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Abstract The set of particular 0-1 optimization problems solvable in polynomial
time has been extended. This becomes when the coefficients of the objective func-
tion belong to the set of superincreasing or superdecreasing types of sequence. We
have defined special superincreasing sequences which we call the nearest up and
nearest down to the sequence (c j) of objective function coefficients. They are ap-
plied to calculate the upper and lower bound of optimal objective function value.
When the problem needs to compute the minimum of objective function with the
superdecreasing sequence (c j), two cases are considered. Firstly, we have described
a type of problem when optimal solution can be obtained directly using a polyno-
mial procedure. The second case needs two phases to calculate an optimal solution.
The second phase relies on improving a feasible solution. The complexities of all
the presented procedures are given.

1 Introduction

The most frequently met formulation of 0-1 optimization problem (PLB) is:

max
n

∑
j=1

c jx j (1)

subject to

∑
j∈Ni

ai jx j ≤ di, i = 1,m (2)

x j ∈ {0,1} , j ∈ N = {1,2, . . . ,n} , Ni ⊂ N (3)
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To refer to the title of paper we are reminded that the sequence (c j) is called super-
increasing when

j−1

∑
i=1

ci < c j for j = 2,3, . . . (4)

We will consider sequences containing n elements only and assume that for n = 1 a
sequence is a superincreasing one.

For m = 1 and positive ai j,di,c j the problem (1)-(3) becomes knapsack one
and its special case with superincreasing parameters was effectively applied in the
knapsack-type public key cryptosystem [5]. The decision type of knapsack problem
with superincreasing parameters was shown in [4] to be P-complete. Short refer-
ence to the 0-1 optimization problems with superincreasing objective functions was
presented in [3] and [1].

For two-constraint 0-1 knapsack problem, an exact algorithm was described in
[6]. A general knapsack problem can be solved using Sbihi’s new algorithm [7].

To the best of our knowledge, very few algorithms solving also PLB, are avail-
able. We will focus on these kinds of PLB which are solvable in polynomial time or
their solutions can be estimated in polynomial time. Some of these cases were also
presented in [2]. Now we attempt to extend this class.

2 Superincreasing Sequence and 0-1 Optimization Problem.
General Remarks

For further considerations we will enumerate a few useful properties of superin-
creasing sequences:

1. Each subsequence of a superincreasing sequence is a superincreasing one,
2. Each increasing sequence containing only negative elements is a superincreas-

ing one,
3. Each nondecreasing sequence (c j) such that c1 6= c2 containing only negative

elements is a superincreasing one,
4. Nondecreasing finite sequence of nonnegative elements contains some superin-

creasing subsequence.

Proposition 1. If the problem (1)-(3) satisfies the following assumptions:

• the sequence (c j) is superincreasing and nonnegative,
• elements ai j are nonnegative (ai j ≥ 0),

then the optimal solution of the problem (1)-(3) is given by the following procedure
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x∗j =


1 when



a1 j ≤ d1−∑k∈N+
j

a1k

a2 j ≤ d2−∑k∈N+
j

a2k

.

.

.

am j ≤ dm−∑k∈N+
j

amk

0 otherwise

j = n,n−1, ...,1 (5)

where a j is the j-th column of the constraint matrix (2)

d = (d1,d2, ...,dm)T ,N+
n = φ

N+
j = {k : x∗k = 1, k ∈ {n,n−1, ..., j +1}} .

The proof results from (4) and assumptions.
The complexity of procedure (5) is equal to f5(n) ∈ O(n3). To calculate this

function one should observe that calculating each element of x∗j for j = n,n−1, ...,1
needs n,2n, ...,n×n basic operations, respectively. The total sum of these operations
gives us that function.

Proposition 1 allows us to solve 0-1 optimization problem in polynomial time,
when the assumptions it needs are satisfied.

Remark. The following example shows that the assumption ai j ≥ 0 is significant.

Example 1.
max x1 +2x2 +5x3 +10x4

subject to

x1−2x2 + x3 +8x4 ≤ 6
2x1− x2− x3 +3x4 ≤ 2

x j ∈ {0,1} , j = 1,4

The coefficients c j form the superincreasing sequence (c j) = (1,2,5,10). The op-
timal solution is x∗ = (0,1,0,1) and optimal objective function value is equal to
12. On the other hand, using procedure (5) we obtain vector x = (1,1,1,0) and the
objective function value is equal to 8.

Remark. A simple example shows that assumption c j ≥ 0, j = 1,n is also important.

Example 2.
max −2x1 +3x2 +3x3 +5x4

subject to
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x1 +2x2 +4x3 +6x4 ≤ 6
4x1 + x2 + x3 +5x4 ≤ 5

x j ∈ {0,1} , j = 1,4

One can observe that the sequence (c j) = (−2,3,3,5) is superincreasing. Procedure
(5) computes the vector x = (0,0,0,1) and we obtain an objective function value of
(c|x) = 5. However, the optimal solution is x∗ = (0,1,1,0) and the optimal objective
function value is equal to (c|x∗) = 6.

To continue our considerations we renumber, if necessary, all variables of the
0-1 problem and assume that the sequence (c j) is integer, nonnegative and non
decreasing.

Let us start with the following example.

Example 3.
max x1 +2x2 +3x3 +5x4 +5x5

subject to

x1 + x3 + x4 + x5 ≤ 2
x2 + x4 + x5 ≤ 2
x1 + x3 + x4 ≤ 3

x j ∈ {0,1} , j = 1,5

The optimal solution is x∗ = (0,1,1,1,0). The sequence (c j) = (1,2,3,5,5) is
not superincreasing but we can indicate some superincreasing subsequence of (c j)
which corresponds to some feasible solution. This feasible solution can be obtained
by correctly selecting elements of vector x∗ = (0,1,1,1,0) which are equal to one.

The vectors we mentioned above are: x1 = (0,1,1,0,0), x2 = (0,1,0,1,0),
x3 = (0,0,1,1,0). They correspond to superincreasing subsequence (c2,c3) = (2,3),
(c2,c4) = (2,5), (c3,c4) = (3,5) respectively. It leads to the following proposition.

Proposition 2. If the coefficients of problem (1)-(3) are nonnegative, i.e., c j ≥ 0,
ai j ≥ 0 for all i, j and there exists a feasible solution x 6= 0 = (0,0, ...,0), then there
exists a feasible solution x1 having elements x1

jr = 1, jr ∈ N1 ⊂ N+ =
{

j : x j = 1
}

,
x1

jr = 0 jr ∈ N\N1 that correspond to the superincreasing subsequence (c jr) of the
sequence (c j) which satisfies property IV.

The proof results from (4), assumptions of this proposition and property IV.
Let us consider two superincreasing subsequences of sequence (c j):

1. Subsequence (ci1 ,ci2 , ...,cir) which corresponds to a feasible solution x

x j =

{
1 for j = ik
0 for j 6= ik

k = 1,r, (6)
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2. Subsequence (c j1 ,c j2 , ...,c jr) which corresponds to a feasible solution y

y j =

{
1 for j = jk
0 for j 6= jk

k = 1,r. (7)

Proposition 3. If cir > c jr , then such inequality holds ∑
n
j=1 c jx j > ∑

n
j=1 c jy j i.e.,

solution x is better than solution y. The proof results directly from the definition of
the superincreasing sequence.

One can describe this dependence using subsequences (c3,c4),(c2,c3) from exam-
ple 3.

We observe that Propositions 2 and 3 can be applied to improve some given
feasible solution.

It results in the fact that for many 0-1 optimization problems we can construct
suitable 0-1 optimization problems with superincreasing objective functions and use
them to compute, in polynomial time, high quality upper and lower bounds of opti-
mal objective function values.

3 Superincreasing Sequence and Upper Bound

To obtain the upper bound of optimal objective function value, we have to introduce
several new objects. Denote by:

• Hn – the set of all finite superincreasing integer sequences (h j), j = 1,n,
• An =

{
h ∈ Hn : h j ≥ c j, j = 1,n

}
– the set of finite superincreasing sequences

with integer elements no smaller than suitable elements of the sequence (c j).

Remembering that (c j) is nondecreasing we form the following definition.

Definition 1. A superincreasing sequence h∗ = (h∗j) is called the nearest up to the
sequence (c j) when

h∗ ∈ An and ‖c−h∗‖= min
h∈An

‖c−h‖= min
h∈An

n

∑
j=1

∣∣c j −h j
∣∣ (8)

For a given (c j) we can compute the sequence h∗ = (h∗j) in the following way:

h∗1 = c1 (9)

and for j = 2,n

h∗j =
j−1

∑
k=1

h∗k +1 when c j ≤
j−1

∑
k=1

h∗k (10)

h∗j = c j when c j >
j−1

∑
k=1

h∗k . (11)
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We notice that (h∗j) = (c j) when (c j) is a superincreasing sequence.
To compute all elements of h∗, the following numbers of basic operations are

needed: 0 for j = 1, 2 for j = 2, 3 for j = 3, ..., n for j = n, respectively. Hence, the
complexity of the procedure (9)-(11) is equal to fh∗(n) ∈ O(n2).

The upper bound of optimal objective function value for the PLB is given by

n

∑
j=1

h∗jx j ≥
n

∑
j=1

c jx∗j (12)

where:

• x = (x j), j = 1,n denotes a feasible solution computed by procedure (5) when we
set the sequence (h∗j) instead of the sequence (c j) in PLB,

• x∗ = (x∗j), j = 1,n denotes an optimal solution of the problem (1)-(3), under the
assumption ai j ≥ 0,c j ≥ 0.

Example 4.
max x1 +4x2 +5x3 +6x4

subject to

x1 + x2 + x3 +6x4 ≤ 6
2x1 + x2 + x3 + x4 ≤ 7

x j ∈ {0,1} , j = 1,4

The vector x∗ = (1,1,1,0) is the optimal solution of this problem and the optimal
objective function value (c|x∗) is equal to 10.

According to procedure (9)-(11) the vector h∗ = (h∗1,h
∗
2,h

∗
3,h

∗
4) = (1,4,6,12)

is superincreasing and the nearest up to the vector c = (c1,c2,c3,c4) = (1,4,5,6)
which is not superincreasing.

Setting the sequence (h∗j) instead of (c j) and applying procedure (5) we obtain a
feasible solution of x = (0,0,0,1) and objective function value of (c|x) = 6.

The upper bound of the optimal value (c|x∗) = 10, based on (12), is equal to
(h∗|x) = 12.

At this point we should underline a very important fact: procedure (5), in every
case, produces an upper bound of optimal function value when we use vector h∗ in-
stead of vector c. But procedure (5) cannot compute the upper bound without setting
h∗ instead of c. From example 4 results we obtain the same vector x = (0,0,0,1) as
when we use procedure (5) and keep the vector c = (c1,c2,c3,c4) = (1,4,5,6).

4 Superincreasing Sequence and Lower Bound

To improve an assessment of optimal objective function value we propose to com-
pute a lower bound of it.
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Definition 2. Let (c j) be a non decreasing integer sequence.
A superincreasing sequence ho = (ho

j) is called the nearest down to the sequence
c = (c j) when

‖c−ho‖= min
h∈Bn

‖c−h‖= min
h∈Bn

n

∑
j=1

∣∣c j −h j
∣∣ (13)

where
Bn =

{
h ∈ Hn : h j ≤ c j, j = 1,n

}
For the given c = (c j) a sequence ho = (ho

j) can be computed according to the
following procedure:

1. For n = 1, ho
1 = c1,

2. For n = 2, ; ho
2 = c2,

ho
1 =

{
c1 if c1 < ho

2 = c2

c1−1 if c1 = c2 = ho
2

(14)

3. For n ≥ 3, ; ho
j = c j, ; j = n,2 and first element ho

1 needs a special recurrence
formula to compute:

hk−2
1 =


c1 for k = n

hk−1
1 if hk−1

1 +∑
k
i=2 ci < ho

k+1 = ck+1, k = n−1,2

hk−1
1 −A if hk−1

1 +∑
k
i=2 ci ≥ ho

k+1 = ck+1

(15)

where A = (ck+1− (hk−1
1 +∑

k
i=2 ci))+1

Example 5.

1.

{
c = (1,1,1,1,4)
ho = (−2,1,1,1,4)

2.

{
c = (−1,−1,−1,−1,4)
ho = (−2,−1,−1,−1,4)

3.

{
c = (−3,−1,3,4,4)
ho = (−3,−1,3,4,4)

4.

{
c = (−1,2,5,7,8,8)
ho = (−15,2,5,7,8,8)

To evaluate the complexity of computing (ho
j) for the given (c j), it will be enough

to take into account expression (15). The recurrence structure of this formula leads
us to the following evaluation of the complexity: fho(n) ∈ O(n2).



10 Marian Chudy

5 Some Useful Properties of (h∗j) and (ho
j)

1. From Definitions 1 and 2 it follows that if a sequence (c j) is superincreasing
then

c j = h∗j = ho
j , j = 1,n. (16)

2. For each non decreasing (c j) the following inequalities hold

h∗j ≥ c j ≥ ho
j , j = 1,n. (17)

3. If some non decreasing sequence (c j) satisfies

h∗j = ho
j , j = 1,n (18)

then (c j) is superincreasing.
4. For each vector x such that x∈ S = {x ∈ En : ; (2),(3)hold} we can obtain from

(17) the following evaluation

(h∗|x)≥ (c|x)≥ (ho|x). (19)

5. The previous properties allow us to formulate

(c|x∗)≥ (c|x)≥ (ho|x) x∗,x ∈ S. (20)

It means that value (c|x),x ∈ S is not worse a lower bound of (c|x∗) than (ho|x).

6 Superdecreasing Sequence and 0-1 Optimization Problem

Some 0-1 optimization problems have the following form:

min
n

∑
j=1

c jx j = min(c|x) (21)

subject to

∑
j∈Ni

ai jx j ≥ di, i = 1,m (22)

x j ∈ {0,1} , j ∈ N = {1,2, ...,n} , Ni ⊂ N (23)

This problem needs a different approach than the approach to (1)-(3).

Definition 3. A sequence (c j) is called a superdecreasing one when

c j >
n

∑
i= j+1

ci, j = 1, ...,n−1 (24)



0-1 Optimization Problems with Superincreasing/decreasing Objective Functions 11

and for n = 1, (c j) is superdecreasing.

The following properties of a superdecreasing sequence take place:

1. Each subsequence of the superdecreasing sequence (c j) is superdecreasing,
2. Each of the decreasing sequence (c j)containing only negative elements is su-

perdecreasing,
3. Each of the non increasing sequence (c j)containing only negative elements and

satisfying c1 6= c2 is superdecreasing,
4. Each of the non increasing sequence (c j) with only negative elements contains

a superdecreasing subsequence.

We are able to select several cases when problems (21)-(23) are easily solvable.

Proposition 4. Consider the problem (21)-(23) with superdecreasing (c j) and let
the following conditions hold: c j ≥ 0, ai j ≥ 0 and there exists j such that ai j ≥
di, i = 1,m, then an optimal solution has the form:

x∗j∗ = 1 and x∗j = 0 for j 6= j∗

when there exists i such that

n

∑
j= j∗+1

ai j < di, i ∈ {1,2, ...,m} and j∗ < n

j∗ = max
{

j : ai j ≥ di, i = 1,m
}

(25)

or

j∗ = n

The proof results from Definition 3 and the conditions presented above.

Example 6.
min 10x1 +5x2 +2x3 + x4

subject to

x1 +2x2 +7x3 +8x4 ≥ 6
2x1 + x2 +5x3 +2x4 ≥ 4

x j ∈ {0,1} , j = 1,4

In this problem we have j∗ = 3, x∗ = (0,0,1,0) which satisfy all the conditions that
Proposition 4 requires.

To obtain an optimal solution using the procedure described in Proposition 4, we
need to execute the following numbers of basic operations:

1. At most n2 to compute j∗,
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2. To check if there exists I such that ];∑ j= j∗+1 ai j < di, i ∈ {1,2...,m}, the worst
case takes place for j∗ = 1 and the number of basic operations equals at most
(n−1)n.

Hence, the complexity of the procedure is equal to fmin(n) = O(n2).

Proposition 5. Let us consider the problem (21)-(23) with a superdecreasing (c j)
and c j ≥ 0, ai j ≥ 0.

Assume that there is no j such that ai j ≥ di, i = 1,m. Then the following expres-
sions

xo
j =

{
1 f or j = n,n−1, ..., jo
0 otherwise

(26)

jo = max

{
j :

n

∑
k= j

aik ≥ di, i = 1,m

}
(27)

give us the upper bound (c|xo) of optimal objective function value (c|x∗) of the
problem (21)-(23). The proof we obtain from (26) and Definition 3.

The complexity of this procedure is determined in (27). In the worst case it needs
at most n3 basic operations. Hence, the complexity equals fup(n) ∈ O(n3).

Example 7.
min 10x1 +5x2 +2x3 + x4

subject to

x1 +2x2 + x3 +8x4 ≥ 6
2x1 +2x2 + x3 +2x4 ≥ 4

x j ∈ {0,1} , j = 1,4

The sequence (c j) = (10,5,2,1) is superdecreasing.
Using procedure (26), (27) we obtain jo = 2 and the feasible solution x =

(0,1,1,1) that gives (c|x) = 8. This is not an optimal solution. The optimal solu-
tion is x∗ = (0,1,0,1) and gives (c|x∗) = 6. We can improve the feasible solution
x = (0,1,1,1) applying the procedure given below.

Proposition 6. Let xo = (xo
j), j = 1,n be the feasible solution of problem (21)-(23)

which was obtained using procedure (26), (27) under the assumptions: (c j) is su-
perdecreasing, c j ≥ 0 , ai j ≥ 0.

Defining auxiliary parameters:

N+
o =

{
j : xo

j = 1, xo
j that satisfies (26),(27)

}
= {n,n−1, ..., jo} ,

N−
jo+1 =

{
φ when ∑k∈N+

o \{ jo+1} aik < di, i = 1,m

{ jo +1} when ∑k∈N+
o \{ jo+1} aik ≥ di, i = 1,m
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N−
j =

{
N−

j−1 when ∑k∈N+
o \(N−

j−1
⋃
{ j}) aik < di, i = 1,m

N−
j−1

⋃
{ j} when ∑k∈N+

o \(N−
j−1

⋃
{ j}) aik ≥ di, i = 1,m

j = jo +2,n

the optimal solution can be expressed in the following way

x∗j =

{
0 when ∑k∈N+

o \{ j} aik ≥ di, i = 1,m

1 otherwise
j = jo +1 (28)

x∗j =

{
0 when ∑k∈N+

o \N−
j

aik ≥ di, i = 1,m

1 otherwise
j = jo +2,n (29)

x∗j = 0 f or j = 1, jo−1. (30)

The essence of the procedure (28)-(30) relies on reducing to zero, if possible, these
elements xo

j of vector xo which are equal to one and c j is large. It is also essence of
the proof.

The similarity between (26) and (28), (29) allows us to write fcor(n) ∈ O(n3) as
the complexity of the vector xo improving .

In example 7, we can correct x = (0,1,1,1) to the form x∗ = (0,1,0,1) using
procedure (28)-(30), because the sum of the second and fourth column satisfies (28),

i.e.

[
2
2

]
+

[
8
2

]
≥

[
6
4

]
.

7 Conclusions

The results we have obtained are applicable to:

• solving 0-1 optimization problems with a superincreasing and superdecreasing
objective function, if the indicated assumptions hold,

• computing upper bounds and lower bounds of optimal objective function value
for 0-1 optimization problems under suitable assumptions,

• improving given feasible solution of 0-1 optimization problem using some prop-
erties of superincreasing and superdecreasing sequences.

It is worth underlining that all of these procedures are polynomial. The practical
application area of 0-1 optimization problems is very broad. There are no reasons to
exclude these results from this area.
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