization or by adapting the model via switching between shape and material
optimization; see [20].

In this article, we focus on Free Material Optimization, originally introduced for
the optimal design of solid bodies by [3]. The design variable used in Free Ma-
terial Optimization is the full material tensor at each point of the design domain.
Therefore it yields not only the optimal material distribution, but also the material
properties at each point. Various solution techniques for this problem have been
proposed; see, for example, [25]. Due to the high freedom in the design space the
resulting material/structure is typically hard to manufacture. Nevertheless it gives
valuable information about the optimal material density, symmetry and principal di-
rections, which can be exploited to realize approximations of the optimal design.
One possible realization by tapelayering is described in [13]. In the recent years, the
formulation of the Free Material Optimization problem has been extended to cover
multiple load cases [1], stability control by consideration of global buckling [15]
and stress constraints [16]. In this article we propose a formulation of Free Mate-
rial Optimization based on the linear elastic shell model of Naghdi [21] suited for
thin-walled structures like airplanes, cars and pipes.

2 Naghdi’s Shell Model

We start with a mathematical description of Naghdi’s shell model using the standard
notation e.g. described in [21, 8, 9]. The geometry of a Naghdi shell is described by
the midsurface ω – an open bounded two-dimensional set in Euclidean space, which
can be parametrized by a sufficiently smooth function Φ : R2 →R3, Φ ∈W 2,∞(ω).
This is in contrast to other popular shell models as for example the Kirchhoff-Love
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model, where one starts from a three-dimensional solid material and makes approx-
imations accounting to the thinness of the shell.

Fig. 1 Curvilinear coordi-
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Hence it is advantageous to use curvilinear coordinates denoted by ξ i (in accor-
dance with common notation in shell theory Latin indices run over 1, 2 and 3, while
Greek indices run only over 1 and 2). The covariant basis vectors are then defined
by

aα =
∂Φ

∂ξ α
, a3 =

a1×a2

‖a1×a2‖
. (1)

Moreover, the surface covariant derivative of a vector field v is given by

vα|µ = vα,µ −Γ
λ

αµ vλ , (2)

where vα,µ is the partial derivative of vα with respect to ξ µ and Γ λ
αµ is the Christoffel

symbol of the midsurface
Γ

λ
αµ = aα,µ ·aλ . (3)

Furthermore the fundamental forms of the midsurface are defined by

• first fundamental form: aαβ = aα ·aβ ,
• second fundamental form: bαβ =−a3,β ·aα ,
• third fundamental form: cαβ = bλ

α bλβ .

It turns out that the midsurface alone contains not enough information to describe
bending and shear effects. A remedy is provided by the theory of Cosserat continua:
at each point x ∈ ω a director vector d is attached to the shell, adding the lacking
degrees of freedom [10, 22]. These director vectors can be interpreted as material
lines along the thickness of the shell. The deformation of the loaded shell can be
described by a translation of all points of the midsurface u ∈

[
H1(ω)

]3 and a ro-
tation of the associated director vectors stemming from the group SO(2). As the
rotation of an infinitely-thin straight material line is uniquely defined by a rotation
vector normal to that line we introduce θ ∈

[
H1(ω)

]2 to represent the rotation by
θλ aλ [8]. A component on a3 is not required due to the fact that rotations of the
director vectors around their own axis are neglected. Thus we obtain the following
displacement formula:
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U(ξ 1,ξ 2,ξ 3) = u(ξ 1,ξ 2)+ξ
3
θλ (ξ 1,ξ 2)aλ (ξ 1,ξ 2). (4)

In the remainder of this article, we consider a shell with a Lipschitz boundary ∂ω .
The shell is clamped at parts of the boundary. To this end we partition ∂ω into two
sets ∂ω0 and ∂ω1 which are open in ∂ω , ∂ω = ∂ω0∪∂ω1 and ∂ω0∩∂ω1 = /0. Then
Dirichlet boundary conditions are applied on ∂ω0 and the shell is subjected to forces
and moments on ∂ω1. Using this, we define the set of admissible displacements to
be

U := { (u,θ) ∈ [H1(ω)]5
∣∣∣u = 0 and θ = 0 on ∂ω0}. (5)

As a consequence we obtain
[
H1

0 (ω)
]5 ⊂ U ⊂

[
H1(ω)

]5. It is now possible to
deduce formulas for membrane strains γαβ , bending strains χαβ and shear strains
ζα , respectively:

γαβ (u) =
1
2
(
uα|β +uβ |α

)
−bαβ u3,

χαβ (u,θ) =
1
2

(
θα|β +θβ |α −bλ

β
uλ |α −bλ

α uλ |β

)
+ cαβ u3, (6)

ζα(u,θ) =
1
2

(
θα +u3,α +bλ

α uλ

)
.

The assumption of linear elasticity in Naghdi’s shell model leads to the following
Hooke’s law:

Nλ µ = t Cλ µαβ
γαβ ,

Mλ µ =
t3

12
Cλ µαβ

χαβ , (7)

mλ = t Dλα
ζα .

Here Cλ µαβ and Dλα are the elasticity tensors of the shell. Cλ µαβ is a fourth-order
tensor with the following symmetries:

Cλ µαβ = Cµλαβ , Cλ µαβ = Cλ µβα , Cλ µαβ = Cαβλ µ . (8)

Dλα is a symmetric second order tensor satisfying Dλα = Dαλ . Moreover, the sym-
metric second order tensors Nλ µ and Mλ µ are called force resultant and moment
resultant, respectively, and mλ is the transverse shear force resultant. Finally t is
the thickness of the shell. In the following we assume the thickness of the shell
to be constant. Note however that the main results presented in this article remain
valid for a thickness profile t = t(x), which remains unchanged during optimization.
The symmetry of the tensors allows us to rewrite Hooke’s law using the following
vectors and matrices:

γ =

 γ11

γ22√
2γ12

 , χ =

 χ11

χ22√
2χ12

 , ζ =

(
ζ1

ζ2

)
, (9)
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N =

 N11

N22√
2N12

 , M =

 M11

M22√
2M12

 , m =

(
m1

m2

)
, (10)

C =

 C1111 C1122
√

2C1112

C1122 C2222
√

2C2212√
2C1112

√
2C2212 2C1212

 , D =

(
D11 D12

D12 D22

)
. (11)

Then Hooke’s law takes the form

N(x) = t C(x)γ(u(x)),

M(x) =
t3

12
C(x)χ(u(x),θ(x)), (12)

m(x) = t D(x)ζ (u(x),θ(x))

and the potential energy Π(u,θ) of the Naghdi shell can be written as

Π(u,θ) =
1
2

∫
ω

(
tγ>Cγ +

t3

12
χ
>Cχ + tζ>Dζ

)
dS

−
∫

ω

t f>udS−
∫

∂ω1

(
g>u u+g>θ θ

)
dl,

(13)

where f ∈
[
L2(ω)

]3 is a given force resultant density and gu ∈
[
L2(∂ω1)

]3 and

gθ ∈
[
L2(ω)

]2 are given traction and moment resultant densities, respectively. The
shell is in equilibrium for any (u,θ) ∈U that minimizes the potential energy

min
(u,θ)∈U

Π(u,θ). (14)

It is also possible to treat plates in this context. Assuming a planar midsurface
allows to deduce the Reissner-Mindlin plate model from Naghdi’s shell model. A
planar midsurface has no curvature and thus a constant normal vector a3. This results
in vanishing second and third fundamental forms of the midsurface ω:

bαβ = 0, cαβ = 0. (15)

In this case the formulas for the strains boil down to:

γαβ (u1,u2) =
1
2
(
uα|β +uβ |α

)
,

χαβ (θ) =
1
2
(
θα|β +θβ |α

)
, (16)

ζα(u3,θ) =
1
2

(θα +u3,α) .

The equilibrium state of the plate is again found by minimizing the potential energy
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min
(u,θ)∈U

Π(u,θ) =
1
2

∫
ω

(
tγ>(u1,u2)Cγ(u1,u2)+

t3

12
χ
>(θ)Cχ(θ)

+ tζ>(u3,θ)Dζ (u3,θ)
)

dS−
∫

ω

t f>udS−
∫

∂ω1

(
g>u u+g>θ θ

)
dl.

(17)

When solving the elasticity problem for a plate this can be separated into the
membrane problem

min
(u1,u2)∈U

1
2

∫
ω

tγ>(u1,u2)Cγ(u1,u2)dS−
∫

ω

t ( f1u1 + f2u2) dS

−
∫

∂ω1

(gu1u1 +gu2u2) dl
(18)

and the so-called Reissner-Mindlin problem

min
(u3,θ)∈U

1
2

∫
ω

(
t3

12
χ
>(θ)Cχ(θ)+ tζ>(u3,θ)Dζ (u3,θ)

)
dS

−
∫

ω

t f3u3 dS−
∫

∂ω1

(
gu3u3 +g>θ θ

)
dl.

(19)

3 The Single Load Problem

Up to now we have merely described the physical behavior of the shell. However
our overall goal is to find the stiffest structure which is subjected to a given set of
loads f , gu and gθ . A measure on how much a structure will deform under these
loads is given by the compliance

comp(C,D) =− min
(u,θ)∈U

2ΠC,D(u,θ) = max
(u,θ)∈U

−2ΠC,D(u,θ)

= max
(u,θ)∈U

−
∫

ω

(
tγ>Cγ +

t3

12
χ
>Cχ + tζ>Dζ

)
dS

+2
∫

ω

t f>udS +2
∫

∂ω1

(
g>u u+g>θ θ

)
dl.

(20)

Apparently the compliance is given by twice the negative potential energy in equilib-
rium. In order to find the stiffest structure possible we now minimize the compliance
with respect to the design variables. As we intend to work with Free Material Op-
timization these variables are the full elasticity tensors C and D. We want to allow
for holes and material-no-material situations in the optimal structures, therefore we
choose C ∈ [L∞(ω)]3×3 and D ∈ [L∞(ω)]2×2. As pointed out in Section 2 the matri-
ces have to be symmetric, furthermore they also have to be positive semidefinite as
they describe a physical material:

C = C> � 0, D = D> � 0. (21)
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As a measure for the amount of material used at a certain point x ∈ω we simply use
the summed traces of the matrices t

(
tr(C)+ 1

2 tr(D)
)
. The factor 1

2 is necessary to
be able to compare the results with the three–dimensional solid case. As we want to
limit the material resources, we add the volume constraint∫

ω

t
(
tr(C)+ 1

2 tr(D)
)

dS ≤V. (22)

Finally we add box constraints to avoid arbitrarily high material concentrations at
single points:

0≤ ρ
− ≤ t

(
tr(C)+ 1

2 tr(D)
)
≤ ρ

+. (23)

Summarizing (21), (22) and (23) we obtain the set of admissible elasticity tensors

C :=

(C,D) ∈ [L∞(ω)]3×3× [L∞(ω)]2×2

∣∣∣∣∣∣∣∣∣
C = C> � 0

D = D> � 0∫
ω

t(tr(C(x))+ 1
2 tr(D(x))) dS ≤V

0≤ ρ− ≤ t(tr(C)+ 1
2 tr(D))≤ ρ+


(24)

For simplicity of notation we will assume ρ− = 0. But note that all statements pre-
sented in this paper are also true for positive ρ−. We finally are able to formulate
the single load problem for shells, in which we seek the design variables C and D
which yield the minimal compliance:

min
(C,D)∈C

max
(u,θ)∈U

− 1
2

∫
ω

(
tγ>Cγ +

t3

12
χ
>Cχ + tζ>Dζ

)
dS

+
∫

ω

t f>udS +
∫

∂ω1

(
g>u u+g>θ θ

)
dl.

(25)

Introducing the function

J((C,D),(u,θ)) :=− 1
2

∫
ω

(
tγ>Cγ +

t3

12
χ
>Cχ + tζ>Dζ

)
dS

+
∫

ω

t f>udS +
∫

∂ω1

(
g>u u+g>θ θ

)
dl

(26)

we rewrite the latter optimization problem as

min
(C,D)∈C

max
(u,θ)∈U

J((C,D),(u,θ)) . (27)

In the case of plates we start from the equilibrium problem (17). The uncoupling
into the membrane and the Reissner–Mindlin problem is not possible anymore when
working with Free Material Optimization, as the material tensor C is one of the
optimization variables connecting the membrane and bending terms. Thus the single
load problem for Reissner–Mindlin plates takes the form



10 Stefanie Gaile, Günter Leugering, and Michael Stingl

min
(C,D)∈C

max
(u,θ)∈U

J((C,D),(u,θ)) :=− 1
2

∫
ω

(
tγ>Cγ +

t3

12
χ
>Cχ + tζ>Dζ

)
dS

+
∫

ω

t f>udS +
∫

∂ω1

(
g>u u+g>θ θ

)
dl.

(28)

This problem has already been formulated by Bendsøe and Díaz, who propose a
solution via analytic derivation of the optimal material properties [2].

We now want to show existence of optimal solutions for problem (27). It can be
easily seen that an optimal solution of the single load problem for shells is a saddle-
point of the functional J((C,D),(u,θ)). Thus existence of an optimal point follows
from a Minimax-Theorem.

Theorem 1. Problem (27) has an optimal solution ((C∗,D∗),(u∗,θ ∗)) ∈ C ×U .

The proof uses the modified Minimax-Theorem presented in [19] that allows for
C to be subset of the dual of a non–reflexive Banach–space – in this case L1(ω). The
required ellipticity of Naghdi’s shell model has been shown in [11, 5]. The complete
proof can be found in [12].

4 The Primal Problem

In [24] it has been shown that the Free Material Optimization problem for solid ma-
terial can be transformed into a linear quadratically constrained optimization prob-
lem using duality theory. During this section we show that a similar technique can be
applied on the Free Material Optimization problem for shells resulting in a convex
nonlinear semidefinite program instead of the saddle-point problem given in (27).

Theorem 2. Problem (27) is equivalent to the Lagrange dual problem of

max
(u,θ)∈U

α∈R+
0

βu,l∈L1(ω)
βu,l≥0

∫
ω

t f>udS +
∫

∂ω1

(g>u u+g>θ θ)dl−αV −ρ
+
∫

ω

βudS

subject to
t
2

γ(u)γ(u)>+
t3

24
χ(u,θ)χ(u,θ)>− t(α +βu−βl)E3 � 0 (29)

t
2

ζ (u,θ)ζ (u,θ)>− t
2
(α +βu−βl)E2 � 0

where En denotes the unit matrix in Rn.

In order to prove this theorem we construct the Lagrangian to problem (29). It
can then be shown that this problem is equivalent to the original problem (27). The
proof follows the ideas presented in [24, Theorem 3.3.4] and is given in detail in
[12].
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Problem (29) is a convex nonlinear semidefinite program (SDP). Compared to the
original problem formulation (27) problem (29) has several advantages. The matri-
ces C and D are hidden in the problem as Lagrange multipliers. This significantly
reduces the number of variables in the discrete problem (compare Section 5). Fur-
thermore problem (29) is convex. As t is the thickness of the shell, it is strictly
positive and the matrix constraints of (29) can be simplified to

γ(u)γ(u)>+
t2

12
χ(u,θ)χ(u,θ)>−2(α +βu−βl)E3 � 0 , (30)

ζ (u,θ)ζ (u,θ)>− (α +βu−βl)E2 � 0 .

5 Numerical Treatment

5.1 Discretization

We now intend to solve the infinite-dimensional SDP (29) numerically. For this pur-
pose we discretize the problem by the finite element method [8]. The midsurface
ω is partitioned into M elements ωm. The number of corresponding element nodes
is denoted by n. The elasticity matrices C(x) and D(x) are approximated by ele-
mentwise constant matrices (C1, . . . ,CM) and (D1, . . . ,DM) where Cm ∈ R3×3 and
Dm ∈ R2×2 for all m = 1, . . . ,M. The displacements take the following form

U3D =
n

∑
i=1

λi(r,s)
(

u(i) + z
t
2

θ
(i)
)

, (31)

where the λi(r,s) are bilinear 2D Lagrange shape functions. This assures that the
Reissner-Mindlin assumption – material lines remain straight and unstretched dur-
ing deformation – is fulfilled at all nodes of the mesh. Using (31) the discretized
membrane strain matrix Bγ

i becomes

Bγ

i =

 λi|1 0 −b11λi 0 0
0 λi|2 −b22λi 0 0

1√
2
λi|2

1√
2
λi|1 −

√
2b12λi 0 0

 (32)

The factor
√

2 stems from the vector-matrix-notation introduced in (9). Using this,
the discrete counterpart of the dyadic product γγ> reads

Aγ
m(u) = ∑

i, j∈K

∫
ωm

Bγ

jUU>(Bγ

i )
>dx , (33)

where K is the index set of nodes associated with the element m. Analogously we
derive
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Aχ
m(u) = ∑

i, j∈K

∫
ωm

Bχ

j UU>(Bχ

i )>dx , (34)

Aζ
m(u) = ∑

i, j∈K

∫
ωm

Bζ

j UU>(Bζ

i )>dx . (35)

Replacing the forces and moments in problem (29) by their discrete counterparts we
get the following discrete single load FMO problem for shells:

max
(u,θ)∈U

α∈R+
0

βu,βl∈R+
0

M

n

∑
i=1

(
t fiui−ρ

+
βui
)
+ ∑

i∈∂ω1

(guiui +gθ iθi)dl−V α

subject to
t
2

Aγ
m(u)+

t3

24
Aχ

m(u,θ)− t(α +βu−βl)E3 � 0 (36)

t
2

Aζ
m(u,θ)− t

2
(α +βu−βl)E2 � 0 .

Obviously (36) is a finite-dimensional convex nonlinear semidefinite program.

5.2 Examples

Two numerical examples are presented in this section. In order to solve problem
(36) we have used the nonlinear SDP code PENNON [14]. Although only the re-
sulting “density” function t tr(C)+ 1

2 t tr(D) is depicted, we want to emphasize that
the code provides the optimal elasticity matrices Cm and Dm for each element ωm,
m = 1, . . . ,M. Thus we gather information about the optimal material symmetry and
material directions usable in the manufacturing process.

Example 1. The first example (Fig. 2) serves as a test for the consistency with the
two-dimensional solid case. We consider a rectangular plate with in-plane forces.
The plate is clamped on one side while forces are applied in the center of the oppo-
site edge and directed in parallel to the boundary. This example known as Michell
truss is widely used in topology optimization literature.

The typical material distribution of a Michell truss can be easily recognized in
the displayed “density” distribution (Fig. 3). It is also notable that only membrane
strains appear as there is no deformation outside the midsurface. Thus there is no
material used for the matrix D which accounts to shear effects.

Example 2. The second example employs all degrees of freedom of the shell. We
start with a saddle-shaped midsurface, that is clamped on one side (Fig. 4). A vertical
force acts in the center of the opposite edge. This example can be interpreted as
optimization of a coat hook fixed to the wall.

The resulting “density distribution” (Fig. 5) shows a firm tip at the location of
the load. The shell tries to avoid vertical bending and distributes material over the
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Fig. 2 Michell truss load case

Fig. 3 Michell truss “density
distribution”
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complete design domain (apart from the corners in the front which are not suited
to stiffen this particular structure). No holes can thus be found in contrast to the
previous example. This result is not unexpected as stiff triangle-shaped structures
appearing in the plane of loading are well known in topology optimization.
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Fig. 4 Saddle-shaped hook
load case
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Fig. 5 Saddle-shaped hook
“density distribution”
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